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Abstract

Homozygosity for a premature stop codon (X) in the ACTN3 “sprinter” gene is common in
humans despite the fact that it reduces muscle size, strength and power. Because of the
close relationship between skeletal muscle function and cardiometabolic health we exam-
ined the influence of ACTN3 R577X polymorphism over cardiovascular and metabolic
characteristics of young adults (n = 98 males, n = 102 females; 23 + 4.2 years) from our
Assessing Inherent Markers for Metabolic syndrome in the Young (AIMMY) study. Both
males and females with the RR vs XX genotype achieved higher mean VO, peak scores
(47.8 £1.5vs 43.2 +1.8 ml/O,/min, p = 0.002) and exhibited higher resting systolic (115 + 2
vs 105 + mmHg, p = 0.027) and diastolic (69 + 3 vs 59 + 3 mmHg, p = 0.005) blood pressure
suggesting a role for ACTN3 in the maintenance of vascular tone. We subsequently identi-
fied the expression of alpha-actinin 3 protein in pulmonary artery smooth muscle, which
may explain the genotype-specific differences in cardiovascular adaptation to acute exer-
cise. In addition, we utilized targeted serum metabolomics to distinguish between RR and
XX genotypes, suggesting an additional role for the ACTN3 R577X polymorphism in human
metabolism. Taken together, these results identify significant cardiometabolic effects asso-
ciated with possessing one or more functional copies of the ACTN3 gene.

Introduction

The sarcomeric o-actinins play an important role in generating skeletal muscle contractions by
stabilizing actin thin filaments within the myofibrillar array [1, 2]. In human skeletal muscle o-
actinin-2 (encoded by the ACTN2 gene) is expressed in all muscle fiber types whereas o-acti-
nin-3 (ACTNS3) is expressed in a subset of fast-twitch glycolytic muscle fibers where it contrib-
utes to the generation of rapid contractions [1]. Uniquely, o-actinin-3 expression is completely
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absent in 18-20% of the global population because of a common nonsense polymorphism in
the ACTN3 gene wherein arginine (R) is converted into a stop codon (X) at residue 577 [3].
While the frequency of the ACTN3 577X null allele varies significantly between populations, at
least one copy of the ACTN3 R577 allele is beneficial for participation in sprint and power
sports [4] whereas the ACTN3 577XX genotype is overrepresented in some endurance athlete
cohorts [5] [6]. While numerous studies have confirmed associations between the ACTN3
R577 allele and muscle power phenotypes in humans (i.e sprint time, fiber type) there have
been far fewer studies linking the ACTN3 577X allele with endurance phenotypes [5]. Notwith-
standing these observations ACTN3 knockout mice exhibit increased recovery from exercise
fatigue and a shift towards slow twitch or endurance type skeletal muscle metabolism [7]. It is
hypothesized that a shift towards a more efficient metabolism may be responsible for driving
the (relatively) recent positive selection of the ACTN3 577X allele, which arose 40,000-60,000
years ago when anatomically modern humans migrated out of Africa [8-11].

Recently a number of studies have described a role for ACTN3 R577X in the aging process
and all-cause mortality in humans [12, 13]. Notably, the R577 allele has been associated with
increased survival times in patients with chronic heart failure [14] as well as increased bone
mineral density/decreased fracture risk [15] suggesting an extra-sarcomeric role for o-actinin-
3. While much of the research on ACTN3 has focused on skeletal muscle phenotypes related to
power/strength driven sports [16] there have been relatively few studies identifying associa-
tions with specific components of cardiovascular and metabolic fitness [12, 17]. Herein we
describe the identification of novel associations between the ACTN3 R577X polymorphism,
cardiovascular fitness and metabolite biomarkers in healthy young adults.

Materials and Methods
Participants

This study was approved by the Conjoint Health Research Ethics Board at the University of
Calgary (Ethics ID: E23521) and is registered under the clinicaltrials.gov identifier
NCT00966407. Written informed consent was obtained from all subjects before participation
in any testing. All subjects (n = 98 males, n = 102 females) were a part of the Assessing Inher-
ited Markers of Metabolic Syndrome in the Young (AIMMY) Study described previously [18].
Briefly subjects were: (1) between the ages of 18 and 35 years; (2) had completed puberty; and
(3) willing and able to provide informed consent. Recruitment occurred at the University of
Calgary (UCalgary) main campus using posters, information on campus wide monitors, brief
classroom sessions and the university’s website. All eligible, consenting participants were con-
sidered to be healthy at the time of enrolment. Health was defined as an absence of: (1) evi-
dence of clinically relevant systemic disease associated with disorders of glucose metabolism;
(2) chronic use of glucocorticoid or appetite suppressants; (3) the use of drugs that alter glucose
metabolism or other medications known to alter blood levels being tested in this study (ie stat-
ins); (4) previous diagnosis or treatment for any hematologic-oncologic disorder; (5) history or
current treatment for an eating disorder; (6) current treatment for weight loss; (7) history of
bariatric surgery; (8) history of neurosurgical procedure.

Blood Measures

Blood samples were collected in de-identified tubes after an 8-12 hour, overnight fast. Blood
for lipoprotein assays (LDL-C, High-Density Lipoprotein Cholesterol (HDL-C), Total Choles-
terol (TC), and Triglycerides (TG)) as well as insulin, glucose, C-reactive protein (CRP), and
HbA1c was collected using serum stopper tubes containing a clot activator and a silicon gel
separator. After collection, samples were spun at 3000 rpm for 10 minute and stored at 2-8°C
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at UCalgary until being transported to Calgary Lab Services (Calgary, AB) for analysis as
described previously [18, 19].

Genotyping

Genomic DNA for genetic analysis was isolated from peripheral blood as described previously
[18]. Blood samples were collected in tubes containing an ethylene diamine tetra-ascetic acid
(EDTA) anticoagulant and were stored at 2-8°C for a maximum of one week before being sent
to the Children’s National Medical Centre (CNMC) in Washington, DC without subject identi-
fication. The ACTN3 R577X SNP (rs1815739) was identified using TaqgMan allele discrimina-
tion assay [20].

Cardiovascular Fitness Assessment

Family history, ethnicity, diet and physical activity levels were recorded by self-report using
secure online questionnaires and an iPad as described previously [18, 19]. Hypertension was
defined as BP > 140/90 mmHg at two separate time points. Body mass index (BMI) was calcu-
lated by dividing the subjects height in meters by their weight in kg’. Percent body fat (%BF)
and bone mineral density (BMD) was measured using a dual-energy x-ray absorptiometry scan
(DXA) (Hologic QDR 4500A scanner, Hologic Inc, Walthan, MA.). Resting heart rate, resting
systolic (SBP) and diastolic (DBP) blood pressure, and grip strength (via an Almedic 100kg
hand grip dynamometer in the UC cohort (Almedic, Montreal, QC, Canada) were performed.
VO,peak was assessed using the Bruce treadmill protocol as an indicator of cardiovascular fit-
ness [21].

Immunoblotting

Pre-made smooth muscle cell blots (cat. # TB53) were purchased from GBiosciences (St. Louis,
MO). Briefly, proteins (50 ug) isolated from smooth muscle cells were solubilized in SDS-lysis
buffer and electrophoresed in a 10 well, 4-20% SDS-polyacrylamide gradient gel, followed by
electroblotting onto PVDF membrane. Blots were washed with 0.05% Tween-PBS (PBST) and
blocked with 5% milk in PBST for 1 hour at room temperature. For examining o-actinin 3
expression a well-characterized polyclonal antibody (a gift from A. Beggs) directed against a
region within amino acids 1 and 363 of ACTN3, was used at a 1:1000 dilution and incubated
overnight at 4 degrees Celsius. Membranes were washed in PBST buffer and incubated with
Goat anti-rabbit secondary antibody (Cell Signaling, Beverly, MA) conjugated to horseradish
peroxidase. All blots were subsequently stripped and re-probed with an beta-actin antibody
(Cell Signaling) as a loading control as described previously [22].To show the specificity of the
o-actinin 3 primary antibody, previously genotyped human skeletal muscle samples (50 ug
each) from the STRRIDE study [23] were similarly probed with each antibody. Signals were
detected using enhanced chemiluminescence substrate (ThermoScientific, Rockford, IL) and
chemiluminescence was digitally captured and quantified using the Chemigenius” Biolmaging
System (Syngene, Frederick, MD).

Statistical Analysis

All statistical analyses were performed using SPSS Statistics, version 20 (IBM). All data are pre-
sented as mean + SEM. All subjects included an additive genetic model (RR vs. RX vs. XX)
used age, sex and ethnicity (Caucasian vs. all others) tested as possible covariates. All models
were adjusted for age and sex (unless sex stratified). Analysis of covariance with the Sidak
method for post-hoc multiple comparisons adjustment was used for normally distributed
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outcomes. Quantile regression with the Sidak method for post-hoc multiple comparisons
adjustment was used for non-normally distributed outcomes (% Body Fat and CRP) as
described previously [24]. All resulting adjusted means are shown as transformed values as
those are the numbers used for statistical models. No adjustment for multiple testing was done
on the p-values reported here. We tested a minimum of 18 outcomes (considering the total
cohort, females only, and males only as separate analyses). This leaves us with a multiple testing
adjusted nominal significance level of 0.003; i.e. only p-value <0.003 would be considered sta-
tistically significant is taking into account the numbers of statistical tests performed. In addi-
tion, Pearson correlation coefficients were calculated and the resulting p-values were corrected
for multiple testing using false discovery rate (FDR) controlling at a 20% level [25].

LC-MS Metabolite Measurements and Data Analysis

As described in previous studies [26], serum samples were analyzed at Chenomx (Edmonton,
AB) using LC-MS AbsoluteIDQ p150 kits (Biocrates Life Sciences, Innsbruck, Austria) employ-
ing stable-isotope labeled internal standards. Acylcarnitines, amino acids, sugars, phosphati-
dylcholines (PCs) and sphingomyelins (SMs) were quantified. As individual sugars were not
separated by this method, the hexose values were determined as the sum of all individual sug-
ars. Before statistical analyses, values below the lower limit of quantification (LLOQ) or above
the upper limit of quantification (ULOQ) were discarded. For metabolites with only semi
quantitative values available, the LLOQ was conservatively estimated as 10 times the limit of
detection (LOD), as previously suggested.[Guidelines for the validation and verification of
quantitative and qualitative test methods; National Association of Testing Authorities, Austra-
lia: Silverwater, NSW, Australia, 2013.] Metabolites with greater than 20% missing values (due
to being below LLOQ or above ULOQ) were excluded from analysis. This rendered 87 out of
originally 148 metabolites for analysis, including 30 diacyl PCs, 27 acyl-alkyl PCs, 7 lysoPCs,
8SMs, 5 hydroxySMs, 8 amino acids acetylcarnitine and hexose. Missing values were imputed
with the half minimum observed value of the respective metabolite. Metabolomics statistical
analyses were performed in R 3.02 (R Foundation for Statistical Computing, Vienna, Austria).
Support Vector Machines with linear kernels were used to classify RR (CC) and XX (T'T) sam-
ples as described previously [26]. SVM have been previously shown to be robust classifiers with
superior classification performance for metabolomics data sets [27]. To create a balanced sam-
ple set for optimal SVM training, a subset of RR samples was randomly chosen to match the
number of XX samples. SVM training was repeated for 10 different sets of randomly chosen
RR samples, and the average accuracy was calculated. Classification performance was assessed
using leave-one-out cross validation. For feature selection, metabolites were sorted according
to Mann-Whitney U-test p-values, and SVMs were trained for different numbers of metabo-
lites, and the number with maximum accuracy was chosen.

Results
Subject Characteristics

Two hundred participants (mean age = 23 + 4.2 y; 98 males and 102 females) from the Univer-
sity of Calgary student population completed all three visits as part of the AIMMY study [18].
The majority (80%) were Caucasian; remaining participants were Asian (16.7%) and Egyptian
(3.3%). As a means of ensuring genotyping accuracy we analyzed our AIMMY cohort and
found the ACTN3 R577X locus to be in Hardy-Weinberg Equilibrium (HWE) (Table 1) with
(p(R) = 0.558; p(X) = 0.442; P = 0.54) as described previously [28].

PLOS ONE | DOI:10.1371/journal.pone.0130644 June 24,2015 4/13



@’PLOS ‘ ONE

ACTNS and Cardiometabolic Health

Table 1. ACTN3 R577X Allele Frequencies and Hardy-Weinberg Equilibrium.

Genotype Observed frequency Expected frequency p(R) p(X) p-value
RR 60 62

RX 103 99 0.558 0.442 0.54
XX 37 39

doi:10.1371/journal.pone.0130644.t1001

Fitness Associations

We identified significant associations between ACTN3 genotype, systolic (SBP, p = 0.027) and
diastolic blood pressure (DBP, p = 0.005) and VO, peak (P = 0.002) where all individuals with
the RR genotype achieved greater mean values than those with the RX or XX genotypes (Tables
2, 3). When considering gender differences, the effects of ACTN3 genotype on VO,peak were
driven primarily by our female subjects whereas the effect in males approached statistical sig-
nificance p = 0.052 (RR vs RX). Similarly, the association of ACTN3 genotype (RR vs RX) with
peak HR was only significant in males and not in females or the combined AIMMY cohort.
The association of ACTN3 genotype with SBP (RR vs XX) was only significant in the combined
cohort. This phenomenon, combining two non-significant cohorts to produce a significant
effect is known as Simpson’s paradox, and is the result of cohort traits (i.e. gender differences)
that exhibit very different means [29] [26]. There were no significant differences in grip
strength max score between ACTN3 genotypes.

Anthropometric Associations

In female subjects only, total body weight and BMI were consistently and significantly higher
(p<0.05) in RX vs XX individuals (Tables 2 & 3). A broader association was observed with
DXA derived %BF values between RR and XX, as well as RX vs XX women respectively. As
with VO,peak the effect of ACTN3 genotype on body composition parameters were driven pri-
marily by females.

ACTNB3 Expression in Smooth Muscle Cells

The o-actinin 3 polyclonal antibody was first validated against previously genotyped skeletal
muscle samples from the STRRIDE study (Fig 1A) which served as both positive (RR) and neg-
ative (XX) controls [30]. A ~100 kDa band corresponding to the calculated molecular weight
of mature a-actinin 3 was observed in RR but not XX skeletal muscle (Fig 2A). A ~100 kDa
band was also observed in pulmonary artery smooth muscle cells but not in smooth muscle
cells from Bronchiole, Coronary Artery, Umbilical Artery or Uterus (Fig 1B). The normalized
(to B-actin) expression level of o-actinin 3 in pulmonary artery smooth muscle was ~ 5 x lower
than in skeletal muscle.

Cardio-metabolomic Analysis

We have recently found success in identifying in novel genotype-metabolite associations using
metabolomic analysis coupled to support vector machine (SVM) analysis [26]. SVMs have
been consistently shown to outperform commonly used classification approaches such as par-
tial least-squares discriminant analysis (PLS-DA) for metabolomic samples [26]. Using this
approach, our metabolomic data showed classification accuracy when including only female
subjects in the analysis, with 73.9+7.5% of all participants genotype (RR vs XX) predicted
based on their metabolite profile. This accuracy was reached when using a set of 7 lipid metab-
olites for classification (Fig 2). While 4 metabolites showed reduced levels (Fig 2, Cluster A) in
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Table 2. Association between ACTN3 genotype and cardiometabolic traits.
Outcome Total cohort with age and sex adjustment Females only with age adjustment Males only with age adjustment

Anthropometric

Height (cm) 0.22 0.93 0.08
Weight (kg) 0.38 0.0390 * 0.17
BMI 0.57 0.0153 * 0.17
BMD 0.99 0.48 0.99

% Body Fat 0.06 0.0125 * 0.16

Cardiometabolic
Glucose (mg/dL) 0.27 0.19 0.16
Triglycerides (mg/dL) 0.79 0.75 0.22
Total cholesterol (mg/dL) 0.60 0.86 0.24
HDL (mg/dL) 0.09 0.19 0.22
LDL (mg/dL) 0.13 0.54 0.12
Insulin (ulU/mL) 0.74 0.29 0.69
Hbaitc 0.24 0.64 0.31
CRP 0.50 0.62 0.62
Fitness & Strength

Max score (strength) 0.40 0.90 0.46
VO,Peak (ml/kg/min) 0.002 * 0.0128 * 0.0523
Peak HR (bpm) 0.45 0.07 0.0139 *
SBP (mmHg) 0.027* 0.14 0.43
DBP (mmHg) 0.005 * 0.0316 * 0.0002 *

Shown are ACTN3 genotype effect p-values for each anthropometric, cardiometabolic, fitness and strength variable measured in the University of Calgary
AIMMY cohort.
* p-values < 0.05

doi:10.1371/journal.pone.0130644.t002

RR vs XX genotype females, 3 showed elevated levels (Fig 2, Cluster B), namely lyso-PC acyl
C18:2, PC diacyl C38:1, and PC diacyl C40:2. Collectively, these lipid metabolites can act as a
fuel source or as a cell membrane stabilizing agents. In serum, PC and lyso-PC are an impor-
tant component of lipoproteins such as high-density lipoprotein (HDL) [31]. The fatty acid

Table 3. Significant associations between all ACTN3 genotypes.

Outcome Cohort Covariate Genotype p- N; adjusted mean * SEM
value
VO,Peak (ml/kg/ All Age, sex  0.002 RR (N=158;47.8+1.5) * ** RX(N=97;43.9+ 1.4) * XX (N = 33; 43.2 + 1.8) **
min)
DBP (mmHg) All Age, sex  0.005 RR (N = 58; 69 £ 3)* RX (N =97; 69 £ 3)** XX (N = 33; 59 + 3)*, **
SBP (mmHg) All Age, sex  0.027 RR (N=58;115+2) * RX (N=97; 112+ 2) XX (N=33; 105+ 2) *
Peak HR (bpm) Males Age 0.0139 RR (N = 30; 189 + 4) * RX (N =46; 195 + 4) * XX (N = 17; 189 + 4)
% Body Fat (DXA)  Females Age 0.0125 RR (N = 29; 24.11 + 6.48) * RX (N = 54; 23.55 + 4.83) ** XX (N = 19; 29.07 + 6.46)
* ¥¥%
BMI Females Age 0.0153 RR (N=29;22.9+0.7) RX (N=54;22.1 £0.7) * XX (N=19; 24.5+0.9) *
Weight (kg) Females Age 0.0390 RR (N=29;61.8+2.4) RX (N=54;59.8+2.1) * XX (N =19; 66.7 +2.9) *

Shown are adjusted mean values + SEM for significant traits where * and ** denote significant differences (p<0.05) between mean genotype values
identified by post-hoc analysis.

doi:10.1371/journal.pone.0130644.1003
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Fig 1. The expression of alpha-actinin-3 in human skeletal muscle and pulmonary artery smooth
muscle. Shown are A) A rabbit polyclonal alpha-actinin 3 antibody probed against skeletal muscle samples
from ACTN3 RR577 and 577XX individuals from the STRRIDE Study [30]. B) This same antibody probed
against human smooth muscle (SM) cell panel. Each lane contains 50 ug of protein extract, which were
stripped and reprobed with a beta-actin antibody as a loading control.

doi:10.1371/journal.pone.0130644.g001
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Fig 2. Heatmap and hierarchical clustering of significantly different metabolites stratified by ACTN3 RR vs XX genotype. Yellow blocks represent
high concentrations; blue blocks represent low concentrations; black blocks represent medium concentrations.

doi:10.1371/journal.pone.0130644.9002
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composition of PC is mainly determined post-synthesis by hydrolysis and re-acetylation by
phospholipases and acyltransferases [32]. As these enzymes are highly active in adipose tissue,
the higher % body fat observed in women might amplify the effects. The female-biased metabo-
lomics classification is consistent with the stronger ACTN3 genotype effects observed for both
VO,peak and body composition.

Pearson Correlations and Cluster Analysis of Cardiometabolic Traits

In examining multiple Pearson correlations between the cardiometabolic fitness traits in our
AIMMY cohort there is a strong relationship between VO,peak, DBP, SBP and Peak HR,
which cluster together as a block along with grip strength max score (Fig 3). This supports
their statistical grouping by ACTN3 genotype (Table 2) and identifies an association between
muscle strength and cardiovascular fitness. Further analysis reveals the expected clustering of
body mass traits (Weight, BMI, height, BMD) and their negative correlation with HDL-Choles-
terol; The negative association of cardiovascular fitness (VO,peak) with cardiometabolic (%BF,
Insulin, Triglycerides and CRP) and lipoprotein (HDL, LDL and Total Cholesterol) panels and
the close relationship between glucose homeostasis/insulin resistance traits (Glucose, Insulin
and HbA1c).

Discussion

Whereas the ACTN3 R577X polymorphism has been associated with muscle performance phe-
notypes in elite and amateur power athletes, studies linking it to cardiometabolic fitness are
challenged by a lack of mechanistic evidence [5]. Herein we identified significant associations
between the ACTN3 ancestral R allele and cardiometabolic fitness in a population of healthy
young adults. Specifically we have shown that ACTN3 RR577 individuals exhibited up to 15%
higher peak oxygen consumption, VO, peak, compared to those of the XX genotype. Further-
more, these differences in VO, peak were not associated with self-reported physical activity lev-
els among the 3 ACTN3 genotypes (S1 Table) [19]. These findings were the opposite of what
we expected given the preponderance of published research linking the RR and RX genotypes
to skeletal muscle power and the XX genotype to endurance sports [2, 6]. However, in review-
ing the literature it became clear that alpha-actinin 3 deficiency is not consistently advanta-
geous in endurance athlete cohorts. Indeed, Gomez-Gallego et al. [33] have shown that RR/RX
professional road cyclists exhibited significantly higher peak power output and ventilatory
threshold than their XX counterparts. Furthermore, the R577 allele is not only overrepresented
in Russian rowers but also advantageous to competition results within this same cohort [34].
Previous attempts to identify associations between ACTN3 genotype and cardiovascular fit-
ness tended to be ambiguous in their description of their treadmill protocol, or utilized
increases in running speed to change workload [5]. As such, one interpretation of our results is
that the genotype effects on VO, peak are unmasked by our use of the Bruce treadmill protocol,
a widely used clinical test for maximal oxygen consumption that utilizes a rapidly graded
incline to increase the workload [35]. It is possible that this high treadmill incline may be suffi-
cient to differentiate between RR and RX individuals possessing a power type muscular pheno-
type as compared to the a-actinin-3 deficient XX individuals. This is supported by evidence
from our Pearson correlation analysis (Fig 3), which identifies an association between muscle
strength and cardiovascular fitness in our AIMMY cohort. Consequently, the persistence of the
R allele in elite endurance athletes likely reflects the physiological demands of contemporary
endurance events wherein forceful muscle contractions are increasingly essential (i.e sprint
starts and finishes) [34]. To the best of our knowledge, we are the only group to use the Bruce
protocol to test for maximum oxygen consumption in relation to ACTN3 genotype. An
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Fig 3. Pearson correlation matrix of 18 cardiometabolic and anthropometric variables in the University of Calgary AIMMY cohort. Positive r values
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doi:10.1371/journal.pone.0130644.9003

alternative interpretation of our VO, peak results is that we may be detecting differences in
submaximal oxygen consumption in RR/RX vs XX individuals due to intrinsic skeletal muscle
fiber type differences. Some studies have reported RR and RX individuals as having higher pro-
portions of type II muscle fibers compared to XX individuals [36]. Skeletal muscle with a high
proportion of fast twitch fibers consumes more oxygen than slow twitch dominant muscle at
submaximal stimulation despite greater overall oxidative capacity [37]. Given that the Bruce
protocol is conducted in the submaximal range it is plausible that R genotype-driven differ-
ences in fiber type could be responsible for differences in submaximal exercise oxygen con-
sumption [35].

Notwithstanding these alterative interpretations of our results, individuals with the XX
genotype also displayed a significantly lower resting systolic and diastolic blood pressure than
RR individuals. Given the close relationship between arterial perfusion and VO, peak (Fig 3),
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we conducted immunoblot analysis and identified the expression of a ~100 kDa immunoreac-
tive band corresponding to alpha-actinin 3 in human pulmonary artery smooth muscle cells
(Fig 1). When it was originally identified, the expression of alpha-actinin 3 was presumed to be
restricted to skeletal muscle and to a lesser extent, the brain, however recent published evidence
[15] suggests a more widespread expression pattern. In addition, a cursory search of the draft
(http://www.humanproteomemap.org/) identified peptide sequences unique to alpha-actinin 3
in a variety of fetal and adult human tissues and organs [38]. While our findings need to be val-
idated in situ it is conceivable that changes vascular myogenic tone in response to alpha-acti-
nin-3 deficiency could explain differences in resting blood pressure as well as altered vascular
recruitment in response to an acute exercise stress test [39, 40]. Furthermore, it has not escaped
our attention that the expression (or lack thereof) of alpha-actinin 3 in pulmonary artery could
explain the gene-stratified differences in survival of patients with chronic heart failure [14].
Regardless of the underlying mechanism, these novel associations have clinical relevance given
the wide spread use of the Bruce protocol to assess cardiac function and aerobic capacity [35].

Previous studies speculated that differences in androgen hormones could explain the sexual
dimorphic effects of the ACTN3 R577X polymorphism on muscle strength characteristics [28,
41]. As with VO, peak, we identified female-driven associations between ACTN3 genotype and
body fat where females with XX genotype exhibited significantly higher % BF than individuals
with the RX or RR genotypes. In fact, according to American College of Sports Medicine
(ACSM) guidelines, the %BF values for the RR and RX groups were classified as “low” while
the %BF for the XX group were classified as “moderate”[19]. Indeed, within our AIMMY
cohort a higher percent body fat negatively correlates with VO, peak and grip strength and
positively with fasting insulin levels (Fig 3). As such, we believe that the interaction of ACTN3
genotype with cardiometabolic parameters has added clinical significance.

Initially, the absence of significant genotype associations with a clinical biochemical panel
(i.e Cholesterol, Triglyceride, Glucose) suggested that the metabolic differences described of
ACTN3 deficient mice may not be present in XX humans [7]. However, previous expertise with
targeted metabolomics [26, 42] in our laboratory allowed us to identify a panel of 7 lipid
metabolites, all phosphatidylcholines, that accurately predicted RR vs XX genotype in female
subjects. Phosphatidylcholines are important components of biological membranes that have
been previously shown to vary in the serum of obese adults and adolescents [43-45]. Further-
more, increased levels of lyso-PC in RR individuals may indicate elevated breakdown of phos-
phatidylcholines. Lyso-PC has been shown to mediate numerous physiological and cellular
processes such as inflammation [46] and G-protein cell signaling [47]. It is plausible that alter-
ations in the ratios of phosphatidylcholines may be associated with higher % body fat in female
subjects or more intriguingly, the latitudinal gradient of the ACTN3 577X allele by contributing
to metabolic efficiency and/or cellular membrane stability in colder climates [8]. While the
relationship between metabolome and ACTN3 genotype needs to be explored in a larger cohort
including clinical populations (i.e heart failure, COPD) ours is the first to report metabolite dif-
ferences in humans related the ACTN3 genotype.

In summary, we have identified novel associations between the ACTN3 R577X polymor-
phism peak VO, and blood pressure in a population of healthy young adults. We also identified
a plausible mechanism by which alpha-actinin 3 deficiency in pulmonary artery smooth muscle
may influence both intrinsic aerobic capacity and the pathophysiology of heart failure. Finally,
we used serum metabolomics to identify for the first time, a role for the ACTN3 R577X poly-
morphism in human lipid metabolism. Taken together, these associations suggest that prospec-
tive and retrospective ACTN3 genotyping [48] may provide novel insights into human athletic
performance and cardiovascular disease risk stratification.
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