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Abstract
Accurate estimation of forest biomass C stock is essential to understand carbon cycles.

However, current estimates of Chinese forest biomass are mostly based on inventory-

based timber volumes and empirical conversion factors at the provincial scale, which could

introduce large uncertainties in forest biomass estimation. Here we provide a data-driven

estimate of Chinese forest aboveground biomass from 2001 to 2013 at a spatial resolution

of 1 km by integrating a recently reviewed plot-level ground-measured forest aboveground

biomass database with geospatial information from 1-km Moderate-Resolution Imaging

Spectroradiometer (MODIS) dataset in a machine learning algorithm (the model tree

ensemble, MTE). We show that Chinese forest aboveground biomass is 8.56 Pg C, which is

mainly contributed by evergreen needle-leaf forests and deciduous broadleaf forests. The

mean forest aboveground biomass density is 56.1 Mg C ha−1, with high values observed in

temperate humid regions. The responses of forest aboveground biomass density to mean

annual temperature are closely tied to water conditions; that is, negative responses domi-

nate regions with mean annual precipitation less than 1300 mm y−1 and positive responses

prevail in regions with mean annual precipitation higher than 2800 mm y−1. During the

2000s, the forests in China sequestered C by 61.9 Tg C y−1, and this C sink is mainly distrib-

uted in north China and may be attributed to warming climate, rising CO2 concentration, N

deposition, and growth of young forests.

Introduction
Forests contain about 80% of global terrestrial aboveground biomass (AGB), and play a key
role in the global carbon cycle [1,2]. It has been estimated that forest ecosystems have seques-
tered annually 1.1 Pg of the carbon over the last two decades [3], which is nearly about 16% of
the carbon released by fossil fuel CO2 emissions during the same period [4]. However, there is
evidently considerable uncertainty about the magnitude of the forest carbon sink, and even
larger uncertainty about its location. Much of this uncertainty is attributed by the incomplete
information regarding the spatial distribution of carbon stored in biomass [5,6]. Therefore, it is
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critically important to improve knowledge of the density and spatial distribution of forest bio-
mass for supporting future climate mitigation actions [2].

Terrestrial ecosystems in China have been absorbing 28–37% of fossil carbon emissions
during the 1980s and 1990s, with much of this uptake occurring via carbon accumulation in
forest biomass [7]. Previous estimation of forest biomass and its change in China is predomi-
nantly based upon periodical national-level forest resource inventories [8–10]. However, the
spatial distribution of aboveground biomass is not well characterized since these inventories
only provide the information on different forest types at the provincial level [9]. In addition,
inventory-based approaches simply convert forest carbon biomass from inventory variables,
such as timber volumes, by applying an empirical factor (e.g., biomass expansion factor, BEF)
[9], which introduces large uncertainties in the estimation of forest biomass. For example, due
to use of different volume-biomass relationship (or different value of BEF), the estimates of
China forest biomass by Pan et al. [3] is smaller by 15–27% than previous estimates by Fang,
et al. [11], although both studies used the same inventory data. Pan et al. [3] also suggested that
separating age groups with the volume–biomass method could cause 89% difference in carbon
sequestration rate in China.

Remote sensing has been extensively used as a basis for mapping aboveground forest bio-
mass [12–15]. There is ample evidence that demonstrates the general sensitivity of spectral
reflectance particularly in the shortwave infrared bands to vegetation structure, which is corre-
lated with aboveground forest biomass [13–16]. For example, Piao, et al. [17] developed a satel-
lite-based approach, which integrated forest inventory data at the provincial level with
synchronous normalized difference vegetation index (NDVI), to estimate the spatial distribu-
tion of forest biomass from 1982 to 1999 in China. However, this approach that relied on forest
inventory data at the provincial level could miss information on the variability of biomass den-
sity within forest types. To refine China-wide mapping of aboveground forest biomass, a direct
combination of remote sensing and forest inventory data at the plot level is then necessary.
This will leverage a combination of forest inventory data that provide accurate information at
the plot level, and remote sensing data that are continuous in time and space.

In this paper, we estimate aboveground biomass across China through combining forest
inventory plot data over 348 sites [18] with seven spectral reflectance bands fromModerate-
Resolution Imaging Spectroradiometer (MODIS) sensors. MODIS spectral reflectance bands
are considered because they are more accurate in predicting aboveground biomass than NDVI
only having two reflectance bands [19]. Thus, the main objectives of this study are: (1) to quan-
tify the spatial patterns of forest above ground biomass in China, (2) to explore the spatial rela-
tionships of forest above ground biomass with climate factors (temperature and precipitation),
and (3) to assess change in China’s forest above ground biomass since 2000s.

Data and Methods

Forest aboveground biomass density data
The forest aboveground biomass density (AGBD) data used in this study is a collection of pub-
lished ground measurements from 348 sites across China (Fig 1) during 1978–2008 [18]. All
these data have been checked using criteria following Ni et al. [19] to ensure their validity. The
final dataset provides 1607 AGBD records with tree species, latitude and longitude informa-
tion. AGBD values from this dataset vary from 1.87 Mg ha-1 to 1433.21 Mg ha-1 with 80% fall-
ing between 26 Mg ha-1 and 187 Mg ha-1. The average of the AGBD data is 92.35 Mg ha-1. The
area of sample plots varies from 100–400 m2 for boreal and temperate forests to 1000–2000 m2

for tropical forests [19]. To match the gridded satellite-based reflectance data at a spatial reso-
lution of 1 km, the ground-measured AGBD data within each 1 km pixel were averaged and
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used in further analyses. The unit of AGBD data (Mg ha-1) was converted to Mg C ha-1 by mul-
tiplying a factor of 0.5 [10].

MODIS data
The MODIS nadir bidirectional reflectance distribution function adjusted reflectance (NBAR)
product (MCD43B4, obtained from https://lpdaac.usgs.gov/) is used for forest aboveground
biomass estimation in this study. This product provides seven-band reflectance at wavelengths
from 459 to 2155 nm (Table 1) since 2000, with a spatial resolution of 1 km and a temporal res-
olution of 8 days. This cloud-screened dataset has been corrected for view geometry and atmo-
spheric attenuation. Due to its ability to capture forest growth conditions, this product has
been successfully applied to predict forest biomass in Russia [14] and Africa [20]. We used
summer (June to August) mean reflectance as an explanatory variable of forest biomass since
the use of winter reflectance data in snow-covered regions may lead to erroneous biomass
estimation.

Vegetation indices including normalized difference vegetation index (NDVI) and enhanced
vegetation index (EVI) are good proxies of vegetation greenness and have been widely used to
estimate forest biomass [17,21,22]. The explanatory variables used for biomass estimation also

Fig 1. Forest types and the distribution of AGBD data in China. The forest types are according to the 1:4000000 vegetation map of China.
DNF = deciduous needle leaf forests, ENF = evergreen needle leaf forests, MF = needle leaf and broadleaf mixed forests, DBF = deciduous broadleaf
forests, EBF = evergreen broadleaf forests. The AGBD data is from Luo et al. [18].

doi:10.1371/journal.pone.0130143.g001
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include 1 km 16 day NDVI and EVI data during the summertime fromMOD13A2 product
(obtained from https://lpdaac.usgs.gov/) that can complement single-band reflectance values.
The vegetation indices are also considered because the relationships between vegetation indices
and single band reflectance could be non-linear, although vegetation indices are calculated
based on the reflectance data.

Climate data
Monthly temperature and precipitation data are fromWorldClim dataset with a spatial resolu-
tion of 1 km [23]. The monthly temperature and precipitation were aggregated into mean
annual temperature (MAT) and mean annual precipitation (MAP) in order to investigate
responses of MTE-derived AGBD to climatic factors on the spatial scale.

Forest distribution map
China has a total forest area of 150 Mha, almost including all major forest types in Northern
Hemisphere. Due to a strong precipitation gradient from east to west in China, forests are
mainly distributed in the eastern part of China (Fig 1). In northwest China, forests are only dis-
tributed in middle or upper parts of mountains due to water limitation. Forests types and their
spatial distributions used in this study are based on the 1:4000000 vegetation map of China
[24]. This dataset has a total of 175 forest types, which are further aggregated into five main
types given the fact that ground measurements of AGBD in all forest types are not fully avail-
able. These five types are deciduous needle leaf forests (DNF), evergreen needle leaf forests
(ENF), needle leaf and broadleaf mixed forests (MF), deciduous broadleaf forests (DBF), and
evergreen broadleaf forests (EBF).

Data analysis
Amachine-learning technique Model Tree Ensembles (MTE) [25] is used to predict grid-scale
forest aboveground biomass density based on ground-measured AGBD and remote sensing
data in China. In this study, the MTE was trained with ground-measured AGBD as the depen-
dent variable and the set of AGBD explanatory variables listed in Table 1 as inputs. 90% of the

Table 1. Explanatory variables used in MTE.

Variable Time Variable type

MODIS band 1 (459–479 nm) 2001–2013 summer1 Regression and split

MODIS band 2 (841–876 nm) 2001–2013 summer Regression and split

MODIS band 3 (545–565 nm) 2001–2013 summer Regression and split

MODIS band 4 (620–670 nm) 2001–2013 summer Regression and split

MODIS band 5 (1230–1250 nm) 2001–2013 summer Regression and split

MODIS band 6 (1628–1652 nm) 2001–2013 summer Regression and split

MODIS band 7 (2105–2155 nm) 2001–2013 summer Regression and split

NDVI 2001–2013 summer Regression and split

EVI 2001–2013 summer Regression and split

Latitude — Split

Longitude — Split

Forest type — Split

1 The 2001–2013 summer values of MODIS reflectance and Vegetation Indices are calculated by

averaging values from June to August during 2001–2013.

doi:10.1371/journal.pone.0130143.t001
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ground measured AGBD data is used in the training phase and the rest 10% is used for valida-
tion. As shown in Fig 2, the AGBD prediction using MTE explained half of the AGBD variation
(R2 = 0.57, RMSE = 22.4 Mg C ha-1 for the training data, and R2 = 0.46, RMSE = 22.7 Mg C ha-1

for the validation data). We then extended the trained MTE to the whole China. For each forest
pixel (1 km in our case), AGBD is estimated from the trained MTE based on satellite-derived
reflectance and vegetation indices (Table 1) during the period from 2001 to 2013.

To investigate the relationships between AGBD and climate factors, we classified all the for-
est pixels into 1°C MAT and 100 mm y-1 MAP bins, and calculated the average AGBD of each
bin in a MAT-MAP space. To further investigate how forest AGBD varies with precipitation
and temperature respectively, linear regressions were performed to calculate the sensitivity
(slope) of AGBD to precipitation (SP) in each 1°C temperature bin, and the sensitivity of
AGBD to temperature (ST) in each 100 mm y-1 precipitation bin.

In addition, we also calculated the difference of forest AGBD between the periods of 2011–
2013 and 2001–2003 to represent the total aboveground biomass C stock change of Chinese
forests over the past decade. We did not consider forest area change because of a lack of high
resolution deforestation and afforestation data.

Results

Total forest aboveground biomass C stock and its spatial distribution
During the period 2001–2013, the total AGB of Chinese forests is estimated to be 8.56 Pg C,
with an average AGBD of 56 Mg C ha-1 over a forest area of 153 Mha (Table 2). This total forest
C stock is mainly contributed by ENF and DBF, which account for 41.5% (3.55 Pg C) and
30.4% (2.60 Pg C) of total forest AGB respectively. By contrast, other three forest types (EBF,
DNF and MF) have a lower AGB and only account for 17.4%, 8.4% and 2.5% of the country’s
total forest AGB (Table 2). The high AGB of ENF and DBF can be mainly attributed to their

Fig 2. Comparison of observed AGBD (Mg C ha-1) against predicted AGBD using MTE algorithm. The
blue dots indicate the training samples (R2 = 0.57, RMSE = 22.4 Mg C ha-1), and the red ones refer to the
validation samples (R2 = 0.46, RMSE = 22.7 Mg C ha-1).

doi:10.1371/journal.pone.0130143.g002
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large area of 68.7 Mha and 48.7 Mha, which occupies 45% and 31.9% of total forest area in
China respectively. In contrast, AGBD is not likely to contribute to the high AGB in ENF and
DBF since their AGBD (51 and 53 Mg C ha-1) are lower than the average AGBD of all Chinese
forests (56 Mg C ha-1).

Fig 3 illustrates the spatial distribution of forest AGBD across China, indicating a strong
spatial heterogeneity. More than half of Chinese forest AGBD falls in a range of 40–70Mg C ha-1.
The highest AGBD was found in tropical rainforests in southeastern Tibet with values higher
than 100 Mg C ha-1. Besides southeastern Tibet, central areas of Mts. Daxinganling, Mts. Xiaoxin-
ganling andMts. Changbai in Northeast China also show a relatively high AGBD, with values
ranging from 60 to 80Mg C ha-1. However, the edge regions of these mountains display a rela-
tively low AGBD (< 40Mg C ha-1). The relatively low AGBD can also be found in South China,
Xinjiang and central Inner Mongolia.

Spatial relationships between forest AGBD and climatic factors
As shown in Fig 4, forests in China are distributed in regions with MAT ranging from -10 to
26°C and MAP ranging from 0 to 5200 mm y-1. The highest AGBD levels (> 100 Mg ha-2) are
mostly found in temperate (5–22°C) and moist climate regions (MAP> 1000 mm y-1), while
the relatively low AGBD levels (< 40 Mg ha-2) mainly occur in regions with MAP< 500 mm y-1

andMAT> 5°C.
To further investigate the relationships between AGBD and climatic factors, SP along the

MAT gradient and ST along the MAP gradient were explored. Along the MAT gradient, SP is
always positive except in regions with MAT less than -8°C. As MAT increases from -8 to 25°C,
the value of SP gradually decreases from 0.1 to 0.03 (Mg C ha-1)/(mm y-1). By contrast, ST tends
to increase with MAP. For example, ST shows negative values from 0 –-5 (Mg C ha-2 °C-1) in
regions with MAP less than 1300 mm y-1 and displays positive values of 0–5 (Mg C ha-2 °C-1)
in regions with MAP higher than 2800 mm y-1.

Change in forest aboveground biomass C stock
Over the past decade, mean Chinese forest AGBD has increased by 4.6 Mg C ha-1, resulting in
an increase of aboveground biomass C stock by 61.9 Tg C y-1. However, changes the in forest
AGBD display large spatial heterogeneity (Fig 5). In regions north of 30°N, about 65% of for-
ests show an increase of AGBD. The highest increase of AGBD is located in mountains of the
northeast China and Mts Qinling, with values larger than 10 Mg C ha-1. The total aboveground
biomass C sink in this region is 47.4 Tg C y-1, accounting for 77% of Chinese total forest above-
ground biomass C sink. By contrast, forests located south of 30°N showed a mosaic pattern of

Table 2. Area and aboveground biomass characteristics for five forest types in China during 2001–2013.

Forest type Area (Mha) Total AGB (Pg C) Average AGBD (Mg C ha-1) Median AGBD (Mg C ha-1)

DNF 12.7 (8.30%) 0.72 (8.40%) 56.6 56.9

ENF 68.7 (45.00%) 3.55 (41.50%) 51.6 42.7

MF 2.2 (1.40%) 0.21 (2.50%) 97.4 63.0

DBF 48.7 (31.90%) 2.6 (30.40%) 53.3 42.7

EBF 20.4 (13.40%) 1.49 (17.40%) 73 48.4

All forests 152.6 (100%) 8.56 (100%) 56.1 42.7

DNF = deciduous needle leaf forests, ENF = evergreen needle leaf forests, MF = needle leaf and broadleaf mixed forests, DBF = deciduous broadleaf

forests, EBF = evergreen broadleaf forests.

doi:10.1371/journal.pone.0130143.t002
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the increase and decrease in AGBD. A widespread increase of AGBD is mainly found in
Hunan and Guangxi provinces, and a large-area decrease is found in Yunnan and Guizhou
provinces. The total aboveground biomass C sink in this region is 14.5 Tg C y-1, occupying
23% of the whole country’s forest biomass C sink.

Discussion
Over the past decade, many estimations of forest biomass have been made based on satellite
reflectance observations [13,20,26,27]. By integrating MODIS reflectance and ground-mea-
sured AGBD in a machine-learning algorithm (the model tree ensemble; MTE), we estimated
that China’s total forest AGB was about 8.56 Pg C during 2001–2013. This value is lower
than that in the USA (42.3 Pg C) based on MODIS land product combined with foliage-based
generalized allometric models [12] (forests area from [28]), and that in Canada (17.8 Pg C)
using the combination of inventory photo plots, MODIS spectral data and climate data [29].
Much higher total AGB in the USA is mostly contributed by their larger AGBD. For example,
at the country scale, In terms of mean forest, our estimation of AGBD in China is about 56 Mg
C ha-1, which is only 40% of that in the US (141.1 Mg C ha-1; [12]), but is comparable to that in
Canada (62.02 Mg C ha-1; [29]). While many studies have investigated total forest biomass in
China, few have estimated total AGB. Based on provincial wood-volume inventory data and

Fig 3. Spatial distribution of mean forest AGBD during 2001–2013.

doi:10.1371/journal.pone.0130143.g003
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conversion factors, previous studies have estimated that the total forest biomass of China is
3.76–6.2 Pg C [30]. However, our estimate of AGB is larger (8.56 Pg C). This large difference
between our forest biomass estimate and those of previous studies may be because we used a
new dataset of AGBD measurements rather than previously used provincial forest inventory
data. Regardless, these discrepancies highlight the need to reduce uncertainties in biomass
measurements.

Spatially explicit assessments of forest biomass are critical to the design and implementation
of effective sustainable forest management strategies and forest policies [15,16]. Taking advan-
tage of the image-based spatial information from remote-sensing, previous studies have
mapped high resolution AGBD in different regions [12,16,29]. In this study, we found the
highest AGBD in regions with moderate high precipitation and cool temperature (e.g. south-
eastern Tibet and northeastern China), and relatively low AGBD in dry inland regions. Similar
spatial pattern of AGBD with higher values located in humid regions is also observed in the
USA, Canada and Europe [12,16,29]. Moreover, we also found that AGBD increase with MAP

Fig 4. (A) Distribution of forest AGBD in a two-dimensional space with (MAT) and (MAP) binned into
intervals of 1°C MAT and 100mmMAP. (B) The sensitivity of AGBD on temperature (ST) along
precipitation gradient. (C) The sensitivity of AGBD on precipitation (Sp) along temperature gradient.
The shaded area in (B) and (C) indicates 95% significance intervals of ST and Sp. Sensitivities were only
calculated in bins having more than 100 grid pixels.

doi:10.1371/journal.pone.0130143.g004
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in almost all MAT ranges (Fig 4), which is consistent with the global site analysis by Keith et al.
[31] and supports the finding that adequate rainfall favors the rapid growth of forest [31,32].
Regarding the impact of temperature on AGBD, Larjavaara and Muller-Landau [33] reported
that temperature explains most of variation in aboveground biomass among humid old-growth
forests. Stegen et al. [32] found very weak AGBD responses to MAT in tropical and temperate
forests. In this study, the responses of AGBD to MAT are closely bound up with water condi-
tions. Significant negative temperature sensitivities of AGBD dominate the regions with MAP
less than 1300 mm y-1, which can be attributed to higher transpiration rates and stomatal clo-
sure induced by higher vapor pressure deficit. By contrast, positive temperature sensitivities of
AGBD are observed in wet regions with MAP larger than 2800 mm y-1 where forest growth is
scarcely constrained by water but by energy.

In addition to the impact of climate on spatial distribution of AGBD, anthropogenic activi-
ties also play a crucial role in determining the magnitude of AGBD. We noted that relative low
AGBD located in southwest and southeast regions (Fig 2) cannot be explained by their climate
conditions since which are much more favorable for forest growth. Instead, such relatively low
AGBD may be closely related to young stand age. Owing to national afforestation campaigns
since the end of 1970s, a large area of forests in south and southeastern China has a stand age
less than 40 years [34]. Although changes in total forest biomass can be affected by land use

Fig 5. Spatial distribution of the change in forest AGBD. The change in AGBD is calculated as the difference between the period 2011–2013 and the
period 2001–2003.

doi:10.1371/journal.pone.0130143.g005
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change [35,36], NPP that is critical to forest biomass C accumulation is mainly affected by cli-
mate instead of land use change in temperate regions [37].

In this study, we found an overall increase rate of 61.9 Tg C y-1 in Chinese forest above-
ground biomass C during 2001–2013 According to a recent estimation of Chinese total forest
biomass C sink of 115 Tg C y-1 over the past decade [35], our result suggests that forest above-
ground biomass can contribute about 53.8% of total forest C sink. The cumulative above-
ground biomass C sink from 2001 to 2013 (0.80 Pg C) can offset 4.7% of cumulative
anthropogenic C emissions in China during the period 2001–2010 (17.0 Pg C) [38]. According
to the spatial pattern of changes in AGBD, aboveground forest biomass C sink is mainly
located in northeast China and Mts. Qinling. This pattern is roughly consistent with the spatial
distribution of total forest C sink during the period 2001–2010 estimated by Peng [30]. Differ-
ent factors are responsible for the changes of forest AGBD in different regions. For northeast-
ern and central China, forest C accumulation could benefit from warming climate that is
accompanied with a longer growing season [39], increased photosynthesis rate, and stimulated
nitrogen mineralization. But this warming-induced C sink becomes smaller and even vanishes
in western China with low precipitation since high temperature can impose serious water stress
on forest growth. Moreover, increasing atmospheric CO2 also favors forest aboveground bio-
mass C sink due to the stimulation of CO2 fertilization effect [40,41]. In addition, China has
experienced accelerated nitrogen (N) deposition because of rapid industrial and agricultural
development, especially in 2000s [42]. This increased N input is also likely to increase forest C
sink particularly in N-limited Asia temperature and subtropical forest ecosystems, which can
be inferred from the observed positive spatial correlation between NEP and N deposition
across Asian forest sites [43]. Furthermore, model simulations by Lu et al. [44] have also indi-
cated that accelerated N deposition in China leads to the increased forest C storage during the
period of 2001–2005. However, in a majority of the southern regions, forest AGBD signifi-
cantly reduced during the period of 2000–2013. For the southwestern regions, drought-induced
high tree mortality rate is mainly responsible for the aboveground forest biomass C sources
[45,46].

There are considerable uncertainties in our estimates as the forest map used in this study
was digitalized in 1996 [24]. Because no detailed information of deforestation and afforestation
is available, changes in the forest area since then are not considered, and this may lead to
underestimates of AGB and C sink due to the increasing forest area in China [28]. However,
uncertainties are expected to decrease as new forest maps and more accurate deforestation and
afforestation data becomes available.

Uncertainty also came from AGBD measurements. In most plots, AGBD was determined
by either using the biomass of several standard trees for other trees, or by applying the standard
trees’ biomass-diameter at breast height-tree height relationships to other trees [19]. These
techniques may have contributed to errors in AGBD, especially in plots with highly variable
tree sizes. Furthermore, the plot size of AGBD measurements varied from 100 m2 to 2000 m2,
while the pixel of remote sensing data was 1 × 1 km. This difference in area produced consider-
able uncertainty due to the large heterogeneity of the forest at a small scale [47]. To reduce
uncertainty, a well-designed network to measure forest biomass in larger plots is needed.

Remote-sensing data also introduced uncertainty into our estimation. We used MODIS
reflectance and vegetation indices to estimate AGBD. Although these data are well calibrated,
small variations caused by atmospheric effects and illumination geometry may exist in these
datasets. In addition, the reflectance and vegetation indices are unable to fully capture forest
structure information under a closed canopy. Fortunately, new technology is expected to
reduce this uncertainty, such as light detection and ranging (LiDAR), which is an active
remote-sensing technique based on laser light that improves estimates of canopy vertical
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structure. This information is then translated to a more-accurate aboveground biomass esti-
mate [48–50]. Moreover, the 1 × 1-kmMODIS data were available only after 2000, while
AGBD measurements were obtained between 1978 and 2008 [18]. Therefore, we must assume
that, when compared with the spatial variation of AGBD, changes in MODIS data over time
are negligible. This uncertainty is expected to decrease as more AGBD data are measured in
the future.

Conclusions
Combining data from field sampling and the satellite image variables we produced high resolu-
tion maps of above ground forest biomass in China. We estimated that during 2001–2013,
total AGB of forests in China was 8.56 Pg C and that the mean AGBD was 56.1 Mg C ha-1. The
distribution of AGBD was closely related to MAP and MAT, and generally AGBD increased
with MAP along all temperature gradients. In addition, AGBD increased with MAT in regions
with MAP higher than 2800 mm y-1 and decreased with MAT in regions with MAP less than
1300 mm y-1. By investigating differences in AGBD from 2001–2003 and 2011–2013, we esti-
mated that during the last decade, forests in China sequestered C in aboveground biomass at a
rate of 61.9 Tg C y-1. This C sink is distributed mainly in northern China and may be attributed
to a warming climate, rising CO2 concentration, N deposition and growth of young forests.

Compared with previous studies, our estimates, which combined data from field sampling
and satellite images, provide another means of evaluating the aboveground biomass of forests.
Although uncertainties exist within our estimates, they are expected to decrease as further field
data become available, new remote-sensing technology is developed, and forest distribution
maps are updated. In addition, gaining a deep understanding of total forest biomass stock and
its dynamics also requires improved knowledge of below ground biomass that stores a large
part of total carbon stocks. However, the quantification of below ground biomass is challenging
because it cannot be detected by satellite observations. This necessitates an increased density of
in situ measurements and improved scaling algorithms in the future study.
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