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Abstract
Members of the Eph family of receptor tyrosine kinases and their membrane bound ephrin

ligands have been shown to play critical roles in many developmental processes and more

recently have been implicated in both normal and pathological processes in post-embryonic

tissues. In particular, expression studies of Eph receptors and limited functional studies

have demonstrated a role for the Eph/ephrin system in hematopoiesis and leukemogenesis.

In particular, EphA2 was reported on hematopoietic stem cells and stromal cells. There are

also reports of EphA2 expression in many different types of malignancies including leuke-

mia, however there is a lack of knowledge in understanding the role of EphA2 in hematopoi-

esis and leukemogenesis. We explored the role of EphA2 in hematopoiesis by analyzing

wild type and EphA2 knockout mice. Mature, differentiated cells, progenitors and hemato-

poietic stem cells derived from knockout and control mice were analyzed and no significant

abnormality was detected. These studies showed that EphA2 does not have an obligatory

role in normal hematopoiesis. Comparative studies using EphA2-negative MLL-AF9 leuke-

mias derived from EphA2-knockout animals showed that there was no detectable functional

role for EphA2 in the initiation or progression of the leukemic process. However, expression

of EphA2 in leukemias initiated by MLL-AF9 suggested that this protein might be a possible

therapy target in this type of leukemia. We showed that treatment with EphA2 monoclonal

antibody IF7 alone had no effect on tumorigenicity and latency of the MLL-AF9 leukemias,

while targeting of EphA2 using EphA2 monoclonal antibody with a radioactive payload sig-

nificantly impaired the leukemic process. Altogether, these results identify EphA2 as a

potential radio-therapeutic target in leukemias with MLL translocation.

Introduction
Eph/ephrin form the largest family of receptor tyrosine kinases (RTKs) and fall into two groups
based on their sequence homology, ligand specificity and structural features. Fourteen
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members of Eph receptors (EphA and EphB receptors) bind to eight members of ephrin
ligands (ephrin-A and ephrin-B ligands) [1, 2]. In the hematopoietic system, expression of
Eph/ephrin has been detected on purified populations of hematopoietic stem cells (HSCs) in
both human and mouse [3–5]. Real-time quantitative PCR and flow cytometric analysis of
purified HSCs in the mouse bone marrow show expression of all EphA receptors except
EphA6 and EphA8, along with expression of members of ephrin-A ligand, with ephrin-A4 and
ephrin-A5 being the most highly expressed [6]. Expression of Eph/ephrin has been reported in
progenitor cells including erythroid progenitors, B-cells and T-cells. They have also been impli-
cated with platelet aggregation and lymphoid development [5, 7, 8].

Members of the Eph/ephrin family are aberrantly expressed in cancer cells and tumor
microenvironment where they influence tumor growth and spread [9–12]. Intriguingly, Eph
receptors can have either tumor-suppressing or tumor-promoting activity depending on the
cancer type [13]. In particular, increased expression of members of the Eph/ephrin system has
been detected in human leukemia. EphA3 was originally identified in the LK63 pre-B acute
lymphoblastic leukemia (ALL) cell line and further investigations revealed its expression in
other leukemic cell lines [14, 15]. Co-expression of ephrin-B2 and EphB4 (HTK) was found in
many leukemic cell lines [8]. Studies by Nakanishi et al showed up-regulation of EphA7 in
ALL1-associated leukemia (ALL1/AF4 and ALL1/AF9) [16]. They have also reported expres-
sion of other EphA transcripts including EphA1, EphA2, EphA3, EphA4, and EphA6 in the
MLL-AF9 and MLL-AF4 transfected K562 cells [16]. More recently, the Eph receptors have
been investigated as potential targets for cancer therapy, with the most advanced therapies tar-
geting EphA2, EphA3 and EphB4 [11]. Despite reports of Eph expression in hematopoietic
cells, the role of Eph/ephrins in hematopoiesis remains to be defined.

The available literature indicates expression of EphA2 transcript at significant levels in
HSCs [6] and various human malignancies however there is a limited knowledge on the spe-
cific role of this member of Eph family of RTKs in HSCs and leukemias[6]. In this report we
explore the potential role of the EphA2 protein in the control of normal hematopoiesis and leu-
kemia. To indicate the specific role for EphA2 in normal hematopoiesis, we examined hemato-
poiesis in EphA2 knockout mice in comparison to their wild type littermates. We have also
examined the expression of EphA2 in the mouse model of leukemia and observed that
MLL-AF9 induced murine leukemia have elevated EphA2 expression. EphA2 monoclonal anti-
body therapy has been previously used in different types of cancers that express EphA2 in this
report we explored the effect of targeting EphA2 using EphA2 monoclonal antibody and radio-
labeled EphA2 monoclonal antibody in leukemias initiated by MLL translocations.

Methods

Ethics statement
All of the human cell samples utilized for this report were collected with the donor's written
informed consent in accordance with the Declaration of Helsinki, and approved by the QIMR
Berghofer Medical Research Institute Human Ethics committee and Queensland Children
Medical Research Institute Human Ethics committee. All documentation was stored securely
as approved by the Institutional Ethics Committee.

Animal studies were conducted under approval of QIMR Berghofer Medical Research Insti-
tute Animal Ethics Committee. Mice were anesthetized with 2–3% isoflurane in oxygen and
euthanized humanely by cervical dislocation or asphyxiation as approved by the Ethics
Committee.
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Animals
EphA2 knockout mice were kindly supplied by Dr Naruse-Nakajima (University of Tokyo)
[17] and maintained on the C57BL/6 (Jackson Laboratory, Bar Harbor, ME) background.
Female mice of the congenic strains C57BL/6 (Ly 5.2) and PTPRC (Ly 5.1) were purchased
from Animal Resource Centre (Perth, Australia). These mice were crossed to produce hetero-
zygous CD45.1/45.2 mice. All the mice used in these studies were between the ages of 6–8
weeks. Mice were kept in QIMR Berghofer Medical Research Institute pathogen free animal
facility according to institute protocols.

Peripheral blood analysis and flow cytometry
After anaesthetizing the mice peripheral blood was collected using submandibular blood sam-
pling and analyzed on a Hemavet analyzer (Drew Scientific, Oxford, CT).

Cells purified from bone marrow and spleen of mice after red blood cell lysis (BD Biosci-
ences, San Jose, CA) were counted on a Coulter Counter (Beckman Coulter, Miami, FL). These
cells were stained for mature blood cells, progenitor cells and hematopoietic stem cells [18, 19].
Cells were stained with CD3 (eBioscience, San Diego, CA 12-0031-82) for T-cells, Gr1 (Biole-
gend, San Diego, CA, 108412) for Granulocytes and B220 (Biolegend, 103204) for B-cells.
CD71 (eBioscience, 12-0711-82) and Ter-119 (eBioscience, 17-5921-82) antibodies were used
for erythroid maturation analysis.

To isolate hematopoietic stem and progenitor cells (HSPC), bone marrow cells were stained
with a cocktail of biotinylated anti–mouse antibodies against antigens expressed on lineage-
committed cells with a panel of biotinylated monoclonal antibodies to Ter119 (553672, BD
Biosciences), CD3 (Clone 145-2C11, 553060, BD Biosciences), CD5 (Clone 53–7.3, 553019, BD
Biosciences), B220 (Clone RA3-6B2, 553086, BD Biosciences), Mac-1 (Clone M1/70, 553308,
BD Biosciences) and Gr-1 (Clone RB6-8C5, 553125, BD Biosciences). The lineage+ cells were
detected with streptavidin (Biolegend, 405208) to enrich for early hematopoietic cells. These
lineage- cells were stained with a combination of c-kit (eBioscience, clone 2B8, 17-1171-82)
and Sca-1 (eBioscience, clone D7, 25-5981-82). This population of cells contains two subpopu-
lations known as Lineage-c-Kit+Sca-1+ (LKS+) cells and Lineage-c-Kit+Sca-1- progenitor cells.
Progenitor cells were stained with CD34 (eBioscience, clone RAM34, 11-0341-82), FcγRII/III
(eBioscience, clone 93, 12-0161-82) to fractionate this population into granulocyte-monocyte
progenitors (GMPs), common myeloid progenitors (CMPs) and megakaryocyte-erythrocyte
progenitors (MEPs). LKS+ cells were stained with either CD34 (clone RAM34, 11-0341-82)
and Flk2 (clone A2F10.1, 12-1351-82) or CD150 (clone TC15-12F12.2, Biolegend 115912) and
CD48 (clone HM48-1, Biolegend 103418) antibodies to further fractionate these cells into long
term-HSCs (LT-HSCs), short term-HSCs (ST-HSCs) and multipotent progenitors (MPPs).

Cell surface expression of Eph proteins were defined with 10 μg/ml of in-house anti-
EphA1,-EphA2,-EphA3 and-EphA7 monoclonal antibodies or ephrinA5-Fc fusion protein
and stained with SYTOX-Blue (Life Technologies, Gaithersburg, MD) dead cell marker. All
cells were analyzed on an LSRFortessa flow cytometer (BD Biosciences).

Competitive transplantation assays
Competitive transplant experiments were carried out by injecting EphA2 knockout or wild
type CD45.2 donor cells together with equal numbers of double positive CD45.1/45.2 congenic
competitor cells into the tail vein of irradiated (11 Gy) CD45.1 recipient mice. Blood chimerism
was analyzed every 4 weeks for 16 or 24 weeks and the bone marrow and spleen chimerism
were determined in the last week.
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Real-time quantitative polymerase chain reaction analysis
RNA was isolated from bone marrow using RNeasy Mini Kit (QIAGEN, Valencia, CA) and
complementary DNA (cDNA) was synthesized using SuperScript III (Life Technologies) with
respect to the manufacturer's instructions. Relative transcript quantification was performed
with SYBR Green QPCRMastermix (Applied Biosystems, Foster City, CA) using RotorGene
3000 Real-Time PCR system. Gene expression was calculated relative to 18S rRNA or β-actin
housekeeping gene.

Mouse model of leukemia
For primary transplantation mouse hematopoietic stem cells were obtained using fluorescence-
activated cell sort (FACS) and cultured overnight on fibronectin in StemSpan media (Stem Cell
Technologies, Vancouver, BC, Canada) with 100 ng/mL Stem Cell Factor (SCF, PeproTech,
Rocky Hill, NJ, USA), 50 ng/mL Thrombopoietin (TPO, PeproTech.), 100 ng/mL Granulocyte
colony-stimulating factor (G-CSF) and 100 U/ml Penicillin-Streptomycin (Life Technologies,
Gaithersburg, MD). The cultured cells were incubated for 48 hours with supernatants of
MSCV-MLL-AF9-GFP and MSCV-BCR-ABL-GFP retroviral vectors as described previously
[19]. Purified hematopoietic stem cells (LKS+) were transduced with MLL-AF9-GFP or
BCR-ABL-GFP containing retrovirus. Transduced green fluorescent protein-positive (GFP+)
cells were transplanted into sublethally irradiated (5.5 Gy) recipient mice via tail vein injection.
For secondary transplant 2×104 GFP+ leukemic cells from primary transplant were injected via
tail vein into sublethally irradiated (5.5 Gy) recipient mice (C57BL/6). These mice were moni-
tored and scored for signs of leukemia every second day and mice with clinical signs of disease
were sacrificed immediately [19].

To assess the potential therapeutic effect of anti-EphA2 antibody on MLL-AF9 leukemic
mice, the mice were treated intraperitoneally with 0.1 mg of anti-mouse EphA2 monoclonal
antibody (IF7 mAb) in PBS or vehicle only (PBS) control on alternate dates until the mice were
euthanized due to progression of disease.

Primary MLL-rearranged leukemia samples
Primary bone marrow or peripheral blood samples were obtained from patients with MLL-
rearranged acute myeloid leukemia (AML, n = 3) and ALL (n = 3 pre-B ALL, 1 T-ALL), after
informed consent in accordance with the Declaration of Helsinki. Mononuclear cells were
recovered using Ficoll density gradient purification. The median percentage of blasts in each
sample was 92.5% (range 65–96%).

Radiolabeling and immunoreactivity
The EphA2 monoclonal antibody (IF7 mAb) and EphA3 monoclonal antibody (IIIA4 mAb)
were radiolabeled with Lutetium-177 (177Lu, PerkinElmer, MA) as described previously [20].
The specific radioactivity was 8.1 and 8.5 mCi/mg (i.e. 300 and 316 MBq/mg) for 177Lu- IF7
and 177Lu-IIIA4 respectively. Treatments with PBS, unlabelled IF7, 177Lu-IF7 and 177Lu-IIIA4
antibodies were initiated after transplantation. The average percentage of GFP+ cells in mouse
blood was determined using flow cytometry and the treatments were administered intrave-
nously via tail vein injection.

Statistical analysis
Statistical analyses were performed using GraphPad Prism Version 6.01 software. All flow
cytometry data were analyzed with FlowJo software (TreeStar).
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Results

EphA2 is dispensable for normal hematopoietic development
Blood development in mature EphA2 knockout mice, compared to normal C57BL/6 mice,
showed no differences in baseline blood parameters, including hematocrit (HCT), white blood
cell (WBC), red blood cell (RBC), neutrophil, lymphocyte, monocyte or platelet counts in the
blood (Fig 1A). No significant differences were observed in the weight of spleen and liver in

Fig 1. Immunophenotyping of EphA2 knockout mice compared to wild type littermates. (A) Full blood counts showed no significant differences in
EphA2 knockout mice compared to wild type mice (n = 15, 3 independent experiments). (B) Number of nucleated bone marrow and spleen cells and spleen
and liver weight of EphA2 knockout mice compared to the wild type littermates did not show any significant differences (n = 5). (C) Erythroid maturation
analysis, erythroid-1 corresponding to pro-erythroblasts (CD71high, Ter119mid), erythroid-2 corresponding to basophilic erythroblasts (CD71high, Ter119high),
erythroid-3 corresponding to late basophilic and polychromatophilic erythroblasts (CD71mid, Ter119high) and erythroid-4 corresponding to late basophilic and
polychromatophilic erythroblasts (CD71low, Ter119high) in the bone marrow presented as percentage of viable bone marrow cells showed no differences in
erythroid maturation in EphA2 knockout compared to wild type control cells (n = 15, 3 independent experiments). (D) B-lymphocytes (B220), T-lymphocytes
(CD3) and Granulocytes (Gr-1) analysis showed no differences in B-lymphocytes, T-lymphocytes or granulocytes population in bone marrow, spleen and
blood of the EphA2 knockout mice compared to the wild type control mice (n = 15, 3 independent experiments). The data represent the mean ± SEM
(standard error of the mean). Unpaired t test was performed for statistical analyses (n) represent the number mice used in each experiment. An unpaired t
test was performed for statistical analyses.

doi:10.1371/journal.pone.0130692.g001
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EphA2 knockout mice. The number of nucleated bone marrow and spleen cells also did not
exhibit any significant differences (Fig 1B).

Analysis of the stages of erythroid maturation in EphA2 knockout bone marrow showed no
perturbation of erythropoiesis when compared with wild type mice (Fig 1C). Moreover, bone
marrow, spleen and blood immunophenotyping analysis indicated no significant effect from
lack of EphA2 expression on particular cell lineages, including granulocyte (GR-1), B-lympho-
cyte (B220), or T-lymphocyte (CD-3) populations (Fig 1D).

We next analyzed the numbers of immunophenotype-defined hematopoietic stem and
progenitor cells (HSPCs) in the EphA2 knockout mice compared to wild type littermates (Fig
2A). This analysis showed no significant differences in the percentage of Lineage-c-Kit+Sca-1+

(LKS+), progenitors and mature myeloid progenitor cells, including common myeloid progeni-
tors (CMPs), megakaryocyte-erythrocyte progenitors (MEPs), and granulocyte-monocyte
progenitors (GMPs) (Fig 2B). To further analyze HSCs, CD34 and FLK2 (CD135) markers
were utilized to isolate LT-HSCs (LKS+CD34-Flk2-), ST-HSCs (LKS+CD34+Flk2) or MPP,
(LKS+CD34+Flk2+) population. A significant increase in the frequency of ST-HSCs (P = 0.0012)
was observed in the EphA2 knockout bone marrow; however no significant differences in either
the MPPs or the LT-HSCs were evident (Fig 2C). CD150 and CD48markers were also used as
another method to fractionate HSCs, with (LKS+CD150+CD48-) cell population representing
LT-HSCs and (LKS+CD150-CD48+) representing MPPs. Similar to the previous results, there
were no significant differences in the frequency of LT-HSCs or MPPs in EphA2 knockout mice
compared to wild type control mice (Fig 2D). Altogether, these data suggest that EphA2 is not
essential for normal blood development.

EphA2 knockout HSCs have normal function in primary and secondary
transplantation
An increase in frequency of ST-HSCs in EphA2 knockout mice was observed which might
indicate an altered stem cell dynamics. To verify these results, we carried out competitive bone
marrow transplantation experiments using EphA2 knockout and wild type BM. No significant
differences were observed between EphA2 knockout mice and congenic controls at 4, 8, 12 and
16 weeks after transplantation (Fig 3A). Bone marrow and spleen chimerism analysis also
showed no statistical difference between EphA2 knockout and control mice at week 16 (Fig
3B). A secondary competitive transplantation was performed to assess whether there might be
more subtle effects of EphA2 knockout on long-term stem cell self-renewal. In the secondary
transplant, although some mice showed a very low percentage of chimerism, perhaps due to
limiting numbers of LT-HSCs in the transplanted cell population, there were no significant dif-
ferences between EphA2 knockout and control mice (Fig 3C and 3D).

EphA2 is expressed at low levels in MLL-AF9 leukemic models
Whilst we had shown that the expression of EphA2 is not essential for normal hematopoiesis,
the increased expression of this gene in MLL transfected K562 cells and interaction of Eph
tyrosine kinases with the Abl/Arg tyrosine kinase raised the possibility that EphA2 might be
functionally important in MLL and/or BCR-ABL type leukemias [16, 21]. To test this, mRNA
expression by RT-PCR was examined for EphA2 relative to 18S rRNA in bone marrow of
GFP-control, BCR-ABL and MLL-AF9 leukemic mice. This analysis showed significantly
higher EphA2 expression in bone marrow (P = 0.0267) of MLL-AF9 leukemic mice compared
to GFP-control (Fig 4A). Further analysis of EphA2 expression by flow cytometry showed sig-
nificantly higher EphA2 cell surface expression in the bone marrow and spleen of MLL-AF9
compared to BCR-ABL and GFP-control mice (Fig 4C and 4D).
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To further explore EphA2 expression in MLL-rearranged leukemias we mined the Hemaex-
plorer database (http://servers.binf.ku.dk/hemaexplorer/) [22]. As is shown in supplementary
S1 Fig in keeping with our analyses, EphA2 is variably but significantly over-expressed on

Fig 2. Stem/progenitor cell populations in EphA2 knockout mice compared to wild type littermates. (A) Gating for Progenitors (lineagelow

cKithighSca-1-), LKS+ cells (lineagelowcKithighSca-1+ enriched for hematopoietic stem cells), CMP (lineagelowcKithighSca-1-CD34+FCGRII/IIIlow), MEP
(lineagelowcKithighSca-1-CD34-FCGRII/III-) and GMP (lineagelowcKithighSca-1-CD34+FCGRII/IIIhigh) presented as percentage of Lineagelow cells. CD34/
CD135 gating for MPP (LKS+CD34+CD135+), ST-HSC (LKS+CD34+CD135-) and LT-HSC (LKS+CD34-CD135-). CD48/CD150 gating for LT-HSC
(LKS+CD150+CD48-) and MPP (LKS+CD150-CD48+). (B) There were no significant differences in progenitors, LKS+, CMP, MEP or GMP population in the
EphA2 knockout mice compared to wild type control mice (n = 15, 3 independent experiments). (C) There were no significant differences in LT-HSC and MPP
population gated by CD34/CD135 antigens in the EphA2 knockout mice compared to wild type control. There were significantly more (P = 0.0012) ST-HSCs
in EphA2 knockout bone marrow compared to wild type control (n = 15, 3 independent experiments). (D) There were no significant differences in LT-HSC and
MPP population gated using CD48/CD150 antigens in EphA2 knockout mice compared to wild type control (n = 15, 3 independent experiments). Each dot
corresponds to one individual mouse. The data represent mean ± SEM. Unpaired t test was performed for statistical analyses.

doi:10.1371/journal.pone.0130692.g002
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leukemias with t(11q23) MLL rearrangement compared to normal hematopoietic stem cells,
early progenitor cells (HPCs), CMPs, MEPs and GMPs (P<0.0001).

The elevated level of EphA2 expression in MLL-AF9 leukemias raised the possibility that
this protein may have a role in MLL-AF9 leukemogenesis. To explore this possibility, a series
of MLL-AF9 leukemic transplantation experiments were conducted (Fig 5A). Bone marrow
cells from C57BL/6 wild type or EphA2 knockout were infected with the MLL-AF9 oncogene
and transplanted into C57BL/6 wild type mice. The results from this transplantation showed
that lack of EphA2 expression in the donor mice was dispensable for the generation of leuke-
mia (Fig 5B and 5C).

Fig 3. EphA2 knockout bonemarrow repopulating potential in primary and secondary recipients. (A) Whole-blood chimerism at 4, 8, 12 and 16 weeks
after transplantation of EphA2 knockout or wild type bone marrow cells into lethally irradiated CD45.1 recipients (n = 5). (B) Analysis of bone marrow and
spleen chimerism in 16 weeks after primary transplantation. (C) Whole-blood chimerism of secondary transplant at 4, 8, 12, 16, 20 and 24 weeks after
transplantation of EphA2 knockout or wild type primary bone marrow cells into lethally irradiated CD45.1 recipient (n = 5). (D) Bone marrow and spleen
chimerism analysis 24 weeks after secondary transplantation. Each dot on panel A and C corresponds to mean and error from all wild type or knockout blood
chimerism. Each dot on panel B and D corresponds to one individual mouse. The data presented as percentage of blood, bone marrow and spleen
chimerism. The data represent mean ± SEM. Unpaired t test was performed for statistical analyses.

doi:10.1371/journal.pone.0130692.g003
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Serial transplantations were followed up to determine if self-renewal of EphA2 knockout
MLL-AF9 leukemic stem cell (LSC) was different to the wild type MLL-AF9 LSC. The GFP+

leukemic cells from both EphA2 knockout and wild type MLL-AF9 mice induced leukemia
with similar disease latencies (Fig 5D). There were no significant differences in bone marrow,
spleen and blood engraftment and in spleen and liver weight in EphA2 knockout and wild type
MLL-AF9 mice at the time of cull in the secondary transplantation experiment (Fig 5E). These
results indicate that absence of EphA2 does not affect self-renewal of MLL-AF9 LSCs in vivo.

Fig 4. Analysis of EphA2 protein and RNA expression on GFP-control, MLL-AF9 and BCR-ABL bonemarrow and spleen. (A) EphA2 mRNA
expression levels relative to 18sRNA in bone marrow of GFP-control, MLL-AF9 and BCR-ABL mice, analyzed per 1000000 18s RNA using RT-PCR.
Significantly higher EphA2 expression (P = 0.0267) in the MLL-AF9 bone marrow compared to GFP-control mice. (B) Representative flow cytometric overlay
analysis of the EphA2 expression in GFP-control, MLL-AF9 and BCR-ABL bone marrow. (C) Flow cytometric analysis of the EphA2 expression in bone
marrow of GFP-control, MLL-AF9 and BCR-ABL mice measured as mean fluorescent intensity, showed significantly higher EphA2 expression on MLL-AF9
bone marrow compared to GFP-control bone marrow (P <0.0001) and compared to BCR-ABL leukemic bone marrow (P = 0.0019) (n = 5 GFP-control, n = 4
MLL-AF9, n = 3 BCR-ABL, 1 biological replicates, 2 technical replicates). (D) Flow cytometric analysis of the EphA2 expression in spleen of GFP-control,
MLL-AF9 and BCR-ABL mice measured as mean fluorescent intensity, showed significantly higher EphA2 expression in spleen of the MLL-AF9 mice
compared to GFP-control mice (P = 0.0143) and higher expression compared to BCR-ABL leukemic mice (n = 5 GFP-control, n = 4 MLL-AF9, n = 3
BCR-ABL, 1 biological replicates, 2 technical replicates). Each dot corresponds to one individual mouse. The data represent the mean ± SEM. Unpaired t test
was performed for statistical analyses.

doi:10.1371/journal.pone.0130692.g004
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Analysis of EphA expression in human MLL-rearranged leukemia
A possible explanation for lack of effect of EphA2 deletion in MLL-AF9 leukemia is that other
Eph proteins with overlapping ephrin-binding affinities, such as EphA7 that was reported pre-
viously on MLL-AF9 leukemias [16], might show a compensatory increase in expression. To
explore this possibility EphA7 and total EphA expression on EphA2 knockout and wild type

Fig 5. MLL-AF9 EphA2 knockout mice have similar leukemogenic potential. (A) Serial MLL-AF9 leukemic transplantation model. (B) Survival of
leukemic mice transplanted with EphA2 knockout MLL-AF9–transduced hematopoietic stem cells (LKS+) compared to wild type MLL-AF9–transduced
hematopoietic stem cells (LKS+) showed no significant differences between the two groups (n = 4 wild type, n = 3 EphA2 knockout, 2 independent
experiments). (C) Percentage of GFP+ cells in bone marrow, spleen and blood of the EphA2 knockout and wild type MLL-AF9 bone marrow, spleen and
blood at time of cull did not show any significant differences between the two groups. (D) Survival of secondary MLL-AF9 mice transplanted with GFP+

EphA2 knockout or GFP+ wild type MLL-AF9 cells from the primary transplant showed no significant differences between the two groups (n = 16 wild type,
n = 19 EphA2 knockout, 4 independent experiments). (E) Percentage of GFP+ cells in bone marrow, spleen and blood of the secondary transplanted wild
type or EphA2 knockout MLL-AF9 mice did not show any significant differences between the two groups. Each dot corresponds to one individual mouse. The
data represent the mean ± SEM. Unpaired t test was performed for statistical analyses. The survival is presented as Kaplan-Meier survival curves (Log rank
test was used for statistical analysis).

doi:10.1371/journal.pone.0130692.g005
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MLL-AF9 leukemic cells were analyzed using flow cytometry. Total EphA expression was
determined by binding of ephrinA5-Fc with high binding affinity to members of EphA sub-
family. In EphA2 knockout MLL-AF9 leukemic cells, EphA7 expression was not significantly
up-regulated compared to wild type MLL-AF9. However, the levels of ephrinA5-Fc binding in
EphA2 knockout MLL-AF9 was not significantly different to wild type MLL-AF9 cells suggest-
ing that, despite loss of EphA2, the complement of EphA receptors on the leukemic cells of
MLL-AF9 leukemic mice was similar to control MLL-AF9 leukemic cells (Fig 6A). This sup-
ported the possibility that some compensatory increase in other Eph genes was present in the
EphA2 knockout leukemic cells. To this end, we performed RT-PCR analysis of the MLL-AF9

Fig 6. Expression analysis of EphA subfamily onmouse MLL-AF9 leukemic cells, on patient samples and human leukemic cell lines with MLL-
rearrangement. (A) Flow cytometric analysis of EphA2, EphA7 and ephrinA5-Fc binding in EphA2 knockout and wild type bone marrow cells showed no
EphA2 expression in the EphA2 knockout mice and significantly high expression of EphA2 in the wild type mice as expected (P = 0.0165). Comparable levels
of EphA7 (P = 0.3099) and ephrinA5-Fc binding (P = 0.8710) expression were observed in EphA2 knockout and wild type leukemic cells. (B) RT-PCR
analysis of EphA1, EphA2, EphA3, EphA4, EphA5 and EphA7 in EphA2 knockout and wild type bone marrow cells showed no EphA2 transcript in the EphA2
knockout mice compared to wild type MLL-AF9 (P = 0.0776) and comparable level of EphA1 (P = 0.3458), EphA5 (P = 0.7020) and EphA7 (P = 0.6167)
transcript in EphA2 knockout and wild type mice. There was no expression of EphA3 and EphA4 observed in any of the MLL-AF9 mice (n = 4). (C)
Representative overlay of flow cytometric analysis of EphA1, EphA2, EphA3, EphA7 and ephrinA5-Fc binding on patient samples and human cell lines. (D)
Table summarizing the expression level of Eph receptors on patient samples (patients 1–7) and human leukemia cell lines (THP-1 and MV4-11). Each dot
corresponds to one individual mouse. The data represent the mean ± SEM. Unpaired t test was performed for statistical analyses.

doi:10.1371/journal.pone.0130692.g006
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leukemic bone marrow cells for the expression of EphA receptors in EphA2 knockout and wild
type mice. This again showed no significant change in EphA7 expression in support of the flow
cytometric data; there was an increase in EphA5 expression in EphA2 knockout MLL-A9 when
compared to wild type MLL-AF9 leukemic cells, although this was variable and did not reach
statistical significance (Fig 6B).

To further evaluate the expression of Eph family of RTKs on MLL type leukemias, seven
patient clinical samples fromMLL-driven leukemia and two human cell lines (THP-1 and
MV4-11) bearing MLL fusion genes MLL-AF9 and MLL-AF4 were used, respectively. Expres-
sion of EphA1, EphA2, EphA3, EphA7 and total Eph, as determined by ephrinA5-Fc binding,
were analyzed using flow cytometry. The results showed significant but variable expression of
EphA1 and EphA3, and moderate expression of EphA2 and EphA7. Importantly, expression of
total Ephs as determined by ephrinA5-Fc staining was significant on all samples (Fig 6C and
6D). Together these data showed variable level of Eph expressions on patient samples and leu-
kemic cell lines with MLL rearrangement. In particular, EphA2 was expressed at different levels
in individual leukemic samples but the significant expression in a proportion of clinical sam-
ples bearing the 11q23 chromosomal (MLL) re-arrangement, suggested that EphA2 might be a
therapeutic target in human MLL-driven leukemia.

MLL-AF9 leukemic mice treated with EphA2 monoclonal antibody
immunotherapy and radio-immunotherapy treatment, delayed leukemia
progression
Whilst EphA2 expression was not critical for the leukemic process, a significant level was
detected on most cases of MLL-AF9 murine leukemia indicating that this protein might be a
potential radiolabeled therapeutic target in the treatment of MLL-AF9 leukemias. To test this
possibility we utilized the EphA2 monoclonal antibody (IF7 mAb) [23], which binds at nano-
molar affinity to both mouse and human EphA2 and reaches a serum level> 1 mg/mL for at
least 48 hours after 0.1 mg/mouse dose, a level predicted to give saturation binding of EphA2.
We treated EphA2-expressing MLL-AF9 secondary transplanted leukemic mouse model with
0.1 mg of IF7 mAb or vehicle only (PBS) control every second day when the percentage of
GFP+ cells in mouse blood reached 20–30% of viable blood cells. Mice were monitored for
external (hunched back, ruffled fur, weight loss and reduced movement) and internal (white
blood cell count) signs of leukemia. A clinical score based on the symptoms including WBC
count (0–2), mouse weight (0–2), mouse posture and fur texture (0–2) and movement (0–2)
was calculated, mice were culled once the clinical score reached 7 or more. As expected the
results showed no statistical differences in survival and engraftment of leukemic mice treated
with IF7 mAb compared to vehicle only PBS (Fig 7A and 7B). As we have shown previously
lack of EphA2 had no effect on leukemic process and IF7 antibody treatment on its own had
no significant effect on leukemogenesis, therefore we examined whether this antibody could be
used to deliver a radioactive "payload" to the leukemic cells. The IF7 mAb radiolabeled with
Lutetium-177 (Lu-IF7) was utilized in the treatment of MLL-AF9 leukemic mice. The mice
bearing 20–30% GFP+ MLL-AF9 leukemia were treated with 3 MBq/21 μg of Lu-IF7 mAb,
unlabelled IF7 mAb, IIIA4 anti-EphA3 mAb [14] (Lu-IIIA4) control (as MLL-AF9 leukemia
do not express EphA3) or PBS control. These results showed a prolonged survival in the Lu-
IF7 mAb treated group compared to PBS treated control (P = 0.0140), IF7 mAb (P = 0.0100)
and Lu-IIIA4 mAb (P = 0.0100). There were no significant differences between PBS, IF7 unla-
belled and the Lu-IIIA4 mAb treatment groups (Fig 7C). Additionally, we treated mice when
there were 3–5% GFP+ MLL-AF9 leukemic cells with either one or two dose of 3 MBq/27 μg
Lu-IF7. A significant improvement in the survival of mice treated with one dose and two doses
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Fig 7. Survival and engraftment data fromMLL-AF9 leukemic mice treated with PBS, EphA2mAb (IF7), radiolabeled EphA2 (Lu-IF7) or
radiolabeled EphA3 (Lu-IIIA4) antibody. (A) Survival of MLL-AF9 leukemic mice treated with IF7 mAb or PBS control showed no significant differences
between the two groups. (B) Percentage of GFP+ cells in bone marrow, spleen and blood showed significantly higher GFP+ cells in bone marrow of IF7 mAb
treated mice compared to PBS control (P = 0.0055). There were no significant differences observed in spleen and blood of the IF7 treated MLL-AF9 mice
compared to wild type control mice at time of cull (n = 5 PBS treated, n = 6 IF7 treated). (C) Survival of MLL-AF9 leukemic mice treated with PBS, IF7 mAb,
Lu-IIIA4 or Lu-IF7 antibody. While there were no significant differences between PBS, IF7 and Lu-IIIA4 antibody treated groups, a significant increase in the
survival of Lu-IF7 mAb treated group was observed compared to PBS (P = 0.0140), IF7 mAb (P = 0.0100) and Lu-IIIA4 mAb (P = 0.0100) treated group (n = 3
PBS treated, n = 3 IF7 mAb treated, n = 3 Lu-IIIA4 antibody and n = 4 Lu-IF7 treated). (D) Survival of MLL-AF9 leukemic mice treated with PBS, unlabeled-Lu
control and Lu-IF7 antibody showed no significant differences between PBS and unlabeled-Lu control antibody treated groups. In contrast there were
significant increase in the survival of mice treated with a single dose of Lu-IF7 mAb (P = 0.0084) and more so with two doses of Lu-IF7 (P = 0.0039) compared
to PBS control. The increase in survival after treatment with single dose of Lu-IF7 mAb (P = 0.0140) and two doses of Lu-IF7 (P = 0.0046) compared to
unlabeled-Lu control (n = 4 PBS treated, n = 3 unlabeled-Lu, n = 4 Lu-IF7 antibody one dose and n = 5 Lu-IF7 antibody two doses, 3 biological replicates).
Each dot corresponds to one individual mouse. The data represent mean ± SEM and unpaired t test was performed for statistical analyses. Kaplan-Meir
curves were constructed in GraphPad and Log-rank (Mantel-Cox) tests were used to determine statistical differences.

doi:10.1371/journal.pone.0130692.g007
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of Lu-IF7 was observed. In a single dose treatment group there was a significant increase in sur-
vival of Lu-IF7 mAb compared to PBS control (P = 0.0084) and unlabeled-Lu (P = 0.0140). A
greater effect was seen when mice were treated with double dose of Lu-IF7 in which there was a
significant increase in survival of Lu-IF7 compared to both PBS control (P = 0.0039) and unla-
belled-Lu (P = 0.0046) (Fig 7D). These data support the notion that EphA2-radioconjugate
may identify and destroy AML cells in some cases of MLL-driven leukemia.

Discussion
Expression of members of the Eph/ephrin family has been implicated with hematopoiesis and
leukemogenesis. In this study we explored the role of EphA2, which has been previously impli-
cated in hematopoiesis. EphA2 knockout mice were used to define whether EphA2 had a criti-
cal role in hematopoiesis. We showed that lack of EphA2 does not result in any significant
differences in blood parameters and analysis of differentiated lineage+ cells showed no disrup-
tion in frequencies of these populations in the knockout mice. There were also no significant
differences in the frequency of progenitors, LT-HSCs or MPPs in the EphA2 knockout mice.
Although these mice exhibited a significant increase in the number of ST-HSCs further analysis
of stem cell function did not reveal any significant effect on stem cell self-renewal or down-
stream lineage differentiation. In essence these findings indicate that these mice have a normal
steady hematopoietic system. The reported expression of other members of Eph family on
hematopoietic cells suggests that other members of this family of RTKs can compensate for the
function in the absence of one member. For example, Ting et al. reported expression of EphA3
and EphA5, both of which are functionally similar to both EphA2 and EphA7, on hematopoi-
etic progenitor cells, however there were no functional studies on these genes [6].

As previously described members Eph family of RTKs are expressed in many malignancies.
Eph genes, including EphA2 [24, 25], have in some cases been shown to be over-expressed in
cancer and to have a positive oncogenic effect [11, 26]. However, in some cases Eph genes are
suppressed, in many cases by epigenetic silencing during tumor progression [27–29]. Based on
reports of over-expression of EphA2 in human leukemia and our own analysis of clinical sam-
ples, we examined expression of EphA2 gene in two models of leukemia, the MLL-AF9 model
of acute myeloid leukemia and the BCR-ABL model of chronic myeloid leukemia [29]. Aber-
rant expression of EphA2 was only significantly present in the MLL-AF9 model, as it was previ-
ously reported by Nakanishi et al. [16]. Thus, we investigated the possible functional effects of
EphA2 expression on MLL-AF9 type leukemia along with the capacity of EphA2 mAb as a tar-
geted antibody therapy or radio-immunotherapy. Our studies indicate that EphA2 expression
has no significant effect on the leukemogenic process in the MLL-AF9 mouse model and lack
of EphA2 did not significantly affect leukemic disease latency, severity or leukemia stem cell
(LSC) self-renewal. Whilst this suggests that, as shown by others [16], the EphA2 gene is a
direct transcriptional target of the MLL fusion oncogene and may not have a role in leukemo-
genesis. More importantly, when the total expression of Eph receptors was analyzed, the levels
of expression in EphA2 knockout leukemic cells were comparable with wild type leukemic
cells. This implies that there is a compensatory increase in expression of other Eph receptors,
suggesting that there may indeed be a requirement for Eph function in MLL leukemia, further
studies are needed, perhaps with multiple Eph knockout mice, to define the role of this family
of RTKs in these leukemias.

In addition, the potential of EphA2 as a therapy target in MLL-AF9 leukemia was examined
using the IF7 monoclonal antibody, which specifically binds to human and mouse EphA2 pro-
tein. There was, however, no direct anti-tumor effect delivered upon treatment of MLL-AF9
mice with EphA2 monoclonal antibody (IF7 mAb). This finding may reflect the lack of
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functional consequences of knocking out EphA2 in MLL-AF9 leukemic cells. Given that this
antibody is mouse IgG1 isotype, it would not provide the requisite Fc function for either cellu-
lar or humoral antibody-dependent cytotoxicity, limiting its potential applicability as a naked
antibody. We thus asked if we could use this high affinity and highly specific antibody to target
a cytotoxic radio-active payload to the leukemic cells in an analogous approach that applied in
non-Hodgkin’s lymphoma using monoclonal antibodies specific for CD20 (131I-tositumomab
and 90Y-ibritumomab tiuxetan) [30]. Indeed treatment with 177Lutetium-labeled anti-EphA2
mAb (IF7) significantly delayed the course of MLL-AF9 leukemia particularly when two doses
of the drug were administered. Given the highly aggressive nature and therapy refractoriness of
this model of leukemia, this was a striking finding. More importantly, treating with 177Lute-
tium-IF7 EphA2 antibody did not result in detectable toxicity in these mice, despite concerns
raised by trial of an EphA2 antibody conjugated to a drug, which was halted due to bleeding
complications [31]. These studies suggest that EphA2-directed radioimmunotherapy could
potentially be a new approach for targeting the EphA2 positive MLL-AF9 leukemia, particu-
larly in combination with other anti-leukemic drugs.

In summary, we found that presence of EphA2 expression is not essential for either normal
or leukemic hematopoiesis, perhaps due to functional redundancy between members of Eph
family of receptor tyrosine kinases. However, targeting MLL-AF9 leukemias with radiolabeled
EphA2 monoclonal antibody significantly delayed the course of the leukemia in this mouse
model. This raises the possibility that targeting EphA2 might have therapeutic value in
EphA2-positive leukemias.

Supporting Information
S1 Fig. EphA2 gene expression. Expression of EphA2 in AML with t(11q23)/MLL rearrange-
ment, HSCs, HPCs, CMPs, GMPs and MEPs derived from the HemaExplorer website.
(P<0.0001, 38 AML with t(11q23)/MLL, 8 HSC, 4 HPC, 3 CMP, 3 GMP and 3 MEP samples)
(http://servers.binf.ku.dk/hemaexplorer/).
(TIFF)
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