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Abstract

The dynamic geologic history of the southeastern United States has played a major role in
shaping the geographic distributions of amphibians in the region. In the phylogeographic lit-
erature, the predominant pattern of distribution shifts through time of temperate species is
one of contraction during glacial maxima and persistence in refugia. However, the diverse
biology and ecology of amphibian species suggest that a “one-size-fits-all” model may be in-
appropriate. Nearly 10% of amphibian species in the region have a current distribution com-
prised of multiple disjunct, restricted areas that resemble the shape of Pleistocene refugia
identified for other temperate taxa in the literature. Here, we apply genetics and spatially ex-
plicit climate analyses to test the hypothesis that the disjunct regions of these species
ranges are climatic refugia for species that were more broadly distributed during glacial
maxima. We use the salamander Plethodon serratus as a model, as its range consists of
four disjunct regions in the Southeast. Phylogenetic results show that P. serratus is com-
prised of multiple genetic lineages, and the four regions are not reciprocally monophyletic.
The Appalachian salamanders form a clade sister to all other P. serratus. Niche and paleo-
distribution modeling results suggest that P. serratus expanded from the Appalachians dur-
ing the cooler Last Glacial Maximum and has since been restricted to its current disjunct
distribution by a warming climate. These data reject the universal applicability of the glacial
contraction model to temperate taxa and reiterate the importance of considering the natural
history of individual species.

Introduction

The southeastern United States has a rich geologic and biogeographic history [1-3] and con-
tains significant spatial clustering of phylogenetic breaks for trees, birds, and mammals [4],
reptiles [5,6], and amphibians [7]. Amphibian species in this region show a wide variety of dis-
tribution patterns, including, for example, widespread ranges (e.g., Rana sphenocephala), dis-
junct distributions (e.g., Hyla andersonii), and very small ranges encompassing only a single
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mountaintop or cave (e.g., Gyrinophilus subterraneus). Phylogeographic research tends to
focus on either end of the spectrum due to unique qualities of these taxa: widely distributed
species often contain multiple cryptic lineages, and species with extremely small ranges are
often of conservation concern. But little is known about the phylogeographic history of species
with distributions that are both restricted and disjunct. Eighteen of 144 amphibian species in
the Southeast [8,9] have a geographic distribution consisting of at least three disjunct regions,
but none of these species has been the focus of intensive phylogeographic study. Advances in
molecular methods and the wide availability of specimen collection data and climate layers
have facilitated studies integrating phylogenetics and spatially-explicit climate and niche analy-
ses. For the first time, we apply these methods to a southeastern amphibian species with a dis-
junct distribution to investigate its evolutionary history and explore broader questions about
amphibian phylogeographic patterns in this region.

Disjunct species distributions provide an intriguing backdrop for phylogeographic studies
because they reflect some level of isolation among populations, which directly affects patterns
of genetic variation [10]. One possible explanation for these distributions is that the disjunct re-
gions are refugial areas for species that were once more broadly distributed and have been re-
stricted by a warming climate since the Last Glacial Maximum (LGM) [11]. However, this
response is usually associated with alpine and other cold-adapted species and is contrary to the
pattern commonly cited in the literature for temperate species, which often describe post-gla-
cial expansion from refugia [12]. Often, a species range is inferred to have contracted during
the LGM, as ice cover and unsuitably cold and dry climates forced species into glacial refugia,
from which they subsequently expanded as the climate warmed [3,4]. But despite the historical
focus on locating glacial refugia, it has become apparent that this model of glacial contraction
is not universally applicable, even to systems for which it might typically be assumed. For ex-
ample, arid-adapted biota of Australia were shown to fit a model of glacial expansion, contrary
to the common assumption of contraction to refugia [13]. In addition, a recent study of the Eu-
ropean temperate frog species Hyla sarda demonstrated that the lower sea levels during the
LGM may have created new available suitable habitat for that species, enabling range expan-
sion [14].

Terrestrial salamanders of the genus Plethodon are unique among southeastern amphibians
in that they do not require creeks or vernal pools for reproduction or larval development. Rath-
er, these salamanders are direct developing and require only sufficient moisture for eggs and
adult cutaneous respiration. It is possible, then, that some of these species, especially the ones
currently found at higher elevations and cooler climates, flourished during the drier and cooler
glacial maxima, rather than contracting into refugial areas.

Here, we use the terrestrial southern redback salamander, Plethodon serratus, as a case study
to test the hypothesis that disjunct species ranges in the Southeast are climatic refugia for spe-
cies that were more widely distributed during the LGM. Plethodon serratus is found in four iso-
lated regions: the Ozark Mountains, the Ouachita Mountains, the Appalachian Mountains,
and two parishes ( = counties) in Louisiana (Fig 1). The genus Plethodon of terrestrial wood-
land salamanders is the largest genus of salamanders in North America, with 55 species cur-
rently recognized and numerous cryptic species [15]. Within the eastern North American
Plethodon, recent molecular studies place the P. cinereus group, of which P. serratus is a mem-
ber, sister to all other eastern Plethodon [16-18]. Although intraspecific relationships of mem-
bers of eastern Plethodon remain understudied (but see [19-23]), a recent survey of the
mitochondrial relationships within P. serratus suggested that the systematics of this species
may be more complex than indicated by current taxonomy, involving multiple genetic lineages
without reciprocal monophyly of regions [24].
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Fig 1. Map of collection localities. Numbers correspond to map code in Table 1. Inset: Ouachita region. OK = Oklahoma; AR = Arkansas. Photograph: P.
serratus, LSUMZ 98343; photo credit: C.C.A.

doi:10.1371/journal.pone.0130131.g001

In this paper, we combine genetics and ecological niche modeling to test the following hy-
potheses: (1) the four disjunct regions of the P. serratus geographic range comprise indepen-
dent evolutionary lineages, and (2) the geographic range of P. serratus was broader and more
contiguous in the past and has since been restricted to the four regions by climate.

Materials and Methods
Sample collection

We included 208 tissues of P. serratus that we collected from the field or loaned from museums.
Specimens were from 33 localities representing the entire species range (Table 1, Fig 1, S1
Table). We also included two specimens of the closely related species P. cinereus as an
outgroup.
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Table 1. Regions and populations sampled.

Population

Sicily Island WMA
Kisatchie Bayou
Longleaf Vista

UTA Field Station
Big Springs Branch
John's Creek
Furnace Creek
Sunset Rocks Trail
Summertown

Iron Mountain
Foran Gap

Rich Mountain
Rich Mountain
Fourche Mountain
Buck knob

Caddo Gap
County Rd 240
South Fourche
Kiamichi Mountain

Winding Stair Mountain
Beaver Bend State Park

Ouachita Trail

Near Mena
DeQueen Lake
Whiskey Peak

Petit Jean Mountain
Mount Nebo
Highway 74

Black Fork Mountain
Polk Mountain
Brushy Knob

Indian Trail
Rocky Creek
Peck Ranch

Map code corresponds to Fig 1.

doi:10.1371/journal.pone.0130131.t001

Sample size Map code
Louisiana Region

15 1

2 2

4 3

Appalachians Region

3 4

1 5

1 6

1 7

1 8

3 9
Ouachitas Region

10 10

9 11

20 12

2 12

14 13

13 14

12 15

11 16

8 17

5 18

3 19

21 20

1 21

6 22

1 23

1 24

1 25

3 26

1 27

5 28

3 29

2 30

Ozarks Region

11 31

10 32

10 33

Ethics statement

County

Catahoula
Natchitoches
Natchitoches

Sevier
Gordon
Floyd
Walker
Macon
Gwinnett

Polk

Polk

Polk

Le Flore
Scott

Scott
Montgomery
Montgomery
Perry

Le Flore

Le Flore
McCurtain
Perry

Polk

Sevier

Polk
Conway
Yell

Polk County
Polk
Montgomery
Polk

Dent
Shannon
Carter

State

Louisiana
Louisiana
Louisiana

Tennessee
Georgia
Georgia
Georgia

North Carolina
Georgia

Arkansas
Arkansas
Arkansas
Oklahoma
Arkansas
Arkansas
Arkansas
Arkansas
Arkansas
Oklahoma
Oklahoma
Oklahoma
Arkansas
Arkansas
Arkansas
Arkansas
Arkansas
Arkansas
Arkansas
Arkansas
Arkansas
Arkansas

Missouri
Missouri
Missouri

All collecting by us was done under appropriate state collecting permits for Louisiana (Scientif-
ic Collecting Permits LNHP-13-036 and LNHP-14-010 and Wildlife Division Special Use Per-
mit to Conduct Research on WMAs #WL-Research-2013-05). Collecting was conducted in
strict accordance with a protocol approved by the Institutional Animal Care and Use
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Committee (IACUC) of Louisiana State University (permit number 13-060), which approved
this complete study. The samples included in the present study are permanently held in the fol-
lowing repositories: Louisiana State University Museum of Natural Science, Museum of Verte-
brate Zoology, Sam Noble Oklahoma Museum of Natural History, Sternberg Museum of
Natural History, and the University of Alabama Herpetology Collection. All sample catalog
numbers can be found in S1 Table.

Genetic data collection

Genomic DNA was extracted using either Qiagen DNeasy Blood & Tissue Kits (Valencia, CA,
USA) or a standard salt extraction protocol [25]. We amplified and sequenced a 728 bp seg-
ment of the mitochondrial cytochrome b (cytb) gene. We also amplified and sequenced six nu-
clear loci for a total of 3,256 bp: BDNF (667 bp), NCX1 (496 bp), POMC (465 bp), RAG-1 (663
bp), SLC8A3 (717 bp), and anonymous locus ¢3 (262 bp), which was developed for a phylogeo-
graphic study of another plethodontid genus, Hydromantes [26]. Primers, references, and an-
nealing temperatures for each locus can be found in S2 Table. Sequences were visually verified
and contigs assembled in Geneious v.6.0.5. All sequences were deposited in Genbank (acces-
sion numbers: KM883214-KM884672, S1 Table).

For each locus, sequences were aligned using the ClustalW algorithm in Geneious. We in-
terred individual alleles from degenerate sequences for each nuclear locus using Phase v.2.1.1
[27,28]. Sites that could not be inferred with a high posterior probability (>95%) were retained
as missing data for downstream allelic analyses. The best-fit models of sequence evolution were
estimated for each locus using jModelTest v.2.1.4 [29].

Mitochondrial and concatenated phylogenetic analyses

For the mitochondrial cyt b locus, the phylogeny was estimated under Bayesian and maxi-
mum-likelihood (ML) frameworks. Bayesian analyses were performed in MrBayes v.3.2.2 [30]
with the alignment partitioned by codon position. We conducted two runs of 10 million
MCMC generations, with samples drawn every 5000 generations. Convergence was assessed in
Tracer v.1.6 [31], ensuring that the likelihood score and other parameters had stabilized and
that all effective sample sizes (ESSs) were >200. We discarded the first 25% of samples as
burn-in. ML analyses were conducted in RAXxML v.8.0.0 [32]. Nodal support was assessed with
1000 bootstrap pseudoreplicates. We calculated average pairwise Jukes-Cantor sequence diver-
gence in DnaSP v.5.10.1 [33,34].

Individual gene trees also were estimated for each nuclear locus following the same proce-
dures as above but without partitioning by codon position, using the unphased sequences. De-
scriptive statistics and tests for neutrality were calculated for each nuclear locus in Arlequin
v. 3.5 [35].

Cluster analyses and species tree reconstruction

While phylogenies reconstructed from concatenated data sets can be informative, they do not
always reflect true evolutionary relationships, particularly in the presence of incomplete lineage
sorting [36]. We therefore estimated the species tree for P. serratus under the multi-species coa-
lescent in *BEAST v.2.1.3 [37]. Species tree analyses are often used to reconstruct phylogenetic
relationships among a set of species, but these analyses can similarly be used with intraspecific
data sets to reconstruct phylogenetic relationships among populations or other groups of indi-
viduals [36]. The latter scenario still requires a priori delimitation of “species,” which in this
case we define as the populations that maximize Hardy-Weinberg equilibrium. We used a
Bayesian clustering algorithm in Structure v.2.3.4 [38,39] to estimate the number of clusters
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(K) and the cluster assignments with the highest posterior probabilities. We implemented the
admixture model [38], assumed correlation of allele frequencies [39], and utilized population
of origin as prior information. For each K from 1 to 10, we ran 20 iterations, each consisting of
500,000 generations after a burn-in of 100,000 generations. The best estimate of K was deter-
mined by assessing the change in log-likelihood values between values of K [40] via the Struc-
ture Harvester web server [41]. The most likely set of cluster membership coefficients was
determined in CLUMPP [42] using a greedy algorithm.

Structure grouped the Appalachians and Kisatchie samples in the same cluster with eastern
Ouachita samples (see Results). However, the Appalachians, Kisatchie and eastern Ouachitas
are separated by large geographic distances, and the nuclear phylogeny recovered an Appala-
chians clade. We therefore performed an additional species assignment test using Bayes factor
delimitation (BFD) with path sampling in *BEAST. BFD uses estimated marginal likelihoods
to compare multiple models of taxon assignment schemes. We tested two models: one model
grouped Appalachians and Kisatchie with the eastern Ouachita samples as recovered by Struc-
ture, and the second model separated the Appalachian and Kisatchie samples into an addition-
al two taxa. We excluded individuals that were not assigned to a Structure cluster with
probability > 0.9 [43]. We ran the path sampling analysis for 48 steps, with 50 million itera-
tions for each step. The Bayes factor was calculated as twice the difference in marginal likeli-
hood of the two models [44].

Using the preferred taxon scheme from the BFD analysis, we performed two species tree re-
constructions: one with nuclear loci only and one with the nuclear and mitochondrial data. For
each analysis, the starting tree was estimated under a Yule speciation model and uncorrelated
lognormal relaxed clock for each locus. Each analysis was run for 250 million generations, sam-
pling every 10,000 steps. Convergence was assessed in Tracer to ensure ESSs >200 after a
burn-in of 20-50%.

Ecological niche and paleodistribution modeling

To test for temporal changes in the geographic distribution of P. serratus, we used ecological
niche modeling and paleodistribution modeling as implemented in Maxent v.3.3.3k [45]. Natu-
ral history collection specimen occurrence records for P. serratus were downloaded from online
databases HerpNET (herpnet.org) and GBIF (gbif.org). A principle components analysis of the
climate data extracted for each occurrence record showed that each region has a distinct cli-
mate (S1 Fig); we therefore built an ecological niche model (ENM) for each region indepen-
dently. The ENMs were generated using 11 bioclimatic layers for temperature and
precipitation (S3 Table) downloaded from Worldclim [46]. We selected this set of layers from
the full set of 19 bioclimatic layers available from Worldclim based on the correlation analyses
and biological rationales described in Rissler & Apodaca [47], developed for another pletho-
dontid, Aneides flavipunctatus. These layers had a spatial resolution of 1 km?* and were based
on weather station data from 1950-2000. Because presence-only modeling algorithms assume
that pseudoabsences are drawn from areas with unsuitable climate [48], we clipped the climate
layers to a rectangle limited to the extent of the region being modeled. For example, the layers
used to build the ENM for the Appalachians was clipped to a rectangle that included only the
Appalachians and excluded the other three regions of the species range. This method mini-
mized the chance that pseudoabsences would be drawn from a region potentially suitable cli-
matically yet inaccessible due to other, non-climatic factors. For each region, the ENM was
then projected onto the full species range.

Paleodistribution models were generated for the last interglacial (LIG; ~120,000-140,000
YBP), the last glacial maximum (LGM; ~21,000 YBP), and the mid-Holocene (~6,000 YBP) by
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projecting the ENM for each region onto climate layers from those three time points. Biocli-
matic layers for these periods were downloaded from Worldclim at a spatial resolution of

5 km?. LIG climate data were based on Otto-Bliesner et al. [49]. LGM and mid-Holocene cli-
mate data were based on two general circulation model simulations (available from http://
pmip2.Isce.ipsl.fr): Community Climate System Model (CCSM) and Model for Interdisciplin-
ary Research on Climate (MIROC). Additional information on the construction of these layers
can be found on the Worldclim website (worldclim.org/downscaling). Paleodistribution mod-
els for the two LGM and two mid-Holocene data sets were averaged to generate a single model
for each time point. We converted all ENMs and paleodistribution models to binary models
using the threshold determined by Maxent that maximizes the sum of sensitivity and specifici-
ty. This method of threshold selection has been shown to be suitable when presence-only data
are used [50].

We quantified pairwise overlap between ENMs in ENMTools [51] using the similarity test
statistic I, based on the Hellinger distance. To determine whether observed niche differences
were due to differences in habitat availability in each region (null hypothesis) or to differences
in suitability or selection, we generated a null distribution of niche overlap using the back-
ground similarity analysis in ENMTools. For each pair of regions, a null distribution of I values
was generated by comparing the ENM for region A to an ENM created from a set of random
points from the background area for region B, defined as the area enclosed by a minimum con-
vex polygon around the occurrences for region B, replicated 100 times. The number of random
points was equivalent to the number of occurrences for region B in the original data set. Under
a two-tailed test, a significant result would indicate niche conservatism or divergence.

To examine the importance of temperature versus precipitation in driving the differences
between paleodistribution and current ENMs, and thus potential distribution shifts from the
LGM to present, we used the presence (1) value of the binary paleodistribution model for the
Appalachians as a constraint and generated 1000 random points within the bounds of the
model. For each of those points, we extracted climate data from the LGM and current climate
layers and ran a PCA to obtain a reduced number of uncorrelated variables and determine
which variables, as indicated by their loadings, explain the majority of the variation in the data.

Results

Sequence data and phylogenetic analyses

The mitochondrial cyt b alignment was 728 bp long and contained 48 haplotypes. Average
pairwise JC sequence divergence between geographic regions ranged from 4.4%-7.2%. Average
JC sequence divergence within regions ranged from 0%-4.5% (Table 2). The ML phylogeny re-
vealed 10 geographically concordant clades with strong support from ML bootstraps (> 75)
and Bayesian posterior probabilities (> 0.9) (Fig 2, S2 Fig). The Appalachians and Ozarks each
form strongly supported clades (Fig 2). Surprisingly, the two allopatric sites in Louisiana
(Kisatchie, Sicily Island; Fig 1, Table 1) are not sister clades; rather, Sicily Island falls out sister

Table 2. Average pairwise sequence divergence (JC) for mitochondrial cytb, among regions.

Within Region (%) Pairwise
Appalachians (%) Ozarks (%) Ouachitas (%)
Appalachians 1.3 =
Ozarks 0.0 4.4 -
Ouachitas 45 5.7 5.8 -
Louisiana 1.4 7.2 7.2 5.1

doi:10.1371/journal.pone.0130131.t1002
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Fig 2. Maximume-likelihood phylogeny of mitochondrial cytb. Nodal support: grey dots: Bayesian PP > 0.9; black dots: ML bootstrap > 0.75 and Bayesian
PP > 0.9. Shapes on the phylogeny correspond to map. Inset: Ouachita region.

doi:10.1371/journal.pone.0130131.g002

to a clade comprised of samples from the Ouachitas. The Ouachita region as a whole also does
not form a clade. To some extent, the spatial distribution of mitochondrial clades is concordant
with geography at the population level, as populations that are closer together geographically
tend to be more closely related. But this pattern does not hold at the larger scale, among re-
gions, as only two of the four regions are represented by monophyletic clades.

The nuclear data sets consisted of a total of 3,270 bp. The number of variable sites for each
locus ranged from 9-30 (S4 Table). Nucleotide diversity (r) and haplotype diversity (Hd) for
each region are listed in S4 Table. Thirty of the 208 salamanders had a 9 bp deletion at anony-
mous nuclear locus c3; the deletion was present in 8 of 27 haplotypes for this locus. All 30 indi-
viduals possessing a haplotype with this deletion were from the northeastern Ouachitas (Fig 3,
denoted by asterisks), from five populations: Foran Gap (2 samples of 9), Fourche Mountain
(11 of 14), Brushy Knob (1 of 2), Buck Knob (13 of 13), Mt. Nebo (3 of 3). Eighteen of the 30
individuals were heterozygous for the deletion.

Individual nuclear gene trees (S3 Fig) showed little resolution, but, consistent with the mito-
chondrial phylogeny, the Ozarks, the Appalachians, and Sicily Island each form strongly sup-
ported clades for at least one locus. Structure recovered five clusters corresponding to (i)
Ozarks, (ii) Sicily Island, (iii) Appalachian + Kisatchie + Ouachita, and (iv, v) two clusters
unique to Ouachita (Fig 3). Admixture (q < 0.9) was prevalent among populations within the
Ouachita region, whereas all individuals in the remaining three regions were assigned to a
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Fig 3. Structure clusters (K = 5) for the nuclear data set. Populations with individuals with the 9 bp deletion in the c3 locus are indicated by asterisks on
the Ouachita inset. Colors and labels correspond to Fig 4.

doi:10.1371/journal.pone.0130131.9003

Table 3. Pairwise average Fst values calculated from the concatenated nuclear data set.

cluster with probability > 0.9. Cluster assignment was not entirely concordant with the mito-
chondrial clades. Notably, Structure did not separate the Appalachian and Kisatchie samples
from the eastern Ouachita, even with additional hierarchical runs (data not shown). Pairwise
Fsr values for the Structure clusters ranged from 0.134 between two Ouachita clusters to 0.984
between the Ozark and Sicily Island clusters (Table 3). Pairwise Fgr values were highest for
pairs that included the Ozarks and Sicily Island.

Ozark Sicily Island Kisatchie Appalachian E Ouach. NW Ouach.
Ozark -
Sicily Island 0.9837 -
Kisatchie 0.9720 0.9395 -
Appalachian 0.9155 0.8602 0.5213 =
E Ouach. 0.7902 0.7418 0.3778 0.4234 -
NW Quach. 0.7644 0.5948 0.5899 0.5762 0.4200 =
C Ouach. 0.7252 0.6093 0.4443 0.4789 0.2426 0.1337
All values are significant (p < 0.001).
doi:10.1371/journal.pone.0130131.1003
PLOS ONE | DOI:10.1371/journal.pone.0130131 July 1,2015 9/19



@’PLOS ‘ ONE

Phylogeography of Plethodon serratus

0.98

Kisatchie
0.95
0.66[_|
E Ouachitas
0.50L_]
0.99 NW Ouachitas
1.0

C Ouachitas
Ozarks

Appalachians

P. cinereus

Fig 4. Species tree from *BEAST. Colors correspond to Structure bar plots in Fig 3. Nodal support: Bayesian PP.

doi:10.1371/journal.pone.0130131.g004

Marginal likelihoods for the combined Appalachians/Kisatchie/E Ouachita model (-8567.4)
and the separated model (-8447.4) yielded a Bayes factor of 239.9. Bayes factors greater than 10
indicate decisive support for one model over the other [44], so our BFD analysis strongly sup-
ports delimiting Appalachians and Kisatchie as separate taxa for the species tree analyses. For
the species trees, the topologies and nodal support values for the nuclear-only and the com-
bined nuclear and mitochondrial species trees were not qualitatively different, so we present
only the species tree for the combined data set (Fig 4). Species tree analyses were largely con-
gruent with the mitochondrial and nuclear phylogenies. The Appalachian region once again
falls out sister to a strongly supported clade (PP = 0.99) consisting of all other samples. Unlike
the mitochondrial tree, however, the species tree groups Ouachita and Louisiana into a single,
strongly supported (PP = 0.95) clade, sister to the Ozark region.

ENM and paleodistribution model analyses

The ENM generated for P. serratus roughly corresponded with the county based range map
(TUCN et al., 2008), with overprediction beyond the current distribution in the Appalachian re-
gion (Fig 5). Niche similarity tests among the four regions showed all pairwise comparisons sig-
nificantly more similar than expected based on chance. The LIG paleodistribution models for
the Appalachians and Ouachitas both showed a very small area of suitable climate in the Appa-
lachian highlands (Fig 5). The LIG model for Louisiana showed no areas of suitability, but the
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Appalachians Ouachitas Louisiana Ozarks

ENM (Current)

Mid-Holocene (6 kya)

LGM (21 kya)

LIG (120-140 kya)

Fig 5. Ecological niche models (second row) and paleodistribution models (mid-Holocene, LGM, LIG). Columns: the four regions of the P. serratus
range. Red line in the Appalachians denotes the French Broad River. For LGM models, note the expanded coastlines due to lower sea levels. For Ozark LIG
model, note the area of suitability covers the entire depicted region.

doi:10.1371/journal.pone.0130131.g005

Ozark model found a vast area of suitability covering almost the entire eastern US and Canada
(Fig 5). The LGM models for the Appalachians and Ouachitas showed a contiguous surface of
suitable climate across the southeastern US, extending north to the Ouachitas but remaining
south of the Ozarks (Fig 5). The LGM models for Louisiana and the Ozarks revealed no areas
of suitable climate. Mid-Holocene models for the Appalachians and Ouachitas were much
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more restricted than the LGM models. Appalachian salamanders were restricted to the high-
lands, and Ouachita salamanders were restricted to an area encompassing parts of Oklahoma,
Kansas, and Missouri. The mid-Holocene model for the Ozarks showed suitability in the
Ozark Plateau and eastward into Illinois.

The PCA of paleo- and current climate at a set of random points within the hindcasted
LGM range of the Appalachian region suggests that temperature is more important than pre-
cipitation in the distribution of P. serratus. PC1 explained 55.7% of the variation, and PC1 and
PC2 combined explained 78.2% of the variation. PC1 is dominated by temperature variables
(Biol-11), and PC2 is dominated by precipitation variables (Bio12-18) (S3 Table).

Discussion

Our ENM and paleodistribution model results support the hypothesis that P. serratus originated
in the Appalachian Mountains and subsequently expanded southward and westward across

the Coastal Plains during the cooler glacial periods. The high haplotype diversity (0.844) and
nucleotide diversity (0.145) within the Appalachians further support the Appalachians as a
source region. Recent phylogeographic studies of the spotted salamander Ambystoma macula-
tum found evidence of a similar pattern of expansion from the Appalachians along the Coastal
Plains, and north to the Interior Highlands of the Ouachitas and Ozarks [52-54]. In addition,
Phillips [52] found very low genetic diversity within the Ozarks, mirroring our results for P. ser-
ratus. In the Ozarks, we recovered only one mitochondrial haplotype, and again only one haplo-
type for four of the six nuclear loci. This low genetic diversity, combined with the lack of
suitable habitat in the Ozarks during the LGM, suggests that this region was more recently
colonized.

The LIG paleodistribution model for the Ozarks suggests a vast area of suitable habitat
across the entire eastern North America (Fig 5). However, because none of our other results in-
dicate a widespread Ozark lineage, we cautiously suggest two alternative explanations for this
result. First, it is possible that this result is an artifact of the spatial resolution of the climate lay-
ers, the small sample size, or both. However, Maxent has been shown to be robust to small sam-
ple sizes [55], and the AUC scores for this model were consistently high across multiple
replicate runs. Therefore, we suggest the possibility that although the current habitat for the
Ozark lineage may have been widespread during the LIG, the region had not yet been colo-
nized. Paleodistribution models for the subsequent time period, the LGM, provide additional
support for this scenario.

Plethodon serratus salamanders in the four regions are separated by large geographic dis-
tances, and P. serratus has relatively poor dispersal ability. We would thus predict deep genetic
divergence in the mitochondrial loci with clear geographic concordance if the four regions
have been isolated long-term. Instead, however, mitochondrial and nuclear haplotypes are
shared among regions. Mitochondrial results show geographic structure but, particularly in the
Ouachitas, lack the signature of reciprocal monophyly with deep genetic divergence suggestive
of persistent isolation. In the mitochondrial phylogeny, the Louisiana samples are nested with-
in the Ouachitas, and the Kisatchie and Sicily Island clades are not sister to each other (Fig 2).
Furthermore, while the geographic distributions of the mitochondrial haplotypes and Structure
clusters from the nuclear data are largely congruent, there is some discordance. For example,
the three samples from Mt. Nebo, AR, fell out in a clade with the other eastern Ouachita sam-
ples in the mitochondrial phylogeny (Fig 2) but clustered with the central and southwestern
Ouachita samples in the Structure analysis (Fig 3).

Possible explanations for these phylogenetic patterns include incomplete lineage sorting
and introgression of mitochondrial haplotypes. Given the ENMs and paleodistribution models,
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we suggest the former scenario is the more plausible one. We would expect some level of in-
complete lineage sorting in a scenario of past range expansion followed by recent contraction
and isolation. Populations generally gradually progress from polyphyly and paraphyly to recip-
rocal monophyly following geographic isolation [56]. Although recent migration and incom-
plete lineage sorting can result in similar genetic signals, ongoing migration among the four
regions of the P. serratus range is unlikely for a salamander with such limited vagility. More-
over, the geographic distances separating the regions are large, and the intervening areas con-
tain inhospitable habitat. However, we cannot rule out ongoing migration within regions, such
as among populations within the Ouachitas. The ENM for the Ouachitas does not indicate un-
suitable habitat in the valleys separating various mountain ranges inhabited by P. serratus, but
we cautiously note that the 1 km? resolution of the climate layers used to generate the ENMs
may be too coarse to assess climate suitability at such a fine scale.

Plethodon serratus is fully terrestrial, lacking an aquatic larval stage, and thus is not depen-
dent on creeks or vernal pools for breeding. We would expect, therefore, for the geographic dis-
tribution of P. serratus to be driven more by changes in temperature than precipitation. This is
evident in the PCA scatterplot of paleo- and current climate (S4 Fig), where the primary PC
axis, explaining 55.7% of the variation, is most heavily weighted by temperature. The two
time points appear to overlap substantially along the y-axis, which is dominated by
precipitation variables. These data suggest that P. serratus has expanded and contracted its
range with temperature changes, retreating to the Interior Highlands and Appalachians during
warmer periods. During the Pleistocene, the Coastal Plain was dominated by pine and oak, with
cooler temperatures than today and much less precipitation [57]. The Southeast during the
mid-Holocene was much warmer than the LGM [58], which may have driven the range contrac-
tion observed in the Appalachians and Ouachitas (Fig 5). This hypothesis of range expansion
and contraction can be explicitly tested with a larger genetic data set by estimating changes in ef-
fective population size through time, employing coalescent analyses such as the Bayesian skyline
plot [59].

This scenario does not explain why P. serratus is found in Louisiana, a region with much
warmer current temperatures than all other localities in its range (S1 Fig). The fact that sala-
manders from the two general sites in Louisiana (Kisatchie and Sicily Island) are not each oth-
er’s closest relative suggests at least two independent colonizations of Louisiana by this
species. Our analyses of niche similarity show that the ecological niches of the salamanders in
each of the four regions are significantly non-identical, but there is no evidence that these dif-
ferences are due to habitat selection or suitability differences rather than to an artifact of differ-
ences in the habitat available in each region [51]. Instead, results show ENM:s to be more
similar than expected by random sampling of the environment, which may suggest niche con-
servatism, but may also be an artifact of Brownian motion-like evolution of the niches [60]. Al-
ternatively, this result may simply be a consequence of allopatric diversification and
subsequent range shifts [61]. Therefore, additional studies on the ecology and behavior of
P. serratus are necessary to determine the extent to which P. serratus is able to adapt in situ to
changes in climate.

The Appalachian ENM for P. serratus overpredicts west into Alabama, north farther into
North Carolina, and east into South Carolina (Fig 5), suggesting that factors other than climate
are also driving the species distribution in the Appalachians. Plethodon serratus is replaced by
P. cinereus to the northeast. The two species occur within 50 km of each other at their closest
known sites, on opposite sides of the French Broad River Valley [62], with P. dorsalis occurring
in the intervening regions. On the ENM, the narrow gap between the predicted distribution of
P. serratus and the overpredicted area outside the species range to the northeast corresponds to
the French Broad River Valley (Fig 5). This river is a known phylogenetic break in other species
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of plethodontid salamanders (Desmognathus wrighti; [63]) due to the inhospitable habitat in
this intervening region. It is thus likely that P. serratus is restricted to the northeast by the
French Broad River rather than by interactions with P. cinereus.

It is unclear why the ENM overpredicts to the west into Alabama. One possibility is that one
or more specimens collected from eastern Alabama and included in our ENM analyses were
misidentified as P. serratus. Alternatively, P. serratus may be restricted in this region by inter-
specific interactions. The congeners P. websteri and P. dorsalis also occur in Alabama. Compet-
itive interactions of P. serratus have not been studied, but P. serratus and P. ventralis (sister to
P. dorsalis) are known to replace each other altitudinally in the Appalachians, with P. serratus
restricted to higher elevations where the two species co-occur [64]. It has been previously
shown that species range shapes tend to be determined by a combination of climate, dispersal
limitations, and interspecific competition [65], but we note that the overprediction may also
simply be an artifact of the modeling algorithm or the suite of climate variables used to con-
struct the ENM.

Our understanding of the ecology and evolutionary history of P. serratus is especially vital
in Louisiana, where the species is listed as Critically Imperiled by the Louisiana Department of
Wildlife and Fisheries. Plethodon serratus is currently restricted to two known localities in Lou-
isiana: the Longleaf Vista Outlook in the Kisatchie National Forest, and Sicily Island Hills
WMA [66]. In addition, habitat destruction from strip mining in the state has resulted in the
likely extirpation of at least one isolated population in DeSoto Parish [67]. However, because
the Longleaf Vista site is located along a heavily used public trail, it seems likely that this re-
stricted distribution is at least partially a result of sampling bias and that P. serratus may also
occur elsewhere in the Kisatchie National Forest. Other localities in this area also contain habi-
tat more similar to the mixed hardwood forest of Sicily Island than to the pine and sandstone
habitat at Longleaf Vista. At one locality west of Longleaf Vista, we captured two P. serratus
(Tables 1 and S1). This is a previously undocumented locality for this species. The samples
from the new locality shared mitochondrial and nuclear haplotypes with those from Longleaf
Vista. It is unclear if one of those two sites is a recent colonization by P. serratus or if the
species is able to readily migrate between the two sites. Although our discovery encourages
hope that P. serratus may be more abundant in Louisiana than previously thought, we caution
that the species is still known only from a small area within the Kisatchie National Forest and
from Sicily Island. We further highlight the need for additional surveys of P. serratus in
the area.

Conclusions

Our study underscores the power of synthesizing information from genetics and climate to un-
cover factors driving species distributions. Our results suggest that P. serratus was much more
broadly distributed across the Coastal Plain during the LGM and has contracted to its current
disjunct range in response to warming. However, our study also highlights the importance of
understanding the variation in individual responses to climate among even closely related spe-
cies. Plethodon serratus appears to be unique within the genus in flourishing broadly during
historical cooler climates, as other members of Plethodon show a pattern of contraction (e.g.,
P. caddoensis; [22]). For P. serratus, an understanding of how the species responds to changes
in climate may be vital to its survival in the future. We suggest that P. serratus alters its range
more in response to temperature than to precipitation and that warmer temperatures lead to
range contractions and further isolation. As global temperatures are predicted to continue to
rise over the next 100 years [68], management of this species may be necessary in order to pre-
vent further loss of genetic diversity or extinction, especially in Louisiana, where its current
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distribution is the most restricted and fragmented. Additional research is also needed exploring
the comparative phylogeography of the Southeastern U.S. to determine the extent to which the
biogeographic and evolutionary processes revealed in this study can be generalized to other
amphibian species in the region. Larger genetic data sets and a taxonomically more inclusive
paleodistribution model study will allow for explicit testing under a coalescent framework of
the hypotheses presented in this study and, more generally, provide further insight into am-
phibian responses to historical climatic changes and potential consequences of future
warming.
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