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Abstract
There is great need to express the impacts of chemicals found in the environment in terms

of effects from alternative chemicals of interest. Methods currently employed in fields such

as life-cycle assessment, risk assessment, mixtures toxicology, and pharmacology rely

mostly on heuristic arguments to justify the use of linear relationships in the construction of

“equivalency factors,” which aim to model these concentration-concentration correlations.

However, the use of linear models, even at low concentrations, oversimplifies the nonlinear

nature of the concentration-response curve, therefore introducing error into calculations

involving these factors. We address this problem by reporting a method to determine a con-

centration-concentration relationship between two chemicals based on the full extent of

experimentally derived concentration-response curves. Although this method can be easily

generalized, we develop and illustrate it from the perspective of toxicology, in which we pro-

vide equations relating the sigmoid and non-monotone, or “biphasic,” responses typical of

the field. The resulting concentration-concentration relationships are manifestly nonlinear

for nearly any chemical level, even at the very low concentrations common to environmental

measurements. We demonstrate the method using real-world examples of toxicological

data which may exhibit sigmoid and biphasic mortality curves. Finally, we use our models to

calculate equivalency factors, and show that traditional results are recovered only when the

concentration-response curves are “parallel,” which has been noted before, but we make

formal here by providing mathematical conditions on the validity of this approach.

Introduction
Assessing chemical effects spanning the molecular to human scales is a great challenge, and is
compounded by the introduction of new chemicals every year. Many of these chemicals and
their by-products are emitted into the environment, where they have potential to adversely
affect the local wildlife, from reproductive or behavioral impairments to disease and death.
Mitigating these burdens requires a systematic and reliable way to quantify relationships
between a pollutant’s environmental contamination level and the associated spectrum of
potentially adverse biological effects. One such mathematical method is the life cycle
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assessment (LCA) impact assessment framework [1], which employs an “equivalence model”
to express the relative change in an impact metric for a chemical contaminant in terms of a
well-studied alternative, termed the reference compound [2, 3], while another application of
the equivalency model involves the field of mixtures toxicology [4]. In practice, equivalence
models assign a value to a reference chemical concentration, Cref, given an input contaminant
concentration, Ccon, and a number of fixed parameter values; these output values reflect (i) the
identity of the reference chemical, and (ii) the details of the mapping between contaminant and
reference chemical concentrations.

For some impact metrics, the choice of reference chemical has been standardized. For exam-
ple, carbon dioxide equivalent units, termed CO2-equivalents, are nearly universally used to
estimate the “global warming potential” impact metric [5, 6], while phosphate equivalent units,
termed PO4-equivalents, are commonly used in the assessment of aquatic eutrophication [3]
(see Table 1 for examples). For other LCA-based impact categories, such as terrestrial and
aquatic toxicology, there is no standardized reference chemical [7]. For example, the IMPACT
2002+ LCA impact assessment (LCIA) method employs triethylene glycol as its reference com-
pound for toxicological effects [8], while the USES-LCA methods express such impacts in
terms of 1,4-dichlorobenzene [9].

While the choice of reference compound determines the parameter values associated with
the equivalency model, the actual form of the equations reflects the assumptions used to derive
them. Many equivalence models rely on the critical assumption that environmental concentra-
tions are often small enough with respect to total environmental background sources to justify
a proportional or linear relationship between concentrations of different chemicals [10]. In an
example from LCA, the global warming potential associated with one kilogram of CH4 has
been suggested as equivalent to 21 kilograms of CO2 [11]. However, such relationships over-
simplify the complexity and ignore the nonlinearity of the environmental and biological pro-
cesses affected by exogenous chemicals [12], such as acidification, photochemical smog,
ecotoxicity, habitat losses, and biodiversity [13]. Methods exist to linearize manifestly nonlin-
ear dose-response curves to obtain practical equivalency factors for use in standard LCIA
methods. One technique involves first selecting a point along the curve, such as the LC50 value
associated with mortality or survivorship, or an EC50 value associated with a sublethal
response; next, either a tangent line is drawn to this point (the marginal approach), or a line is
more simply established passing through this point and the origin (the “average” approach)
[14, 15]. Nevertheless, these approaches obscure the underlying nonlinear processes, which

Table 1. Selected Equivalency Factors (Adapted from [2]).

Impact Category Emission Equivalency Factor Reference Chemical

Global Warming CO2 1 CO2-equivalents

Global Warming N2O 310 CO2-equivalents

Global Warming CH4 21 CO2-equivalents

Eutrophication NO3 0.42 PO4-equivalents

Eutrophication Ntot 0.42 PO4-equivalents

Eutrophication Ptot 3.06 PO4-equivalents

Eutrophication NH3 0.33 PO4-equivalents

Eutrophication NOx 0.13 PO4-equivalents

Acidification NH3 1.88 SO2-equivalents

Acidification NOx 0.7 SO2-equivalents

Acidification SO2 1 SO2-equivalents

Summer Smog VOC 0.42 C2H4-equivalents

doi:10.1371/journal.pone.0130494.t001
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introduce model uncertainty, and represent a serious limitation for the interpretation of results.
For example, [16] compared human toxicity characterization factors developed from linear
and nonlinear dose-response functions and found that linear functions resulted in estimates
of carcinogenic and non-carcinogenic effects that were 21 and 35 times higher, respectively,
than effects estimated using nonlinear functions. Moreover, accounting for the nonlinearity
in dose-response relationships is especially important when the assumed marginality of emis-
sions compared to background concentrations does not hold, such as for effects at the local
scale, or effects arising from acute exposure (e.g., occupational settings) [17]. The capacity of
modeling frameworks such as LCA to be effective decision-making aids is therefore diminished
[13, 18, 19].

Here we report a data-driven method that exploits the full nonlinearity of concentration-
response curves to derive effects-based relationships between concentrations of two chemical
compounds. These equivalence relationships are presented in the form of simple equations
that require few empirical parameter values. We further provide analytic conditions that define
regimes wherein the nonlinear models match with the linear relationships common to tradi-
tional equivalency factors. While these equivalence models have been developed and presented
from an ecotoxicological angle, the method is general enough that any experimental endpoint
which exhibits a concentration-response can be used to establish an equivalency relation
between two chemical compounds.

Methods
Chemical effects often differ according to their molecular structure. This is especially evident
in biology, wherein absorption, distribution, metabolism and elimination (ADME) of xenobi-
otic chemicals is generally chemical and tissue specific [20]. Understanding ADME helps to
determine the chain of events linking chemical exposure to effects, which often begins with a
molecular initiating event (e.g. receptor-ligand binding), and proceeds through increasing lev-
els of biological organization and scale, terminating with an individual or population level
adverse outcome [21, 22]. In toxicology, a common measure of an adverse outcome is mortal-
ity, i.e. the ratio, N(t)/N0, of the number of organisms that have expired, N(t), after an exposure
time t, to the initial population level, N0. A related measure is survivorship, which is the associ-
ated fraction of living organisms within the population, 1- N(t)/N0, and may be alternatively
reported. These and other experiments provide information for the empirical correlation
between a metric, such as mortality/survivorship, and concentration of a chemical exposure,
often termed a dose-response function.

Such dose-response data can be used to directly derive equations relating concentrations
of a “novel” compound to that of a standardized “reference” chemical, based on how they indi-
vidually affect a common response function (e.g. mortality). Developing these concentration-
concentration correlation equations is the primary purpose of this paper. We achieve equations
for these correlations by first using a least-squares optimization method to identify the best-fit
parameter values associated with an empirical function modeling the dose-response for each
chemical. Next, we define an equivalence relation, f(Cref) = f(Cnovel), equating values of mortal-
ity for each chemical concentration, shown graphically as the solid black horizontal line in
Fig 1. Finally, we solve the resulting equation to express the “novel” chemical concentration,
Cnovel, in terms of the “reference” chemical concentration, Cref, and a set of fitted parameter
values.

In toxicology, two types of curves model the great majority of mortality-based dose-
response curves: monotonic and non-monotonic based functions. In particular, mortality is
more often fit to sigmoid-type response functions of the chemical concentration, whereas
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“biphasic,” or U-shaped responses, are sometimes observed [23]. In specific applications, such
as life-cycle impact assessment, a reference chemical may be chosen because the dose-response
function behaves reliably, and has been experimentally well-characterized. We therefore
assume that a reference chemical has already been identified, and mortality data is available
which follows a sigmoid response in the exposure concentration. This assumption reduces the
potential number of reference-novel chemical relationships from four to two; thus, in what fol-
lows we focus only on determination of the sigmoid-to-sigmoid and biphasic-to-sigmoid con-
centration-concentration correlation functions.

Equation for chemical equivalence: sigmoid-sigmoid response functions
An empirical response function commonly used to fit mortality/survivorship data, which is
often taken as the response of the reference chemical, is given by a sigmoid equation:

Ex : f ðCref Þ ¼ Vi þ ðVf � ViÞ
ðCref =Kref Þn

1þ ðCref =Kref Þn
ð1Þ

Here, Vi and Vf, are, respectively, the initial and final levels of the experimental response end-
point, such as mortality. In this context, a reference compound may typically be chosen such
that empirically Vi = 0 (all living, for Cref = 0), and Vf = 1 (all deaths, for Cref =1). Finally, Kref

is the concentration that marks the mid-point of the maximum deaths, (Vi + Vf)/2 (which may
or may not be equal to standard metrics, such as the LC50 value; see discussion on normaliza-
tion below), whereas the parameter n quantifies the slope at the sigmoid’s inflection point. In
many cases, mortality data for another substance, here termed the “novel” chemical, is also
well-fit to a sigmoid equation:

Ex : f ðCnovelÞ ¼ Ui þ ðUf � UiÞ
ðCnovel=KnovelÞm

1þ ðCnovel=KnovelÞm
ð2Þ

These parameters have identical meanings to those of Eq 1, but have been labeled to reflect
chemical differences in the response function.

As shown in Fig 1, “equivalence” between two different chemical compounds will be under-
stood in terms of their effect on an identical experimental endpoint, such as mortality, which
preserves, for example, the species identity and experimental design (e.g. acute or chronic
exposures). Such data can then be used to parameterize a relationship between the reference
and novel compounds, by simply equating the responses of the concentration-response

Fig 1. Illustration of the method used to determine chemical equivalence. Concentration-response functions for two chemicals, termed “reference” (left
panel) and “novel” (middle panel), can be used to parameterize the relationship between chemical concentrations (right panel).

doi:10.1371/journal.pone.0130494.g001
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functions: f(Cref) = f(Cnovel). Solving this condition for Eqs 1 and 2 yields an exact concentra-
tion-concentration correlation function:

Ex : Cref ¼ Kref

ðUf � ViÞðCnovel=KnovelÞm þ Ui � Vi

ð�Uf þ Vf ÞðCnovel=KnovelÞm � Ui þ Vf

" #1=n

ð3Þ

Equation for chemical equivalence: sigmoid-biphasic response functions
Non-monotonic dose-response functions, while not as common throughout toxicology as the
sigmoid-based response function, have nevertheless been observed for many biological end-
points, such as growth—an effect termed hormesis [24]. While these “biphasic” dose-response
functions emerge from a variety of biological mechanisms, they may manifest from molecular-
level effects, such as from a competition for active sites between antagonists with differing
receptor affinity [25]. At this cellular level, cytotoxicity may emerge to dominate the concentra-
tion-response at higher concentrations, an effect that may radically differ from those at the
lower concentrations [25]. Such competing influences in the concentration-response, termed
biphasic “affectors” [23], may potentially impair signaling events (e.g. phosphorylation/
dephosphorylation) through multiple pathways [26], and lead negatively to organism-level
reproductive impairments or death, and ultimately, to population decline.

Beckon et al. [23] assumed that such positive and negative affectors contributed separately
to the overall concentration-response curve, but relied on the value of a threshold concentra-
tion for affector “sensitivity.” If these positive and negative effects coordinate independently,
and if the sensitivity thresholds can be taken as sigmoid-type equations of the dose/exposure
concentration—as justified in [23] by heuristic arguments, then Beckon et al. argued that a
concentration-response for the novel chemical may be expressed by the equation:

Ex : f ðCnovelÞ ¼
½1þ ðCnovel=K

�
novelÞm

� �½Umax þ Uf ðCnovel=K
þ
novelÞm

þ � � Umax þ Ui

½1þ ðCnovel=K
�
novelÞm��½1þ ðCnovel=K

þ
novelÞm

þ �
ð4Þ

We have written this equation in terms of approximate “lower” (-) and “upper” (+) sigmoid-
like components of the biphasic response, illustrated in Fig 2, which can be delineated by a con-

centration: C�=þ
novel ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K�

novelK
þ
novel

p
(Eq 7 below, and S1 File). Conceptually this may correspond to

regimes wherein, e.g., a toxic response differs mechanistically between lower concentrations

(Cnovel � C�=þ
novel) and higher concentrations (Cnovel > C�=þ

novel). If these mechanisms exist and are
mostly independent of one another, then each “half” of the biphasic relationship can be mod-
eled approximately as a sigmoid response, and is representative of cumulative exposure effects.

In Eq 4, the parameters K�
novel and K

þ
novel label, respectively, the mid-point concentrations of

the lower and upper sigmoid-based affector components (e.g., a median-effect concentration,
EC50, for each “positive” and “negative” cumulative response); the parametersm� andmþ,
respectively, help to quantify the slope at the mid-point concentration, in the sense that larger
values represent a more switch-like response; Ui and Uf are the initial and final levels of the
biphasic dose-response curve; and Umax is the theoretical maximum (minimum) reached by
the positive (negative) affector component free of any contribution from the competing
affector.

Now, if we naively follow the procedure of the previous section that led to Eq 3 (Fig 1)—
first, by defining an equivalence relation for the fully nonlinear concentration-response func-
tion, and then using Eq 4 in place of Eq 2—then it would quickly become apparent that two
novel chemical concentrations could potentially be associated with a singular concentration of

Data-Driven Method to Estimate Nonlinear Chemical Equivalence

PLOS ONE | DOI:10.1371/journal.pone.0130494 July 9, 2015 5 / 24



the reference chemical. To solve this problem, we decomposed the fitted biphasic equation for
the novel chemical concentration-response, Eq 4, into constituent parts: a lower, f−(Cnovel), and
upper, f+(Cnovel), component, which can be separated by a threshold concentration mentioned

above (Eq 7),C�=þ
novel : f(Cnovel) = f−(Cnovel) for Cnovel � C�=þ

novel , and f(Cnovel) = f+(Cnovel) for

Cnovel > C�=þ
novel . (We note that our labeling scheme for the decomposition of Eq 4 ignores

whether the lower or upper components have been influenced by either the positive or negative
affectors).

We now claim that both the lower and upper components may be approximated by sigmoid
equations similar to Eq 2. Solving the relevant equivalence equations yields a piecewise solution
to the full concentration-concentration relationship (Appendix in A S1 File):

Ex : Cref ¼ Kref

ð ~Ueff ;�
max � ViÞðCnovel=~K

�
novelÞ ~m

� þ Ui � Vi

ð� ~Ueff ;�
max þ Vf ÞðCnovel=~K

�
novelÞ ~m

� � Ui þ Vf

" #1=n

; for Cnovel � C�=þ
novel; ð5Þ

and

Ex : Cref ¼ Kref

ðUf � ViÞðCnovel=~K
þ
novelÞ ~mþ þ ~Ueff ;þ

max � Vi

ð�Uf þ Vf ÞðCnovel=~K
þ
novelÞ ~mþ � ~Ueff ;þ

max þ Vf

" #1=n

; for Cnovel � C�=þ
novel: ð6Þ

In view of this sigmoid interpretation of the full biphasic response function, the threshold con-

centration, C�=þ
novel , can be approximated by the geometric mean of the mid-point parameters

Fig 2. Non-monotone, or “biphasic,” response function. Positive (red line) and negative (blue line)
affectors combine to result in a biphasic response function.

doi:10.1371/journal.pone.0130494.g002
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K�
novel and K

þ
novel (refer to Appendix A in S1 File):

Ex : C�=þ
novel ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K�

novelK
þ
novel

p
ð7Þ

Also shown in the Supporting Information (S1 File), several parameters of Eqs 5 and 6 can
be written entirely in terms of the fitted parameters identified for the biphasic response func-
tion, Eq 4. These effective exponents of the sigmoid models, ~m� and ~mþ, can be expressed with
the equations:

Ex : ~m� ¼ m� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Ueff ;�

max =Ui

q
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~Ueff ;�
max =Ui

q
� 1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Umax=Ui

p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Umax=Ui

p þ 1
; and ð8Þ

Ex : ~mþ ¼ mþ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Ueff ;þ

max =Uf

q
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~Ueff ;þ
max =Uf

q
� 1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Umax=Uf

q
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Umax=Uf

q
þ 1

: ð9Þ

We have assumed that Uf, Ui > 0; how to handle nonzero values is explained in the Supporting

Information (Appendix B in S1 File). Here, the parameters ~Ueff ;�
max and ~Ueff ;þ

max express a saturating

value (C�=þ
novel ¼ 1) of the model sigmoid equations, respectively modeling the left- and right-

hand sides of the biphasic response. The other effective parameters are:

Ex : ~Ueff ;�
max ¼ ~Umax 1þ w�

ffiffiffiffiffiffiffiffiffiffi
~Umax

Ui

s0
@

1
A

1=m�

; with ð10Þ

Ex : w� ¼
ffiffiffiffiffiffi
K�

Kþ

r m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Umax=Ui

q
� 1

Umax=Ui �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Umax=Ui

q
0
B@

1
CA

2
64

3
75
ffiffiffiffiffiffiffiffiffiffi
Umax=Ui

p
�1ffiffiffiffiffiffiffiffiffiffi

Umax=Ui

p
þ1

�
ffiffiffiffiffiffiffiffiffiffiffi
~Umax=Ui

p
þ1ffiffiffiffiffiffiffiffiffiffiffi

~Umax=Ui

p
�1

; and ð11Þ

Ex : m� ¼
~Umax=Ui

~Umax=Ui � 1
� w�ðlnw� � 1Þ þ 1

1þ w�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Umax=Ui

q : ð12Þ

A similar method can be used to find ~Ueff ;þ
max (for Cnovel > C�=þ

novel):

Ex : ~Ueff ;þ
max ¼ Uf

wþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Uf= ~Umax

q
þ 1

wþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Umax=Uf

q
þ 1

0
B@

1
CA

1=mþ

~Umax

Uf

 !ðmþþ1Þ=mþ

; with ð13Þ

Ex : wþ ¼
ffiffiffiffiffiffi
Kþ

K�

r m�
Umax=Uf �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Umax=Uf

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Umax=Uf

q
� 1

0
B@

1
CA

2
64

3
75
ffiffiffiffiffiffiffiffiffiffiffi
~Umax=Uf

p
þ1ffiffiffiffiffiffiffiffiffiffiffi

~Umax=Uf

p
�1

�
ffiffiffiffiffiffiffiffiffiffiffi
Umax=Uf

p
�1ffiffiffiffiffiffiffiffiffiffiffi

Umax=Uf

p
þ1

; and ð14Þ

Ex : mþ ¼
wþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Umax=Uf

q
wþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Umax=Uf

q
þ 1

1�
lnwþ þ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Umax=Uf

q
wþ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Umax=Uf

q
0
B@

1
CA: ð15Þ
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A value for the local extremum (maximum/minimum) of the biphasic curve can be found by
evaluating Eq 4 at the threshold concentration of Eq 7:

Ex : ~Umax ¼
ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Kþ=K�
p m�

ÞðUmax þ Uf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K�=Kþ

p mþ
Þ � Umax þ Ui

ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kþ=K�

p m�
Þð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K�=Kþ
p mþ

Þ
: ð16Þ

Finally, new mid-point parameters of the sigmoid equations modeling each side of the biphasic
response can be given by:

Ex : ~K� ¼ K�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Umax=Ui

q
� 1

Umax=Ui �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Umax=Ui

q
0
B@

1
CA

1=m�

~Ueff ;�
max =Ui �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Umax=Ui

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Umax=Ui

q
� 1

0
B@

1
CA

1= ~m�

; and ð17Þ

Ex : ~Kþ ¼ Kþ
Umax=Uf �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Umax=Uf

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Umax=Uf

q
� 1

0
B@

1
CA

1=mþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Umax=Uf

q
� 1

~Ueff ;þ
max =Uf �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Umax=Uf

q
0
B@

1
CA

1= ~mþ

: ð18Þ

We note that these analytic Eqs (5–18) provide a close approximation to the full biphasic
response (absolute relative error<5.6%, see Fig B in S1 File), but are written entirely in terms
of the fitted parameters of the original dose-response function. Thus, no “re-fitting” of any
experimental data is necessary beyond that of the original biphasic curve-fit (Eq 4).

Examples from the experimental literature
We applied the above methods to several experimental datasets, wherein we derived
concentration-concentration functions from the toxicological survivorship data using the
sigmoid-to-sigmoid and biphasic-to-sigmoid approaches. Where possible we have employed
data from a single literature source to ensure its reproducibility, wherein the chemicals were
exposed to the same or similar species under similar time periods and experimental conditions.

Sigmoid-to-sigmoid relationship. Survivorship measurements were reported from exper-
iments carried out by LeBlanc and Surprenant [27], wherein they compared the toxicity of
three chemicals: dimethyl formamide, acetone, and triethylene glycol (the reference chemical).
Several populations of the water flea (Daphnia magna) were exposed to constant concentra-
tions of these individual chemicals for 28 days, and the survivors were counted at days 7, 14,
21, and 28 days. The domains of exposure concentrations were similar for all three chemicals,
spanning from 600 to 22,000 μl/L, and additionally included a control group.

As shown by Fig 3, these survivorship data were numerically fit to equations of type (2) by
minimizing the least squares residual F(Ui, Uf, K,m), calculated from the difference between
the experimental data and the sigmoid curve:

Ex : FðUi;Uf ;K;mÞ ¼
X

j

½dj � f ðCj;Ui;Uf ;K;mÞ�2: ð19Þ

Here Ui, Uf, K, andm are the parameters of Eq 2, dj are the response data of the dose-response
at chemical concentration Cj, and f is the output of the empirical sigmoid curve evaluated at
the (exposure) concentration value Cj.

We used a bounded Nelder-Mead Simplex search method [28] to identify parameter values
which produce a sigmoid curve best-fit to the experimental data. The Nelder-Mead algorithm
employs a grid-based search algorithm, in contrast to traditional gradient-based methods. One
advantage of this method is that the Simplex technique can be more efficiently implemented,
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as it avoids a need for calculating accurate gradients. However, a search based on the Simplex
method often requires significantly more function calls, which can slow computing time. For
our purposes the Nelder-Mead algorithm was not computationally prohibitive, wherein the
algorithm identified best-fit parameter values in time-scales on the order of tenths of seconds.
Specifically, the average compute-time for a solution was approximately 0.07 sec, with a max of
0.18 seconds and a min of 0.03 seconds.

The variable most sensitive to bounding was the Hill-type exponentm, as some data points
were nearly step functions. In such cases,m would trend as large as possible to produce as steep

Fig 3. Survivorship data forDaphnia magna. Experimental concentration-response data from [25] carried out on the water flea Daphnia magna, illustrating
sigmoid survivorship curves. These data were fit to empirical sigmoid equations (solid and dotted lines).

doi:10.1371/journal.pone.0130494.g003

Table 2. Parameter values for the curve-fits to sigmoid equations used in Fig 3.

Exposure (days) Chemical Reference chemical Novel chemical

50. 51. Vi Vf Kref n Ui Uf Knovel m

7 triethylene glycol 0.998 0.5 39000 2.687 3. 4. 5. 6.

acetone 7. 8. 9. 10. 0.959 0 3281 5.612

dimethyl formamide 11. 12. 13. 14. 1 0 5674 10

14 triethylene glycol 0.950 0 13766 10 15. 16. 17. 18.

acetone 19. 20. 21. 22. 0.948 0.086 3149 7.064

dimethyl formamide 23. 24. 25. 26. 0.970 0 4048 4.362

21 triethylene glycol 0.908 0 11542 8.924 27. 28. 29. 30.

acetone 31. 32. 33. 34. 0.920 0 3078 6.068

dimethyl formamide 35. 36. 37. 38. 0.961 0 2972 3.386

24 triethylene glycol 0.887 0 9769 6.093 39. 40. 41.

acetone 42. 43. 44. 0.914 0 3001 5.874

dimethyl formamide 45. 46. 47. 48. 0.900 0 2434 10

Note these parameter values are non-normalized. Units for Kref and Knovel are μg/L. All other parameters are unitless.

doi:10.1371/journal.pone.0130494.t002
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a drop-off from full survival to full mortality. We bounded the exponent to a maximum value
of 10 as that still provided a suitable step-function behavior.

In all cases, our initial iterates for the variables were based on common insight to the prob-
lem. The parameter Ui was bounded on the (closed) interval [75, 100] with an initial iterate of
90, because survival rates for the control group were always observed to be above 90%. Addi-
tionally, the parameter Uf was bounded on the interval [0,25], with an initial iterate of 10, cho-
sen to reflect our observation from the data that populations nearly always achieved full
mortality at the highest exposure concentrations. The Hill-type exponent of the sigmoid model
was, as discussed previously, bounded on the interval [0,10]; we chose an initial iterate of 1 to
reflect a smoother transition from full survival to full mortality. Finally, a value for the parame-
ter K was bounded to [0,2 × max(C)], wherein max(C) represents the highest exposure concen-
tration that was observed from the given experimental dataset. We fixed the initial iterate to a
value of max(C)/2, which served as a probable midpoint value for the populations’
survivorship.

For the twelve chemical relationships discussed in this paper, the average number of itera-
tions required to identify best-fit parameter values was 168.4. The minimum number of itera-
tions required was 100, which represents the 14 day exposure of dimethyl formamide (dotted
lines, Fig 3). The maximum iterations, 299, were required during the fitting procedures for the
7 day exposure of triethylene glycol (solid blue lines, Fig 3). Fitted parameter values for these
data are provided in Table 2.

Sigmoid-biphasic relationship. A potential example of biphasic survivorship behavior
may be found in the case of selenium (Se) toxicity. Many organisms, such as fish, require a cer-
tain concentration of Se accumulated in body tissues to survive optimally [29, 30, 31], typically
obtained in the wild through diet. Although a dietary Se deficiency has been shown to increase
mortality in salmon [32], an excess Se body-burden is also associated with higher mortality in
fish [33]. These mortality features at the extremes of deficiency and excess suggests hormesis-
like, or biphasic features in the dose-response between Se body-burden and survivorship in
fish. We are unaware of a fully characterized dose-response between Se body-burden and
whole-fish survivorship; therefore, we will estimate one here from available data, specifically
for the purpose of illustrating how our model results can be applied to similar circumstances.

Fish Se body-burden was estimated from literature datasets for Chinook (Oncorhynchus
tshawytscha) [34] and Atlantic (Salmo salar) [32] salmon, which were consistently fed a diet
containing elevated Se content, with the Chinook salmon fed two different diets, termed either
SLD or SeMet. Fish were consistently fed these diets for approximately 4 weeks, at which time
survivorship and dry-weight Se tissue-residue measurements were made.

To employ the Chinook salmon survivorship data (30 days) reported by Hamilton et al.
[34], we extrapolated between dietary and tissue residue Se concentrations for both diet types
using a linear equation: residue = 0.553 × Sediet + 1.23 μg/g dry weight (SLD diet, R2 = 0.9959);
and residue = 0.424 × Sediet + 0.947 μg/g dry weight (SeMet diet, R2 = 0.9996). Here, Sediet
denotes the dietary Se concentrations in μg Se per g dry weight. However, Atlantic salmon sur-
vivorship data (28 days) were reported entirely in terms of dietary selenium content. We there-
fore similarly extrapolated from the Se dietary data in [31] to approximate tissue residues.
Because Poston et al. [32] did not report on the relationship between Atlantic salmon dietary
intake and tissue concentrations, we used relationships between dietary selenium and tissue
residues reported by [35] for Rainbow trout (Oncorhynchus mykiss), because of the similar
diets used (sodium selenite). These data, however, exhibited a power-law relationship:
residue = 3.98 × Sediet

0.73 μg/g dry weight (R2 = 0.914).
Given this combined dataset, a similar curve-fitting approach, i.e. the Nelder-Mead simplex

method, was used to identify best-fit parameters of the biphasic equation (Eq 4). However, the
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fitting of the biphasic equation to these data did not depend on the value of the ratio K+ / K-, in
the sense that many such values gave similar values for goodness of fit. Given that the analytical
approximations to the biphasic equation requires K+ / K->>1 (Appendix A in S1 File), we
identified fitted parameters such that K+ / K- � 10.

To compare these Se data to a survivorship curve based on a commonly used ecotoxicologi-
cal reference chemical for life-cycle impacts, 1,4-dichlorobenzene [9], we examined survivor-
ship data on another teleost, the Fathead minnow (Pimephales promelas) [36]. While using this
Fathead minnow data deviates from our requirement that metrics be measured in identical
organisms, our goal is to merely demonstrate application of the approach developed in this
paper on an exemplary dataset. These Fathead minnow data are shown in Fig 4, which, similar
to the D.magna data in Fig 3, can be seen to closely follow a sigmoid relationship. Parameter
values for all empirical fits regarding the sigmoid-biphasic response are given in Table 3.
Finally, we emphasize that measurements from aquatic toxicology tests are potentially highly
variable; therefore, whether or not Fig 4 reflects a signficant mortality at low Se body-burden in
fish will rely on future experiments to increase fidelity between the data and the model, which
should settle the issue.

Normalization of the concentration-response curves
The toxicity endpoint of survivorship (and therefore mortality) is manifestly a probabilistic
measure of a population’s response to toxicant exposure/dosage. The survivorship curve, as
given by Figs 3 and 4 (bottom panel), measures the cumulative effect of the population’s
response to toxicant exposure. This distribution should, in principle, be normalized, so that the
cumulative effect ranges between 0 to 1. In practice, toxicity experiments carried out over
chronic-effect timescales allow for population variability stemming from death due to natural
causes potentially unrelated to the experimental conditions. To adjust toxicity measurements
for significant mortality in control populations, Abbott’s correction [37] and other methods
[38] may be applied to population data before any empirical methods are used to estimate the
median mortality (LC50). However, the control mortality data from our literature-sourced
datasets [27,32,34,36] falls within the community-established limit of acceptable loss (<10%).
Despite “pre-processing” using these correction methods, it is possible the best-fit cumulative
(survivorship/mortality) curves do not begin and end with 0% and 100% (or a fractional
response between 0 and 1), respectively, such as shown in Fig 3. One way to address this prob-
lem is to fix the endpoints to the desired levels (e.g., to 0 and 1 for Eqs 2 and 3); however, this is
an artificial constraint on the response of the population to the toxicant. We therefore seek a
method for response-function normalization method which involves manipulating empirical
curves that result from unconstrainted empirical fits of the corrected survivorship data. Herein
we refer to such a method as ad hoc normalization.

A biphasic survivorship curve, however, does not reflect a cumulative effect across the
whole of the exposure/dosage range, but rather a combined effect which stems from the under-
lying biological response to the toxicant in different concentration regimes. For example, Fig 4
(top panel) illustrates one potential example of a biphasic survivorship curve. It is possible
there are two regimes of concentration-response here: at lower Se body-burden, survivorship is
low but increases monotonically toward a global maximum, such that further increases in
body-burden only decrease survivorship monotonically. One explanation for such an effect is if
a toxic pathway responds primarily to Se deficiency, but an independent toxic pathway
becomes “activated” in response to excess Se bioaccumulation. This is one motivation for
decoupling of Eq 5 into two regimes of exposure according to a threshold concentration C−/+,
with each exposure regime (C� C−/+ or C> C−/+) expressing an approximately independent
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Fig 4. Survivorship data for salmon and fatheadminnow. (Top panel) Experimental data illustrating a
non-monotone survivorship curve for two species of salmon, Oncorhynchus tshawytscha and Salmo salar
[30, 31], versus Se body-burden measured in μg Se per g dry wt tissue. (Bottom panel) A sigmoid
survivorship concentration-response curve measuring a cumulative toxic effect for Fathead minnow
(Pimephales promelas). Data obtained from [33].

doi:10.1371/journal.pone.0130494.g004
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cumulative effect. Thus, each regime for the biphasic response can be separately and indepen-
dently considered for ad hoc normalization, which is self-consistent due to continuity of the
concentration-response function at the threshold value.

In the Supporting Information (S1 File), we have provided transformation equations for ad
hoc normalization of empirical response curves, which aim to rescale the fitted parameters of
Eqs 1, 2, and 4, such that the response function resides on a definite fixed interval. This proce-
dure may be used to satisfy probability requirements for the cumulative effect described above
(e.g., between 0% and 100%). Consider that concentrations which correspond to a specific
response value (e.g., LC50), do not change their values upon dilation or contraction of the
response axis; therefore, an ad hoc transformation of the response axis will not alter the form of
the dose-response,

This ad hoc normalization procedure is appropriate only for response functions wherein the
fractional population responses (e.g., 10%, 50%, 90%) should be equated across different chem-
icals, which answers the question, “What chemical concentrations elicit an equivalent effect?”
For the case of survivorship, the answer to this question may or may not involve ad hoc nor-
malization across one or both empirical curves. Hence, extreme care should be taken when
considering whether or not to transform the response axis using this (or other) methods. For
example, if the resultant effect from an increase (or decrease) in the exposure concentration
contributes in an approximately cumulative manner to the response (e.g., sigmoid-like survi-
vorship), and if two concentration-response datasets span a similar response range, then ad
hoc normalization may be appropriate. However, if responses substantially differ across a simi-
lar concentration range, e.g., if response functions saturate at substantially different levels, then
it may not be appropriate to normalize across different chemicals despite an identically mea-
sured endpoint. For these and other reasons it is important to constrast our model results
between the normalized and non-normalized cases.

Fig 5 contrasts effects between normalized and non-normalized concentration-concentration
equivalency relationships expressed using the fitted parameters (Table 2) for the sigmoid-
sigmoid data of Fig 3. As evidenced from the non-normalized datasets for acetone (Fig 5, top
left panel) and dimethyl formamide (Fig 5, bottom left panel), the concentration-concentration
relationship between these chemicals and the reference, triethylene glycol, is undefined below
or above certain threshold values, which depend upon the exposure time of the toxicant. This
discrepancy is an artifact of the curve-fitting procedure, because, as mentioned above, the

Table 3. Parameter values for the sigmoid and biphasic curve fits of Fig 4.

Parameter Value Units (description)

1,4-Dichlorobenzene Vi 0.940 — (population fraction)

Vf 0 — (population fraction)

Kref 1171.5 μg/L (aqueous exposure)

n 9.984 —

Selenium Ui 0 — (population fraction)

Umax 1.086 — (population fraction)

Uf 0 — (population fraction)

K�
novel 0.3253 μg/g dry wt (body burden)

Kþ
novel 3.253 μg/g dry wt (body burden)

m- 1.478 —

m+ 1.237 —

Note these values are non-normalized. Body burden data have been expressed in units of μg chemical per g dry wt tissue.

doi:10.1371/journal.pone.0130494.t003
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survivorship data does not always span identical levels between toxicant treatments. For exam-
ple, the 7-day line of Fig 5 (top left panel) depicts a non-normalized relationship between
triethylene glycol and acetone, despite that an empirical fit to the 7-day triethylene glycol data
of Fig 3 (blue line, top left panel) spans from 100% (low concentrations) to approximately 50%

Fig 5. Concentration-concentration relationships derived from sigmoid survivorship data. Comparison between non-normalized (left panels) and
normalized (right panels) concentration-concentration response functions derived from the sigmoid data of Fig 3.

doi:10.1371/journal.pone.0130494.g005
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(high concentrations). This unusually limited response range may reflect a requirement for
more data. Nevertheless, if we take this empirical outcome at face-value, then comparing it
directly with the acetone curve (which spans approximately 100% to 0%, Fig 3 top-left panel,
blue line) yields a concentration-concentration response with unexpected features (Fig 5, 7-day
curve, top-left panel). For example, our model predicts that a single triethylene glycol concen-
tration is ‘equivalent’ to a range of acetone values spanning approximately from 0 to 103 μg/L
acetone, indicating these two chemicals are uncorrelated. However, a divergence at approxi-
mately 3x103 μg/L acetone indicates the correlation is undefined for higher exposure concen-
trations. If we instead apply the ad-hoc normalization procedure to the triethylene glycol data,
we find a power-law correlation defined for all acetone concentrations.

Fig 6 illustrates results of the normalization procedure for the biphasic dataset of Fig 4 (top
panel), and contrasts it against the case without ad hoc normalization. Due to the (potential)
biphasic nature of the survivorship response, we have decoupled it into a regime of increased
survivorship (C� C+/−� 1.03μg/L, per Table 3) and a regime of decreased survivorship
(C>1.03 μg/L). As discussed above, each opposing regime reflects an independent cumulative
effect from Se body-burden, which can be modeled individually by sigmoid-like equations (Eq
2). Each such equation (reflecting the novel chemical response) can then be equated with the
response of 1,4-Dichlorobenzene (the reference chemical), and the results combined piecewise
to approximate the full concentration-concentration relationship, both with (Fig 6, dotted line)
and without ad hoc normalization (Fig 6, solid line). For either relationship there is little differ-
ence in the qualitative response of the concentration-concentration function. For example,
they show similar asymptotic behavior. The primary difference between curves resides near the
optimal Se concentration, approximately 1.03 μg/L—i.e., any increase or decrease from this
concentration value decreases survivorship. However, near this threshold value, the concentra-
tion-concentration relationships deviate significantly, which can be directly attributed to the
normalization of the local maximum of the biphasic curve. An approximately 1 μg/L selenium
concentration coincides with the maximal (normalized) survivorship value, which, according
to Fig 4, occurs for a 1,4-Dichlorobenzene concentration of<103 μg/L. The overall result of
this normalization-enforced match between the two curves, is that near a 1 μg/L Se concentra-
tion, any 1,4-Dichlorobenzene concentration value of<103 μg/L gives the equivalent response;
hence, the divergence-like behavior observed in Fig 6.

Results and Discussion

Validity of the equivalence equations
While Eq 3 provides an exact solution for the sigmoid-to-sigmoid concentration correlation
function, the analytic Eqs (5–18), which collectively model the biphasic-to-sigmoid concentra-
tion-concentration relationship, are, at best, only approximate solutions. More specifically,
approximation enters into this concentration-concentration correlation function through the
sigmoid models used to approximate the full biphasic equation, which were proposed to indi-
vidually model the “lower” and “upper” segments. However, as shown in Figs A and B in S1
File, these sigmoid models exactly match the full biphasic function for K+ / K- !1. This con-
dition is intuitive: if the sigmoid-like positive and negative affectors that compose the biphasic
equation were positioned “further apart” by increasing the interval lnK+ − lnK- (e.g., Fig B in
S1 File), then saturation levels for the positive affector more closely match the starting levels of
the negative affector, and in sigmoid models that exhibit very good agreement with the overall
biphasic relationship. The relative error of this fitting method is small, even when the positive
and negative affectors are positioned closer together; just one example from the Supplemental
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Information (Fig B in S1 File) gives a maximum (absolute) relative error value of approxi-
mately<5.6%.

This approximation of the biphasic response function (Eqs A5 and A6 in Appendix A of the
S1 File) manifests in the full concentration-concentration correlation function, and Eqs 5–18
provide a model for this correlation function. Fig 7 overlays this result (Eqs 5–18, red lines)
with the exact solution (black line) found numerically using an exemplary parameter set
(Table A in S1 File). While the absolute value of the relative error remains small

Fig 6. Concentration-concentration relationships derived from sigmoid and biphasic survivorship data.Comparison between non-normalized (solid
line) and normalized (dotted line) sigmoid and biphasic concentration-response functions derived from the data of Fig 4.

doi:10.1371/journal.pone.0130494.g006
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Fig 7. Validity of the sigmoid and biphasic concentration-concentration relationships. (a) Validity of
the analytic equations for the concentration-concentration relationship (red line) given by Eqs 5–18 in the
main text, overlaid with “exact” numerical results (black line). (b) Absolute value of the relative error between
the analytic equations and the exact numerical result.

doi:10.1371/journal.pone.0130494.g007
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(approximately<7.8%), it is somewhat larger than for the sigmoid-based decomposition of
the biphasic equation (see above), quantifying error propagation. As with the sigmoid-based
piecewise decomposition of the biphasic response function (see above), Eqs (5–18) become
more exact of the concentration-concentration correlation function under conditions of larger
lnK+ − lnK-.

Chemical equivalence is manifestly nonlinear at low concentrations
One application in which there exists a need for chemical equivalency models is Life Cycle
Impact Assessment (LCIA), although there are others, such as in the field of mixtures toxicol-
ogy [4] and pharmacology [39]. A primary goal of these methods is to estimate the quantity of
one chemical concentration in terms of another that give similar effects at the dose-response
level.

In the past, formulation of equivalency factors has assumed a linear effects-based relation-
ship between two chemicals. In toxicology, this can sometimes be justified on a mechanistic
basis at the molecular level. For example, [25] explains that if a receptor-mediated interaction
between a ligand [L] and its receptor [R], serving as the rate-limiting step of a toxic response,
follows the chemical “reaction” [L]+[R]$ [LR] to form a complex [LR], then it may be
responsible for mediating downstream signaling events. Mass-action kinetics gives the steady-
state complex concentration as [LR]/[R]total = [L]/(KL+[L]), wherein [R]total is the total (fixed)
receptor concentration and KL is the ratio of reverse to forward reaction rates; thus, for “low”
concentrations [L]<< KL, we have: [LR]/[R]total * [L]/KL. While this argument may apply
when the toxic response depends proportionally on the first step of the toxic pathway (e.g.
receptor complex formation), an accounting for downstream- and multiple-binding events in a
signal transduction pathway may invalidate the common practice of using a single Hill equa-
tion to estimate the input-output properties of the pathway response [40]. In addition, current
methods often employ the quasi-steady-state assumption (QSSA) to approximate concentra-
tions of reaction intermediates within a multi-step pathway, despite that reactants may be pres-
ent at comparable concentrations [41], or when decoupling intermediate dynamics based on
time-scales is inappropriate [42].

To determine the conditions on parameter values and concentrations wherein the equiva-
lence relationship is approximately linear, we will employ the sigmoid-sigmoid equivalence
relation of Eq 3 above; we need not separately consider the biphasic relationship, because Eqs
5–18 were likewise expressed in terms of similar equations to Eq 3, but with different parameter
values. To proceed, we assume that both sigmoid-based dose-response curves are normalized,
consistent with a practice of measuring relative, versus absolute, median-effect concentrations
(e.g. EC50) for some toxicity endpoints. Each curve therefore begins and ends at identical
response levels over the breadth of the concentration range. For Eq 3, normalization means
that Ui = Vi and Uf = Vf, which greatly simplifies the concentration-concentration equation:

Ex : Cref ¼ Kref

Cnovel

Knovel

� �m=n

: ð20Þ

To examine how Cref behaves at small concentrations, Cnovel ¼ C0
novel � 0, we can expand Eq

20) in a Taylor series about this value, representative of the low concentrations typical of envi-
ronmental contamination:
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Here, W Cnovel
C0
novel

� 1
� �3

denotes terms in the series of order� 3. In order for the linear term to

dominate this series, the second-order term must be smaller than the first two terms, the third-
order term must be smaller than the preceding three terms, and so on. We can therefore esti-
mate this threshold by comparing absolute values of the first- and second-order terms:

mjm� nj
2n2
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novel
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Cnovel
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novel
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� �

which can be manipulated to give:

Ex :
Cnovel

C0
novel

<< 1þ 2
n

jm� nj ð22Þ

Note that the right-hand side of Eq 22) diverges form = n, indicating that the concentration-
concentration equation is linear for any concentration value. Indeed, this can be checked by
puttingm = n into Eq 20).

Threshold (22) can be made more intuitive by noting how the slopes of the sigmoid dose-
response curve relate to the parametersm and n, by noting that the slope of a sigmoid is maxi-
mal at its inflection point. In the terminology of Eq 1, the slope of the sigmoid on a log-log
curve at the inflection point is the exponent of a power-law, which can be given by the equa-
tion:

sloperef ¼ n

ffiffiffiffiffi
Vf

p � ffiffiffiffiffi
Vi

pffiffiffiffiffi
Vf

p þ ffiffiffiffiffi
Vi

p

A similar equation exists for the logarithmic slope for the concentration-response of the novel
compound at its inflection point. Because we have assumed that the initial and final levels of
the response profiles are normalized, Eq 22) can be recast into a more intuitive form, expressed
in terms of the logarithmic slopes:

Ex :
Cnovel

C0
novel

<< 1þ 2
sloperef

jslopenovel � sloperef j
: ð23Þ

Thus, we find that when the slopes are equal, Eq 23) diverges, which menas that Eq 2 is linear
everywhere.

Restriction of chemical equivalence to only “parallel” concentration-response functions has
been noted before [4] as a necessary condition of the toxic equivalency factor (TEF) method
employed in the field of mixtures toxicity. However, we have here formalized and validated
this requirement mathematically (Eqs 22 and 23).

Finally, we point out that that Eq 20) is nonlinear across the entirety of its concentration
domain, even for “small” concentrations. This nonlinear property takes the form of a power-
law relationship; although, linearity over the whole of the concentration range can be recovered
if the fitted parameters of the novel and reference concentration-response functions satisfy
conditions (22–23). Thus, a scenario of unequal slopes between two (or more) concentration-
response functions is the more likely case, and any linear extrapolation must therefore make
reference to a specific (nonzero) concentration along the curve to contrive a linear form from
Eqs (3), (5) and (6). This stands in contrast to contemporary equivalence calculations, which
rely on the premise that a marginal change in the equivalency relationship is extensive to the
whole of the concentration domain [10].
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Calculating an Equivalency Factor
Eq (20) can be used to estimate a value for an Equivalency Factor used in LCIA ecotoxicological
impact categories (e.g. such as in [8] or [9]), which is a similar concept to the TEF proposed for
mixtures toxicology calculations [4]. Within an LCA context, the equivalence factor, EF, is
defined as the derivative of the concentration-concentration relationship evaluated at a fixed
exposure/environmental concentration, Cexp

novel , of the novel compound:

Ex : EF ¼ dCref

dCnovel

� �
ðCnovel ¼ Cexp

novelÞ ¼
m
n

ECref
50

ECnovel
50

Cexp
novel

ECnovel
50

� �m=n�1

: ð24Þ

Here we have labeled Kref ¼ ECref
50 and Knovel ¼ ECnovel

50 , as median-effect concentrations of a test

population, or generally the half-maximal effect of the (normalized) response, assuming a situ-
ation wherein normalization is appropriate between response functions. A special case of Eq
24) involves concentration-response curves that are “parallel,” i.e.m = n, then Eq 24) reduces
to:

Ex : EF ¼ ECref
50

ECnovel
50

: ð25Þ

This result is independent of any concentration value, which is similar to previous results
obtained using different methods [9, 43, 44].

Uncertainty within LCA Studies
Finally, it must be noted that with respect to LCA as a methodology, equivalence modeling is
but one step in a lengthy series of mathematical processes. Any of these processes can be an
entry point for uncertainty to then further propagate [19]. For instance, in developing a charac-
terization factor, constituent factors representing environmental fate, effects, and chemical
equivalence are typically constructed. Mayo et al. [45] found that a commonly used fate and
transport model for LCA studies was highly sensitive to parameter value fluctuations, varying
up to 8 decades in magnitude, consistent with findings in other similar models [46, 47]. These
variances can further propagate through the phases of the Interpretation stage, resulting in
potentially unreliable and misleading results.

This represents a problem for LCA, which ultimately serves as a decision aid to inform
some type of future management action (e.g., to enhance the sustainability of manufacturing
processes). Based on the concept of decision quality [48], if the information about the decision
is unreliable, then the resulting decision may not be as good as it could be if the information
were of higher quality. Thus, the underlying goal in improving upon the methods in the chemi-
cal equivalency model, as with efforts aimed at improving other phases of the LCA, is to pro-
vide the decision maker with meaningful, reliable information which can then be translated
into effective environmental management actions [49].

Conclusions
We have proposed a method for calculating concentration-concentration relationships
between two chemicals parameterized by an experimental endpoint, such as survivorship or
mortality metrics from toxicology. Our proposed method is general, and can be applied to
many other measured biological endpoints, such as enzyme activity or metabolite concentra-
tions, among others. Working from the perspective and terminology of toxicology, we derived
equivalence relationships for two types of concentration-response curves: sigmoid, and
biphasic or “U-shaped” curves.
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While our equations for the sigmoid-sigmoid response are exact, we provided analytical
equations for the sigmoid-biphasic relationship that closely approximated the full concentra-
tion-concentration curves obtained numerically. In both cases these equivalence relationships
were found to be manifestly nonlinear, following the general form of a power-law, which we
exemplified with experimental datasets obtained from the toxicology literature. Such nonline-
arity persists even at the environmentally relevant regime of low concentration, and can only
be ameliorated by a linear extrapolation from specific points along the concentration-response
curve. Thus, current methods that seek to linearize concentration-response functions, even at
low concentrations, are inappropriate when constructing equivalence relationships expected as
valid everywhere.

To address this problem, we used our concentration-concentration response functions to
derive an expression for an equivalence factor employed in many LCIA impact characterization
models. This calculation is also representative of methods proposed previously for use in mix-
tures toxicology, and the pharmacology of drug interactions. We found that popular equiva-
lency factor constructions that simply compute the ratio of EC50 values (or LC50, or AC50, etc.)
of reference to novel chemicals, may only be used if: (i) the concentration-response relation-
ships between chemicals are normalized to identical initial and final concentrations; and (ii) if
the concentration-response functions are “parallel,” which we formalized in terms of mathe-
matical conditions on the ratio of two fitted parameter values of our models. In the TEF
approach to mixtures toxicology explained by Safe [4], these conditions were mandated, but
not formalized using quantifiable relationships. We have remedied this problem for ecotoxico-
logical concentration-response functions, by providing conditions on the curve-fitted sigmoid
or biphasic parameter values needed to validate this approach.

Among the mathematical models and methods that employ equivalence relationships, LCA
serves a primary role in estimating environmental impacts associated with human activity, and
thus supports environmental decision-making aimed at mitigating impacts, and promoting
sustainability. While formal and site-specific risk assessments can be conducted after a contam-
inant is released into the environment, the LCA framework is uniquely future-oriented. Attrib-
uted to this predictive nature is uncertainty inherent within its results, which stems from many
sources including its reliance on noisy experimental data and in the compounding nature of its
modeling methods, such as in many impact characterization models. However, the fidelity of
LCIA results could potentially be improved through inclusion of data-driven nonlinear repre-
sentations of chemical equivalence described in this paper, due to its realistic treatment that
minimizes use of broad approximation.

It is important to note that applications of our approach are not strictly limited to existing
methods in mixtures toxicology, or to existing LCIA calculations: any experimental metric
which exhibits a concentration-response function can leverage our approach and its results.
For example, other LCIA impact categories equally require extrapolation from one chemical
contaminant to a common reference material, such as with the global warming (e.g. CO2-
equivalents), acidification (SO2-equivalents), or eutrophication (PO4-equivalents) impact cate-
gories (Table 1). Further research will be needed to fully develop these and other equivalency
models. Moreover, analyses where it may be convenient to represent one chemical in terms of
another, including risk and hazard assessment, and most of the environmental sciences, could
potentially utilize the methods described herein.

Supporting Information
S1 File. Derivation of Biphasic Model Equations and Response Function Normalization
Methods. The Supporting Information includes derivations of equations for analytic
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approximations to the biphasic response function in terms of model sigmoid equations
(Appendix A). In addition, transformation equations are given for parameter values that
enforce a normalization between sigmoid and biphasic concentration-response functions
(Appendix B). Fig A illustrates the sigmoid-like components of the positive and negative affec-
tors composing the biphasic response function. Fig B illustrates the relative error between the
sigmoid-like approximations for the left- and right-hand sides of the biphasic response and the
full biphasic response. Fig C conceptualizes the ad hoc normalization method. Fig D illustrates
how the sigmoid and biphasic response functions could be compared. Table A provides param-
eter values for the plots shown in Fig B.
(PDF)
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