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Abstract
Staphylococcus pseudintermedius is a commensal organism of companion animals that is

a significant source of opportunistic infections in dogs. With the emergence of clinical iso-

lates of S. pseudintermedius (chiefly methicillin-resistant S. pseudintermedius (MRSP))

exhibiting increased resistance to nearly all antibiotic classes, new antimicrobials and thera-

peutic strategies are urgently needed. Thiazole compounds have been previously shown to

possess potent antibacterial activity against multidrug-resistant strains of Staphylococcus
aureus of human and animal concern. Given the genetic similarity between S. aureus and S.
pseudintermedius, this study explores the potential use of thiazole compounds as novel

antibacterial agents against methicillin-sensitive S. pseudintermedius (MSSP) and MRSP.

A broth microdilution assay confirmed these compounds exhibit potent bactericidal activity

(at sub-microgram/mL concentrations) against both MSSA and MRSP clinical isolates while

the MTS assay confirmed three compounds (at 10 μg/mL) were not toxic to mammalian

cells. A time-kill assay revealed two derivatives rapidly kill MRSP within two hours. How-

ever, this rapid bactericidal activity was not due to disruption of the bacterial cell membrane

indicating an alternative mechanism of action for these compounds against MRSP. A multi-

step resistance selection analysis revealed compounds 4 and 5 exhibited a modest (two-

fold) shift in activity over ten passages. Furthermore, all six compounds (at a subinihibitory

concentration) demonstrated the ability to re-sensitize MRSP to oxacillin, indicating these

compounds have potential use for extending the therapeutic utility of β-lactam antibiotics

against MRSP. Metabolic stability analysis with dog liver microsomes revealed compound 3

exhibited an improved physicochemical profile compared to the lead compound. In addition

to this, all six thiazole compounds possessed a long post-antibiotic effect (at least 8 hours)

against MRSP. Collectively the present study demonstrates these synthetic thiazole
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compounds possess potent antibacterial activity against both MSSP and MRSP and war-

rant further investigation into their use as novel antimicrobial agents.

Introduction
Staphylococcus pseudintermedius is a significant problem in veterinary medicine as it is a major
source of opportunistic infections in companion animals and the leading causative agent of
canine pyoderma [1]. It has also been linked to other severe infections in companion animals
including urinary tract infections, skin wounds, surgical site infections, and otitis [2–4]. The
challenge to combat S. pseudintermedius infections has become more difficult with the emer-
gence of clinical isolates (primarily methicillin-resistant S. pseudintermedius) exhibiting resis-
tance to multiple antibiotic classes including β-lactams, lincosamides, fluoroquinolones,
macrolides, sulfonamides, aminoglycosides, tetracyclines, and chloramphenicol [1, 5, 6]. In
several cases, patients that contracted an infection caused by S. pseudintermedius, in particular
newborn puppies, have died or been euthanized due to the lack of effective treatment to remedy
the medical condition [4, 7, 8]. Thus there is a critical need for the discovery and characteriza-
tion of novel antimicrobials to treat infections caused by methicillin-sensitive and methicillin-
resistant S. pseudintermedius.

Thiazole compounds have been shown to be useful in multiple therapeutic applications
including as anticancer, antiviral, and anticonvulsant agents [9–11] but their potential use as
antibacterials has not been fully examined. Previous investigation into thiazole compounds
synthesized by our research group has revealed these compounds exhibit potent antimicrobial
activity against multidrug-resistant strains of Staphylococcus aureus, including methicillin-
resistant S. aureus (MRSA) [12, 13]. MRSP bears similar genetic and phenotypic traits to
MRSA, including expression of themecA gene that encodes a modified penicillin-binding pro-
tein that confers resistance to β-lactam antibiotics [14]. Additionally, S. pseudintermedius has
been shown to express surface proteins similar to S. aureus that play an important role in bacte-
rial colonization of host tissues [15]. Furthermore, both staphylococcal species secrete similar
virulence factors, including exfoliative toxins and leukocidins, that may play an important role
in promoting pathogenesis of disease in infected hosts [16–18].

Given the genetic and phenotypic similarities between S. pseudintermedius and S. aureus,
we suspected that the thiazole compounds we have found to be potent inhibitors of MRSA
would also be active against MRSP. The objectives of the present study were to characterize the
antibacterial activity of six of the most potent thiazole compounds (against MRSA) (Fig 1)
against clinical isolates of MSSP and MRSP, to ascertain the likelihood of MRSP acquiring
rapid resistance to these novel compounds, and to determine if the compounds could be used
to re-sensitize MRSP to the effect of β-lactam antibiotics. Additionally, we assessed the physi-
cochemical profile of the most promising analogue and examined the ability of MRSP to
recover after exposure to the thiazole antibiotics, via a post-antibiotic effect assay. The results
garnered lend valuable insight into the pharmacological utility of thiazole compounds as a pos-
sible future therapeutic option for the treatment of S. pseudintermedius infections.

Materials and Methods

Bacterial isolates and chemical reagents
Fifteen isolates of S. pseudintermedius (nine MSSP and six MRSP), identified at the Indiana
Animal Disease Diagnostic Laboratory from specimens collected from dogs admitted to the
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small animal teaching hospital at Purdue University, were included in the study. The speci-
mens were not collected specifically for this research study but were obtained from patients
admitted to the hospital for treatment. Clinical specimens were inoculated onto 5% sheep
blood agar and incubated at 35°C for 18–24 hours. Standard methods including examination
of colony morphology and hemolysis and biochemical tests such as tube coagulase, Voges-
Proskauer (VP) and fermentation tests for maltose, trehalose and lactose, were used in addition
to matrix-assisted laser desorption ionization time of flight mass spectrometry [19] to identify
isolates [19, 20]. Antimicrobial susceptibility was determined by broth microdilution using the
SensiTitre (Thermofisher Scientific). Isolates demonstrating resistance to oxacillin, a surrogate
for methicillin, with a minimum inhibitory concentration (MIC) value greater than or equal to
0.5 μg/mL were tested for the presence ofmecA by PCR as previously described [21]. Bacterial
isolates used in this study are presented in Table 1.

Clindamycin hydrochloride monohydrate (Tokyo Chemical Industry, Portland, OR, USA),
oxacillin sodium salt monohydrate (Tokyo Chemical Industry, Portland, OR, USA), rifampicin
(Sigma-Aldrich, St. Louis, MO, USA), and vancomycin hydrochloride (Gold Biotechnology,
St. Louis, MO, USA) were purchased commercially. All antibiotics were dissolved in dimethyl
sulfoxide (DMSO) to obtain a stock 10 mM solution.

Synthesis of thiazole compounds 1–6
The detailed synthetic protocols and spectral data of final products 1–6 as well as all intermedi-
ates have been previously reported [12, 22, 23]. Chemical structures of compounds 1–6 are pre-
sented in Fig 1. All compounds were dissolved in DMSO to obtain a stock 10 mM solution.

Fig 1. Chemical structures of thiazole compounds 1–6 utilized in this study.

doi:10.1371/journal.pone.0130385.g001
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Determination of minimum inhibitory concentration and minimum
bactericidal concentration (MBC) against S. pseudintermedius
The MICs of the thiazole compounds, clindamycin, and rifampicin against nine clinical isolates
of MSSP and six clinical isolates of MRSP were determined using the broth microdilution
method, in accordance with the recommendations contained in the CLSI guidelines [24]. Bacte-
ria were prepared in phosphate-buffered saline (PBS) until a McFarland standard of 0.5 was
achieved. The solution was subsequently diluted 1:300 in Mueller-Hinton broth (MHB) to reach
a starting inoculum of 1 × 105 colony-forming units (CFU/mL). Bacteria were then transferred to
a 96-well microtiter plate. Thiazole compounds and antibiotics were added (in triplicate) to wells
in the first row of the microtiter plate and then serially diluted along the vertical axis. The plate
was incubated at 37°C for 22–24 hours before the MIC was determined. The MIC was catego-
rized as the concentration where there was no visible growth of bacteria observed.

The MBC was determined by plating 5 μL from wells on the 96-well microtiter plate (where
the MIC was determined) where no growth was observed onto Tryptic soy agar (TSA) plates.
The TSA plates were then incubated at 37°C for 22–24 hours before the MBC was determined.
The MBC was categorized as the concentration where�99% reduction in bacterial cell count
was observed.

Table 1. Clinical isolates of Staphylococcus pseudintermedius used in this study.

Methicillin-sensitive Staphylococcus pseudintermedius isolates

Isolate
Name

Species Breed Age Origin Resistance Phenotypea

SP1 Canine Mixed 9 years Urine PEN, AMP

SP2 Canine Cocker Spaniel 10.5
years

Urine PEN, AMP, CLIN, ENRO, ERYTH, GEN, MARBO, TMP-SMX

SP6 Canine Labrador
Retriever

6 years Ear None

SP7 Canine Cocker Spaniel 10 years Ear AMK, PEN, AMP, CLIN, ENR, ERM, GEN, MARB, TMP-SMX

SP11 Canine Mixed 9.5 years Ear PEN, AMP, CHL, CLIN

SP12 Canine West Highland
White

15.5
years

Urine PEN, AMP, AMK, ENR, GEN, MARB, TMP-SMX

SP14 Canine Golden Retriever 4.5 years Ear PEN, CHL, CLIN, ERM

SP15 Canine Mixed 9.5 years Urine None

SP23 Canine Boxer 9.5 years Wound PEN, AMP

Methicillin-resistant Staphylococcus pseudintermedius isolates

SP3 Canine English Bulldog 8 months Orthopedic
implant

AMP, PEN, AMO, CEF, ERM, CLIN, IMI,OXA, TIC

SP5 Canine Mixed 10.5
years

Urine AMK, AMP, PEN, AMO, CEF, CHL, CLIN, ENR, ERM, GEN, IMI, MARB,
OXA, TIC, TMP-SMX

SP8 Canine Maltese 10 years Urine AMP, PEN, AMO, CEF, ERM, CLIN, IMI, OXA, TIC, CHL

SP9 Canine Mixed 4 years Skin AMK, AMP, PEN, AMO, CEF, CHL, CLIN, ENR, ERM, GEN, IMI, MARB,
OXA, TIC, TMP-SMX

SP25 Canine Mixed 11.5
years

Urine AMK, AMP, PEN, AMO, CEF, CHL, CLIN, ENR, ERM, GEN, IMI, MARB,
OXA, TIC, TMP-SMX

SP28 Canine West Highland
White

15 years Urine AMK, AMP, PEN, AMO, CEF, CHL, CLIN, ENR, ERM, GEN, IMI, MARB,
OXA, TIC, TMP-SMX

aAbbreviations: PEN: penicillin, AMP, ampicillin, AMK: amikacin, CEF: cefpodoxime, CLIN: clindamycin, GEN: gentamycin, CHL: chloramphenicol, ENR:

enrofloxacin, MARB: marbofloxacin, ERM: erythromycin, TMP-SMX: trimethoprim/sulfamethoxazole, TIC: ticarcillin, IMI: imipenem, AMO: amoxicillin,

OXA: oxacillin.

doi:10.1371/journal.pone.0130385.t001
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Time-kill analysis of thiazole compounds and antibiotics against MRSP
MRSP SP3 cells in late logarithmic growth phase were diluted to ~1 × 106 CFU/mL and
exposed to concentrations equivalent to 4 × MIC (in triplicate) of thiazole compounds 1–6 and
rifampicin in MHB. Samples (20 μL) were collected after 0, 2, 4, 6, 8, 10, 12, and 24 hours of
incubation at 37°C and subsequently serially diluted in PBS. Bacteria were then transferred to
TSA plates and incubated at 37°C for 20–24 hours before viable CFU/mL values were
determined.

Cell membrane disruption analysis
In order to investigate the antimicrobial effect of the thiazole compounds on the integrity of
the bacterial cell membrane, the release of 260 and 280 nm absorbing components was deter-
mined spectrophotometrically [25]. The cell suspension of 1.2 × 109 CFU/mL MRSP SP3 was
incubated with 4 × MIC of compound 2 at 37°C for 30 minutes. Untreated MRSP SP3 cells or
cells treated with vancomycin (inhibits cell wall synthesis in bacterial cells) served as negative
controls. For the release of 260 and 280 nm absorbing material, the bacterial suspension (con-
trol) was treated with lysostaphin (in 50 mM Tris-HCl, pH 8.00) for 30 minutes. Lysostaphin
was used as a positive control due to its mode of action being the disruption of the cross-linking
of the pentaglycin bridges in the cell wall of staphylococci bacteria [26]. The absorbance of cell
supernatant at 260 and 280 nm was determined using a spectrophotometer (Jenway 6305). The
average OD260 and OD280 values of duplicates of each treatment option were calculated and
expressed as the proportion of average OD260 (or OD280) for each treatment option compared
to the average OD260 (or OD280) for the positive control (lysostaphin).

In vitro cytotoxicity analysis
Compounds were assayed at concentrations of 5 μg/mL, 10 μg/mL, 20 μg/mL, and 40 μg/mL
against a murine macrophage cell line (J774.A1) (ATCC TIB-67, American Type Culture Col-
lection (ATCC), Manassas, VA, USA) to determine the potential toxic effect in vitro. Cells
were cultured in Dulbeco’s modified Eagle’s medium (Sigma-Aldrich, St. Louis, MO, USA)
with 10% fetal bovine serum (USA Scientific, Inc.) at 37°C with 5% CO2. Controls received
DMSO alone at a concentration equal to that in drug-treated cell samples. The cells were incu-
bated with the compounds in a 96-well plate at 37°C and 5.0% CO2 for two hours prior to addi-
tion of the assay reagent MTS 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-
(4-sulfophenyl)-2H-tetrazolium) (Promega, Madison, WI, USA). Absorbance readings were
taken using a kinetic ELISA microplate reader (Molecular Devices, Sunnyvale, CA, USA). The
quantity of viable cells after treatment with each compound was expressed as a percentage of
the control, DMSO.

Multi-step resistance selection
To assess the ability of MRSP to develop resistance to the thiazole compounds, a multi-step
resistance selection experiment was performed, as described elsewhere [27]. The broth micro-
dilution method for MIC determination against a clinical isolate of MRSP (SP3) was repeated
for ten passages over a period of ten days. The initial inoculum was prepared to a McFarland
standard of 0.5. The solution was subsequently diluted 1:300 in MHB to reach a starting inocu-
lum of 1 × 105 CFU/mL. For each subsequent passage, the inoculum for the MIC determina-
tion was adjusted to a final density of approximately 5 × 105 CFU/mL using the contents of a
well containing a subinhibitory concentration of the compound (where bacterial growth was
observed from the previous passage). Bacteria were then transferred to a new 96-well microtiter
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plate. Thiazole compounds 3–6 and clindamycin were added (in triplicate) to wells in the first
row of the microtiter plate and then serially diluted along the ordinate. The plate was incubated
at 37°C for 22 hours before the MIC was determined by visual inspection. Resistance was classi-
fied as a greater than four-fold increase in the initial MIC, as reported elsewhere [28].

Combination therapy assessment of thiazole compounds with oxacillin
The relationship between the thiazole compounds and oxacillin was assessed via a standard
checkerboard assay [29]. Bacteria (MRSP SP3) equivalent to a McFarland standard of 0.5 were
prepared in PBS. The bacteria were next diluted in MHB to achieve a starting cell density of
1 × 105 CFU/mL. MHB was transferred to all wells of a 96-well microtiter plate. The thiazole
compounds and oxacillin were diluted in MHB to achieve a starting concentration equivalent
to 2 × or 4 × MIC, respectively. Oxacillin was serially diluted along the abscissa of the microti-
ter plate while the thiazole compound was serially diluted along the ordinate. The plate was
incubated for 22–24 hours at 37°C. The MIC of the test compound in combination with oxacil-
lin was determined as the lowest concentration of each compound/antibiotic where no visible
growth of bacteria was observed. The fractional inhibitory concentration index (ƩFIC) was cal-
culated for each combination as described previously [13]. A synergistic relationship was classi-
fied as an FIC index less than or equal to 0.5. FIC values above 0.5 but less than 4.0 were
characterized as indifference while FIC values above 4.0 were classified as antagonistic.

Re-sensitization of MRSP to oxacillin using broth microdilution method
MHB was inoculated with MRSP SP3 (5×105 CFU/mL), as has been previously described [30].
Aliquots (5 mL) of the bacterial suspension were divided into microcentrifuge tubes. The thia-
zole compounds tested (at ½ ×MIC) were introduced into each tube. After sitting at room tem-
perature for 30 minutes, 1 mL samples from each tube were transferred to a new centrifuge
tube prior to addition of oxacillin (at a concentration equivalent to its MIC). Using a 96-well
microtiter plate, rows 2–12 were filled with the remaining 4 mL bacterial suspension (contain-
ing the thiazole compound). Aliquots (200 μL) from tubes containing both the thiazole com-
pound and oxacillin were transferred to row 1 of the 96-well plate. After aspirating contents in
the first row 4–6 times, 100 μL was transferred from wells in row 1 to row 2. This process was
repeated to dilute the remaining wells containing no antibiotic. Untreated bacteria served as a
control. The plate was incubated at 37°C for 22 hours before the MIC was recorded. The MIC
was categorized as the concentration at which no visible growth of bacteria was observed in a
particular well. A fold reduction was calculated by comparing the MIC of the antibiotic alone
compared to the MIC of the antibiotic given in combination with the thiazole compounds.

Kinetic solubility determination of compound 3
Serial dilutions of compound 3 were prepared in DMSO at 100× the final concentration. Com-
pound 3 was then diluted 100-fold into PBS in a 96-well plate and mixed. The absorbance of
the PBS-containing plate was measured prior to addition of the test agents to determine the
background absorbance. After 2 hours, the presence of precipitate was detected by turbidity
(absorbance at 540 nm). An absorbance value of greater than (mean + 3× standard deviation of
the blank), after subtracting the pre-experiment background, was indicative of turbidity. The
solubility limit is reported as the highest experimental concentration for compound 3 with no
evidence of turbidity as described previously [12].
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Microsomal stability analysis
Compound 3 was incubated in duplicate with dog liver microsomes at 37°C. The reaction con-
tained microsomal protein in 100 mM potassium phosphate, 2 mMNADPH, 3 mMMgCl2,
pH 7.4. A control was run for each test agent omitting NADPH to detect NADPH-free degra-
dation. At 0, 10, 20, 40, and 60 minutes, an aliquot was removed from each experimental and
control reaction and mixed with an equal volume of ice-cold Stop Solution (methanol contain-
ing haloperidol, diclofenac, or other internal standard). Stopped reactions were incubated at
least 10 minutes at -20°C, and an additional volume of water was subsequently added. The
samples were centrifuged to remove precipitated protein, and the supernatants were analyzed
by LC/MS/MS to quantitate the remaining parent. Data were converted to % remaining by
dividing by the time zero concentration value. Data were then fitted to a first-order decay
model to determine half-life. Intrinsic clearance was calculated from the half-life and the pro-
tein concentrations, as has been described elsewhere [12].

Post-antibiotic effect
To assess if the thiazole compounds exhibit a post-antibiotic effect (PAE) against MRSP,
MRSP SP3 cells in late logarithmic growth phase (~1×108 CFU/mL) were incubated with
4 × MIC of thiazole compounds 1–6, clindamycin, or rifampicin for one hour at 37°C. A tube
containing untreated bacterial cells served as a control. Afterward, the compound/antibiotic
was washed out by diluting bacteria 1:1000 in MHB. Counts of CFU for all cultures were
obtained after washing. Aliquots (100 μL) of bacteria were removed every hour (for 10 hours),
serially diluted in PBS, and plated on TSA plates. TSA plates were incubated for 20 hours at
37°C before CFU values were determined. The PAE was calculated using the same formula
described elsewhere [31]: PAE = T − C, where T is the time required for the count of CFU val-
ues in the test culture to increase one log10 above the count observed immediately after removal
of the test agent and C is the time required for the count of CFU in the untreated control cul-
ture to increase one log10 above the count observed immediately after completion of the same
procedure used on the test culture for removal of test agent.

Statistical analysis
All statistical analyses were performed with GraphPad Prism 6.0 (GraphPad Software, La Jolla,
CA). Data generated from cytotoxicity analysis of the thiazole compounds against J774.A1 cells
and the 260 and 280 nm cell leakage analysis were analyzed using one-way ANOVA, with post
hoc Tukey's multiple comparisons test (P< 0.05).

Results

MICs and MBCs of thiazole compounds and antibiotics against S.
pseudintermedius
All six thiazole compounds exhibited potent antimicrobial activity against all S. pseudinter-
medius isolates tested (Table 2). The MIC50 values obtained for the compounds against meth-
icillin-sensitive S. pseudintermedius were in close proximity to one another ranging from
0.30 μg/mL for compound 2 to 0.80 μg/mL for compound 6. These values mimicked the results
obtained for clindamycin (MIC50 of 0.48 μg/mL), a first-line antibiotic recommended for use
in the treatment of pyoderma infections [32]. The MBC50 values matched or were up to three-
fold higher than the MIC50 values determined for the thiazole compounds; this indicates that
these compounds exhibit bactericidal activity against methicillin-sensitive S. pseudintermedius.
The compounds retained their antimicrobial activity against the isolates of methicillin-resistant
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S. pseudintermedius tested. Interestingly, compounds 3 and 6 showed a nearly two-fold
improvement in the MIC50 value obtained against MRSP isolates as compared to the MSSA
isolates. The thiazoles retained their bactericidal activity against MRSP isolates with MBC50

values ranging from 0.42 μg/mL for compound 5 to 1.47 μg/mL for compound 4.

Time-kill analysis of thiazole compounds and rifampicin
To confirm the thiazole compounds were bactericidal against MRSP, a time-kill assay was per-
formed using 4 × MIC of each compound and rifampicin. As Fig 2 demonstrates, the thiazole

Table 2. Minimum inhibitory concentration (MIC) andminimum bactericidal concentration (MBC) of thiazole compounds 1–6, clindamycin, and
rifampicin (triplicate samples) against nine methicillin-sensitive Staphylococcus pseudintermedius and six methicillin-resistant Staphylococcus
pseudintermedius isolates.

Methicillin-sensitive Staphylococcus pseudintermedius Methicillin-resistant Staphylococcus pseudintermedius

Compound
Number/Antibiotic

MIC50
1

(μg/mL)
MIC Range
(μg/mL)

MBC50
2

(μg/mL)
MBC Range
(μg/mL)

MIC50

(μg/mL)
MIC Range
(μg/mL)

MBC50

(μg/mL)
MBC Range
(μg/mL)

1 0.35 0.17–1.38 0.46 0.17–2.77 0.69 0.35–1.38 0.92 0.35–1.38

2 0.30 0.15–0.61 0.61 0.15–2.42 0.46 0.15–0.61 0.61 0.30–0.81

3 0.71 0.18–0.94 0.71 0.18–1.41 0.48 0.18–1.41 0.71 0.18–1.41

4 0.73 0.18–2.94 1.10 0.18–2.94 1.47 0.37–1.47 1.47 0.31–2.94

5 0.42 0.21–1.67 0.42 0.21–6.67 0.42 0.21–1.67 0.42 0.21–3.34

6 0.80 0.20–1.60 1.06 0.20–3.19 0.40 0.20–1.60 0.80 0.20–1.60

Clindamycin 0.48 0.24–61.37 0.48 0.24- >61.37 0.48 0.24- >30.69 30.69 0.24- >61.37

Rifampicin <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41 <0.41

1MIC50 corresponds to the lowest concentration of each test agent that inhibited growth in 50% of bacterial isolates screened.
2MBC50 corresponds to the lowest concentration of each test agent that killed 50% of bacterial isolates screened.

doi:10.1371/journal.pone.0130385.t002

Fig 2. Time-kill analysis of thiazole compounds and rifampicin against methicillin-resistant Staphylococcus pseudintermedius SP3. Bacteria were
incubated with 4 × MIC (in triplicate) of thiazole compounds or rifampicin over a 24 hour incubation period at 37°C. Samples were collected at 0, 2, 4, 6, 8, 10,
12, and 24 hours. DMSO served as a control. The error bars represent standard deviation values obtained from triplicate samples used for each compound
studied.

doi:10.1371/journal.pone.0130385.g002
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compounds are bactericidal but the rate of killing varies. The lead compound (1) required four
hours to completely eliminate MRSP. Derivatives 3 and 6 showed improved killing kinetics,
completely eliminating MRSP within two hours. Compounds 2 and 5 require eight hours to
achieve the same result while compound 4 exhibits the slowest rate of bacterial killing, requir-
ing 12 hours to completely eliminate MRSP. Rifampicin exhibited a slow bactericidal activity
against MRSP SP3 within the first eight hours of the assay before rapid bacterial re-growth is
observed after eight hours; this pattern is similar to what has been observed with S. aureus in
other studies [33–35].

MRSP cell membrane disruption assessment
Disruption of the physical integrity of the bacterial cell membrane (such as formation of pores
in the membrane) has been associated with antimicrobials that exhibit rapid bactericidal activ-
ity. To assess if the thiazole compounds’mode of action is disruption of the integrity of the
MRSP cell membrane, the leakage of intracellular contents at 260 and 280 nm was analyzed
after exposure of bacterial cells to a high concentration of compound 2 (4 × MIC) for 30 min-
utes. Fig 3 demonstrates that the thiazole compounds do not match the action of lysostaphin (a
known membrane-disrupting agent). Less than 20% of the intracellular content (at 260 nm) is
released after treatment with the thiazole compound as compared to cells treated with lysosta-
phin. This result confirms that the thiazole compounds do not act in a manner that involves
disruption of the physical integrity of the MRSP cell membrane.

Toxicity analysis of thiazole compounds
Toxicity to host tissues is an important characteristic to assess with new compounds early in
the drug discovery process. To determine if the thiazole compounds were toxic to eukaryotic
cells, the viability of murine macrophage cells (J774.A1) exposed to each thiazole compound
was assessed using the MTS assay. The lead 1 and compounds 2 and 6 proved to be toxic at a
concentration of 10 μg/mL (Fig 4). However, derivatives 3, 4, and 5 exhibited an improved tox-
icity profile over the lead compound (matching the results obtained with clindamycin), dem-
onstrating they were not toxic to mammalian cells at 10 μg/mL. This is more than 20-fold
higher than the MIC50 values obtained for these three compounds against clinical isolates of
MRSP.

Multi-step resistance selection of MRSP to thiazole compounds
To assess the potential for rapid emergence of resistance of MRSP to the thiazole compounds,
a multi-step resistance selection experiment was performed. The initial MICs of compounds 3,
4, 5, and 6 were determined via the broth microdilution method and were found to be
1.41 μg/mL (compound 3), 1.47 μg/mL (compound 4), 1.67 μg/mL (compound 5), and
1.60 μg/mL (compound 6). Bacteria were then subcultured for ten serial passages to determine
if a shift in the MIC of each compound tested would be observed against MRSP. After
the second serial passage of compound 5, there was a two-fold shift in the MIC; the MIC
remained stable at 3.34 μg/mL until the seventh passage where a second increase in the MIC
was observed to 6.68 μg/mL (Fig 5). Compounds 4 and 5 followed a similar course to one
another; the MICs of both compounds remained stable for three passages before a two-fold
shift was observed in both compounds after the fourth passage. The MIC did not increase
again for both compounds after six additional passages. MRSP was not able to develop resis-
tance to compound 3 even after ten passages.
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Combination therapy and re-sensitization of MRSP to oxacillin in the
presence of the thiazole compounds
As MRSP strains exhibit resistance to the effect of β-lactam antibiotics, such as oxacillin, we
assessed whether exposure of MRSP to a subinhibitory concentration of the thiazole com-
pounds could re-sensitize the bacteria to the effect of these antibiotics. After initial exposure of
MRSP SP3 to a subinhibitory concentration (½ × MIC) of the thiazole compound, the bacteria
were next treated with oxacillin. Using the broth microdilution assay, the MIC of oxacillin
needed to inhibit MRSP growth in the presence and absence of each thiazole compound was
determined. As Table 3 presents, MRSP SP3 was re-sensitized to the effect of oxacillin in the
presence of a subinhibitory concentration of all six thiazole compounds. There was a 128-fold
reduction in the MIC of oxacillin observed in the presence of ½ × MIC of compounds 1, 2, 3, 4,
and 6 and a 64-fold reduction in the MIC observed with compound 5. The checkerboard assay
was used to assess if these compounds could be used in combination with oxacillin against
MRSP. The assay revealed four compounds (1, 3, 5, and 6) exhibited a synergistic relationship
with oxacillin with ƩFIC values ranging from 0.19 to 0.38.

Solubility and metabolic stability assessment of compound 3
The solubility of novel compounds in aqueous solutions and stability to host metabolic pro-
cesses are important to analyze to determine if promising compounds possess suitable drug-

Fig 3. Cell leakage analysis of compound 2, vancomycin, and lysostaphin against methicillin-resistant Staphylococcus pseudintermedius SP3.
Untreated cells represent the negative control while lysostaphin (in 50 mM Tris-HCl, pH 8.00) served as the positive control. The figure represents the ratio of
the average absorbance value obtained for each treatment against the average absorbance value obtained for the positive control (at both 260 and 280 nm).
The error bars represent standard deviation values of two experiments where triplicate samples were used for each treatment option. A one-way ANOVA,
with post hoc Tukey's multiple comparisons test, P� 0.05, demonstrated no statistical difference between the values obtained for compound 2 and
vancomycin relative to the untreated cells but significant difference (denoted by the asterisks) in the absorbance values obtained for lysostaphin as
compared to both untreated cells and compound 2.

doi:10.1371/journal.pone.0130385.g003
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like properties. To assess the ability of the thiazole compounds to dissolve in aqueous solutions,
a turbidimetric solubility analysis was performed with compound 3 in phosphate-buffered

Fig 4. Toxicity analysis of thiazole compounds against murinemacrophage (J774.A1) cells. The
average absorbance ratio (test agent/DMSO) for cytotoxicity of thiazole compounds at 10 μg/mL against
murine macrophage cells (J774.A1) was obtained using the MTS 3-(4,5-dimethylthiazol-2-yl)-5-
(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay. DMSOwas used as a negative control
to determine a baseline measurement for the cytotoxic impact of each compound. The absorbance values
represent an average of a minimum of three samples analyzed for each compound. Error bars represent
standard deviation values for the corrected absorbance values. A one-way ANOVA, with post hoc Tukey's
multiple comparisons test, determined statistical difference between the values obtained for compounds 1, 2,
and 6 (denoted by the asterisks) relative to the cells treated with DMSO (P < 0.05).

doi:10.1371/journal.pone.0130385.g004

Fig 5. Multi-step resistance selection of thiazole compounds 3–6 against methicillin-resistant
Staphylococcus pseudintermedius. Bacteria were serially passaged over a ten-day period and the broth
microdilution assay was used to determine the minimum inhibitory concentration of each compound against
MRSP after each successive passage.

doi:10.1371/journal.pone.0130385.g005
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saline. As Table 4 demonstrates, the compound is soluble in PBS up to a concentration of
5.51 μg/mL. This resembles the result obtained for the poorly aqueous drug tamoxifen, indicat-
ing compound 3 possesses limited aqueous solubility.

To analyze the stability of compound 3 to metabolic processes present in the liver, the com-
pound was incubated with dog liver microsomes. As Table 5 shows, this compound is metabo-
lized very slowly (similar to the drug warfarin) with a NADPH-dependent intrinsic clearance
rate of 18.7 μL/min/mg and a half-life of over two hours. The data from Table 5 indicate that
this compound is a substrate of a NADPH-dependent metabolic process. There is a nearly
three-fold reduction in the intrinsic clearance rate (down to 6.6 μL/min/mg) and a marked
increase in the half-life (nearly six hours) of compound 3 in the absence of the co-factor
NADPH.

Post-antibiotic effect of thiazole compounds and antibiotics
In vitro pharmacodynamic analysis can provide valuable information regarding establishing a
proper dosing regimen for drug candidates. One method to obtain this information is to deter-
mine if a compound/drug exhibits a post-antibiotic effect. The PAE for the thiazole com-
pounds, clindamycin, and rifampicin was determined against a clinical isolate of MRSP.
Table 6 reveals that all six thiazoles exhibit a long PAE ranging from 8 hours (for compounds 2
and 5) to> 9 hours (for the remaining four compounds). This is similar to what was observed
with rifampicin (PAE> 9 hours) and superior to what was observed with clindamycin (PAE of
only two hours).

Table 3. Combination testing of thiazole compounds with oxacillin and re-sensitization of methicillin-
resistant Staphylococcus pseudintermedius SP3 to oxacillin using a subinhibitory concentration (½ ×
MIC) of thiazole compounds 1–6.

Compound Number Re-sensitization ƩFIC1

1 128-fold 0.19

2 128-fold 0.56

3 128-fold 0.38

4 128-fold 0.63

5 64-fold 0.38

6 128-fold 0.38

1 Results for the FIC index (ƩFIC) are as follows: � 0.5, synergistic (S); > 0.5 to � 4.0, indifference (I); > 4,

antagonistic (A).

doi:10.1371/journal.pone.0130385.t003

Table 4. Evaluation of solubility of thiazole compound 3, reserpine, tamoxifen, and verapamil in phos-
phate-buffered saline.

Compound Tested Solubility Limit (μg/mL)1

3 5.51

Reserpine 19.05

Tamoxifen 5.80

Verapamil >227.30

1 The solubility limit corresponds to the highest concentration of test compound where no precipitate was

detected.

doi:10.1371/journal.pone.0130385.t004
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Discussion
S. pseudintermedius infections have become a growing problem in veterinary medicine; until
fairly recently, the vast majority of infections observed in small animal veterinary facilities
could be treated with an array of efficacious antimicrobials [32, 36]. However, the rapid emer-
gence and global spread of multidrug-resistant S. pseudintermedius (namely MRSP) in the past
ten years has presented a significant challenge to veterinary practitioners [3, 37]. Clinical iso-
lates have been identified that exhibit resistance to numerous antibiotic classes, limiting the
treatment options available for veterinarians. This underscores the critical need to identify and
develop new antibiotics and unique therapeutic strategies to combat this growing medical
challenge.

The present study examines the antibacterial potential of novel synthetic thiazole com-
pounds against clinical isolates of MSSP and MRSP. We have previously demonstrated the lead
compound and derivative 2 possess potent antimicrobial activity against important strains of
multidrug-resistant S aureus (primarily MRSA) of concern to both humans and animals [12].
Four additional derivatives (compounds 3–6) of the lead compound were subsequently con-
structed in an attempt to enhance the antibacterial activity of the lead while mitigating poten-
tial toxicity to host tissues. Structural variation constructed focused on modification of the
lipophilic alkane side chain of the lead compound, resulting in the butyne analogue 3, fluorobi-
phenyl derivative 4, trifluoromethyl analogue 5, and the naphthyl derivative 6. All four were
previously found to exhibit potent activity against MRSA so they were also included in this
study [23]. As S. pseudintermedius and S. aureus share similar genetic and phenotypic charac-
teristics, we hypothesized that these thiazole compounds would possess potent antibacterial
activity against MSSP and MRSP. This conjecture was confirmed via the broth microdilution
method; all six thiazole compounds exhibited potent antibacterial activity against clinical iso-
lates of both MSSP (MIC50 ranged from 0.30–0.80 μg/mL) and MRSP (MIC50 ranged from

Table 5. Evaluation of metabolic stability of thiazole compound 3, verapamil, and warfarin (in duplicate) in dog liver microsomes.

Compound/Drug Tested NADPH-dependent
CLint

1(μL/min/mg)
NADPH-dependent T1/2

2 (min) NADPH-free CLint (μL/min/mg) NADPH-free T1/2 (min)

3 18.7 123 6.6 351

Verapamil 244 9 0.0 >240

Warfarin 0.0 18.7 0.0 >240

1 CLint = microsomal intrinsic clearance rate
2 T1/2 = half-life

doi:10.1371/journal.pone.0130385.t005

Table 6. In vitro post-antibiotic effect (PAE) of thiazole compounds 1–6, clindamycin, and rifampicin
against methicillin-resistant Staphylococcus pseudintermedius SP3.

Compound Tested Post-antibiotic Effect (hours)

1 >9

2 8

3 >9

4 >9

5 8

6 >9

Clindamycin 2

Rifampicin >9

doi:10.1371/journal.pone.0130385.t006
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0.40–1.47 μg/mL). These results proved similar to what was found with clindamycin (MIC50 of
0.48 μg/mL against both MSSP and MRSP), an antibiotic of choice for treatment of pyoderma
infections [32]. Interestingly, the thiazole compounds retained their antibacterial activity
against nine MSSP and MRSP isolates that were found to be resistant to clindamycin and other
antibiotics; this indicates there is no cross-resistance present between these antibiotics and the
thiazole compounds. This further supports the notion that these thiazole compounds have
potential to be used as novel antibacterial agents, particularly against S. pseudintermedius infec-
tions resistant to treatment with other antibiotics.

We were curious to find out if the thiazole compounds possessed bacteriostatic or bacteri-
cidal activity. It has been suggested bactericidal antimicrobials have several advantages over
their bacteriostatic counterparts, including helping patients recover more rapidly from infec-
tion, improving the clinical outcome of disease, reducing the potential emergence of bacterial
resistance to the antibiotic, and limiting the spread of infection [38]. Preliminary analysis indi-
cated the thiazole compounds were bactericidal as they possessed MBC50 values identical to or
two- to three-fold higher than their MIC50 values against both MSSP and MRSP isolates. While
structural modifications made to the lead thiazole compound did not significantly impact the
MIC50 and MBC50 values found for the subsequently constructed derivatives, there was a sig-
nificant difference observed in the bacterial killing kinetics against MRSP. A time-kill assay
revealed that the alkyne derivative 3 and the naphthyl derivative 6 exhibited superior activity
to the lead 1, rapidly eliminating MRSP within two hours (the lead compound required double
the time to achieve the same effect). These results were superior to those obtained with rifampi-
cin, an antibiotic of last resort for pyoderma infections [32].

Rapid bactericidal activity has been shown to be important in the treatment of diseases
caused by staphylococci such as endocarditis, meningitis, and osteomyelitis [38, 39]. Thus
these thiazole compounds possess a selective advantage over bacteriostatic agents in their abil-
ity to be used for treatment of more severe clinical diseases. However, one pitfall of antimicro-
bials that are rapidly bactericidal is many tend to work as membrane-disrupting agents [38,
40]. Such agents have limited therapeutic applications, almost exclusively being restricted to
use as topical ointments [40]. As the thiazole compounds were found to exhibit rapid bacteri-
cidal activity, we examined if the mode of action of the thiazole compounds was via disruption
of the MRSP cell membrane. A cell leakage analysis confirmed that the thiazole compounds do
not physically disrupt the integrity of the bacterial membrane similar to the positive control
lysostaphin. The exact mechanism of action of these thiazole compounds against staphylococci
is being investigated and will be the subject of a future manuscript.

After confirming the thiazole compounds do in fact possess potent antibacterial activity and
are capable of rapidly eliminating MRSP (in a mechanism that does not involve physical dis-
ruption of the bacterial cell membrane), we next focused our attention to assessing potential
toxicity concerns with these compounds against mammalian cells. Structural modifications
made to the lead thiazole compound played an important role in enhancing the toxicity profile
of the thiazoles. The lead compound and biphenyl derivative 2 were found to be toxic to
murine macrophage cells at a concentration of 10 μg/mL. Surprisingly, replacement of the
alkyl moiety in the lead with an alkyne, monofluoro, or trifluoromethyl group (as in com-
pounds 3–5, respectively) significantly improved the toxicity profiles of the compounds. These
three derivatives were not toxic to murine macrophage cells at 10 μg/mL which represents a
greater than 20-fold difference over the MIC50 values determined against MRSP.

The ability of bacteria to develop resistance rapidly to antimicrobial compounds is impor-
tant to assess early in drug discovery. Previously, we have reported results of a single-step resis-
tance selection experiment that demonstrated MRSA is unlikely to develop rapid resistance to
thiazole compounds 1 and 2 [13]. We decided to extend this analysis to the newest thiazole
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derivatives (compounds 3–6) against MRSP but with an additional twist–testing if bacterial
resistance could be induced after repeated exposure to each compound over 10 serial passages.
There was no change observed in the MIC for compound 3, a two-fold increase in the MIC for
compounds 4 and 5, and a four-fold increase in the MIC of compound 6 after 10 passages. Col-
lectively, the results provide data supporting a low probability of MRSP-resistance developing
rapidly to these thiazole compounds (as a greater than four-fold increase, as compared to the
initial MIC, was not observed for any of the compounds tested).

While discovery of novel antimicrobials for use in monotherapy is one important avenue to
address the burden of multidrug-resistant bacterial infections, other therapeutic strategies
must be explored. Recently, suppression of MRSA resistance to β-lactam antibiotics by using
these agents in combination with other antimicrobial compounds has been explored as an
alternative therapeutic strategy [41, 42]. This has the potential to prolong the usage of β-lactam
antibiotics (particularly those that are less susceptible to degradation by β-lactamase such as
first-generation cephalosporins) in the clinical setting. As first-generation cephalosporins are
frequently used as first-line agents to treat staphylococcal infections present in small animal
veterinary practices, β-lactam antibiotics still play a very integral role in the clinic [43]. Pro-
longing the ability to use these antibiotics against resistant strains of staphylococci, such as
MRSP, is extremely important. No studies have been reported thus far testing the ability of
antimicrobial compounds to suppress MRSP resistance to β-lactam antibiotics. In an earlier
study, we demonstrated that thiazole compound 2 can re-sensitize vancomycin-resistant
Staphylococcus aureus (VRSA) to the effect of vancomycin [13]. As glycopeptide antibiotics
(such as vancomycin) and β-lactam antibiotics both target cell wall synthesis in bacteria, we
hypothesized that the thiazole compounds would be able to re-sensitize MRSP to the effect of
β-lactam antibiotics. Bacterial susceptibility to oxacillin is used as a standard to determine if
bacteria are sensitive or resistant to β-lactam antibiotics (as resistant strains can appear sensi-
tive to other β-lactam antibiotics in vitro but exhibit resistance to these antibiotics in vivo) [43].
Using a clinical isolate identified as MRSP, we used the broth microdilution assay to first con-
firm that the isolate was resistant to oxacillin (MIC = 128 μg/mL). Next, the isolate was exposed
to a subinhibitory concentration (½ × MIC) of each thiazole compound for 30 minutes; after-
ward, the broth microdilution assay was used to determine the sensitivity of the isolate to oxa-
cillin. All six compounds demonstrated the ability to re-sensitize MRSP to oxacillin (a 64 to
128-fold reduction in the MIC of oxacillin was observed after pre-treatment with the thiazole
compounds). Furthermore, the checkerboard assay confirmed that compounds 1, 3, 5, and 6
exhibited a synergistic relationship with oxacillin with ƩFIC values ranging from 0.19 to 0.38.
This analysis confirmed that in addition to being used as antimicrobial agents alone in the
treatment of S. pseudintermedius infections, the thiazole compounds have the potential to be
used i.) in combination with β-lactam antibiotics against MRSP or ii.) to suppress resistance of
MRSP to β-lactam antibiotics. This expands the potential therapeutic applications of these
compounds beyond just use in monotherapy. Additionally, the finding that thiazole com-
pounds can be effectively combined with oxacillin, an inhibitor of peptidoglycan biosynthesis,
against MRSP paves the way for further investigation of combination therapy of thiazole com-
pounds with other cell wall synthesis inhibitors.

After confirming the thiazole compounds have potential use as antibacterial agents for the
treatment of S. pseudintermedius infections, it was important to assess if the newly constructed
derivatives exhibited suitable drug-like properties (such as aqueous solubility for drug absorp-
tion and metabolic stability). As compound 3 appeared the most promising drug candidate
(due to its rapid bactericidal activity, improved toxicity profile, low induction of MRSP resis-
tance, and ability to suppress MRSP resistance to β-lactam antibiotics), it was selected for fur-
ther analysis. Previously, it was found that the lead compound has moderate aqueous solubility
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in phosphate-buffered saline (solubility limit of 20.56 μg/mL) [12]. Substitution of the alkane
in the lead compound with an alkyne (as in compound 3) resulted in a reduction in the aque-
ous solubility observed. However, this substitution significantly enhanced the metabolic stabil-
ity of compound 3, when compared to the lead compound. Previously the lead compound was
cleared by human liver microsomes at a rate of 80.3 μL/min/mg and had a half-life just under
30 minutes [12]. When the same analysis in human liver microsomes was performed for the
modified derivative 3, a significant improvement in the metabolic stability profile of this com-
pound was observed (clearance rate decreased to 3.7 μL/min/mg and half-life was more than
240 minutes) [23]. In this study, compound 3 was analyzed using dog liver microsomes (to
compare if the results found in human liver microsomes could be confirmed, given that meta-
bolic processes in dogs and humans differ). Compound 3 was found to have a metabolic clear-
ance rate of 18.7 μL/min/mg (greater than four-fold improvement in how rapidly the
compound is metabolized and cleared from liver cells compared to the lead compound) in dog
liver microsomes. Additionally, the half-life of 123 minutes for compound 3 is a significant
improvement over the result found for the lead compound. This result is important as it
ensures this compound is unlikely to be rapidly metabolized and excreted from the patient’s
body, thus decreasing the size and frequency of doses needed to be administered to treat a
patient afflicted with a bacterial infection attributed to S. pseudintermedius. Though compound
3 possesses poor aqueous solubility, formulation technology has been shown to be an effective
strategy to employ to overcome this limitation and advance promising compounds to the mar-
ket [44]. Identification of this limitation early in the drug discovery process provides an area
for formulation scientists and medicinal chemists to address to propel compound 3 into further
drug discovery stages.

The metabolic stability analysis performed with compound 3 provided valuable evidence
that fewer doses of this compound would need to be administered to treat a patient dealing
with an infection. The post-antibiotic effect analysis performed further validated this observa-
tion. PAE analysis has been shown to be an important parameter to establish an optimal dosing
regimen (size and frequency of doses given to patients) [45]. As compound 3 exhibits a long
PAE (> 9 hours) against MRSP, this indicates bacteria are very slow to recover after exposure
to this compound. Thus, patients would need to be subjected to fewer doses of this particular
compound (as compared to clindamycin, for example, where the PAE against MRSP was
found to be only two hours). This is clinically significant as antimicrobials that demonstrate a
PAE (in particular an extended PAE as is observed with the thiazole compounds) possess sev-
eral advantages including reduced costs (fewer doses needed for treatment), limited toxicity to
host tissues, and greater patient cooperation in sticking to the prescribed treatment regimen
[46].

Conclusion
In this study we have demonstrated novel thiazole compounds synthesized by our research
group do in fact possess potent antibacterial activity against clinical isolates of both methicil-
lin-sensitive and methicillin-resistant S. pseudintermedius. The lead compound and five deriva-
tives are capable of inhibiting bacterial growth at concentrations similar to clindamycin, a drug
of choice in canine pyoderma infections. Though all six compounds are bactericidal, two deriv-
atives (3 and 6) exhibit superior killing kinetics by completely eliminating MRSP within two
hours (were superior to rifampicin). Compound 3 appears to be the most suitable derivative to
continue with further studies involving S. pseudintermedius as it is not toxic to mammalian
cells at a concentration 20-fold higher than its MIC50 value against MRSP. Additionally, MRSP
is predicted not to develop rapid resistance to this compound even after multiple exposures/
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doses. Furthermore, this compound exhibits a markedly improved metabolic stability profile
compared to the lead compound. While the thiazole compounds show promise for use alone to
treat S. pseudintermedius infections, these compounds also demonstrate the ability to re-sensi-
tize MRSP to the effect of oxacillin; this opens the door for the potential use of these com-
pounds to prolong the utility of β-lactam antibiotics for treatment of infections caused by
MRSP.
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