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Abstract

Experimental error control is very important in quantitative trait locus (QTL) mapping. Al-
though numerous statistical methods have been developed for QTL mapping, a QTL de-
tection model based on an appropriate experimental design that emphasizes error control
has not been developed. Lattice design is very suitable for experiments with large sample
sizes, which is usually required for accurate mapping of quantitative traits. However, the
lack of a QTL mapping method based on lattice design dictates that the arithmetic mean or
adjusted mean of each line of observations in the lattice design had to be used as a re-
sponse variable, resulting in low QTL detection power. As an improvement, we developed
a QTL mapping method termed composite interval mapping based on lattice design
(CIMLD). In the lattice design, experimental errors are decomposed into random errors
and block-within-replication errors. Four levels of block-within-replication errors were sim-
ulated to show the power of QTL detection under different error controls. The simulation re-
sults showed that the arithmetic mean method, which is equivalent to a method under
random complete block design (RCBD), was very sensitive to the size of the block vari-
ance and with the increase of block variance, the power of QTL detection decreased from
51.3% 10 9.4%. In contrast to the RCBD method, the power of CIMLD and the adjusted
mean method did not change for different block variances. The CIMLD method showed
1.2- to 7.6-fold higher power of QTL detection than the arithmetic or adjusted mean meth-
ods. Our proposed method was applied to real soybean (Glycine max) data as an example
and 10 QTLs for biomass were identified that explained 65.87% of the phenotypic varia-
tion, while only three and two QTLs were identified by arithmetic and adjusted mean
methods, respectively.
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Introduction

A quantitative trait is usually regarded as complex because of its inheritance mechanism [1]. In
the past two decades, unraveling the genetic basis of quantitative traits has become an attractive
and challenging research field. Great efforts have been made in quantitative trait locus (QTL)
mapping, based on molecular markers, to identify the genetic architecture underlying quantita-
tive phenotypic variation [2-6]. Generally, to effectively map the QTLs of a trait, a proper sta-
tistical method, a genetic population, and an efficient experimental design are required both
for powerful and accurate QTL mapping.

Numerous statistical methods have been proposed for QTL mapping [7], among which sin-
gle marker regression is the simplest method, which identifies QTLs by testing the difference
between marker group means on the phenotype, using methods such as analysis of variance
(ANOVA). The single marker regression approach can only detect QTLs at marker positions,
thus requiring an ultra-high density of markers to obtain accurate estimates of QTL locations
[8]. Interval mapping (IM) was proposed to map genome-wide QTLs based on linkage maps
[9]. The IM method performs a statistical test for a QTL at each genome position between a
pair of markers by conditioning on the genotypes of the two flanking markers. However, two
or more linked QTLs may affect the mapping in IM, leading to biased estimates of locations
and effects of QTLs [10-12]. Based on IM, composite interval mapping (CIM) was proposed to
reduce the impact of linkage on QTL under testing and to improve the precision of QTL map-
ping [12]. More recently, a further refinement was made to reduce the impact of covariate
marker selection on CIM, which was designated as inclusive composite interval mapping
(ICIM) [13]. Furthermore, various multi-locus model methods based on Bayesian statistical
frameworks have also been developed for simultaneously modeling multiple genome-wide
QTLs [14-18]. Although Bayesian methods have a number of advantages for QTL mapping,
they are usually computationally intensive and rarely easy to use. With the user-friendly com-
puter program Windows QTL Cartographer [19], CIM is currently the most widely used meth-
od for QTL mapping in segregating populations derived from bi-parental crosses.

Various types of genetic segregating populations used for QTL mapping may be classified
into tentative mapping populations, such as F, and backcross (BC), and permanent mapping
populations, such as recombinant inbred lines (RILs) and doubled haploid lines (DH). Genetic
experiments with tentative mapping populations may not repeat between years or locations.
On the contrary, genetic experiments with permanent mapping population can be repeated
and can evaluate genotypes by environment interaction. Thus, permanent mapping popula-
tions are currently preferred for QTL mapping as the phenotypes of mapping population indi-
viduals can be evaluated in multiple environments with multiple replications.

Both accurate genotype and phenotype data are required for high-resolution QTL mapping.
The current genotyping technologies are much more reliable; therefore, obtaining high-quality
phenotypic data becomes more important in QTL studies [20, 21]. Appropriate experimental
design is critical to reduce the experimental error and phenotype evaluation [22]. For tentative
mapping populations, such as F,s and BCs, a completely randomized design (CRD) is usually
implemented in a phenotyping experiment. However, non-uniform field conditions and lack of
replication can result in large experimental errors in CRD, which further reduce the accuracy of
QTL mapping. For permanent mapping populations, such as RILs and DHs, randomized com-
plete block design (RCBD) is the most widely used experimental design in QTL mapping.
RCBD may reduce the experimental error by increasing replications. However, RCBD is not ef-
ficient for local control. Lattice design [22], which has efficient local control, is an excellent ex-
perimental design for phenotype evaluation of a genetic population, especially for large sample
sizes [23]. In recent years, lattice design has been applied increasingly in QTL mapping [24-28].
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Previous mapping methods or software could not handle the original data from lattice design;
therefore, the adjusted mean or arithmetic mean of each line were used typically as response
variables in the mapping procedure [27, 29-31]. In the present study, a QTL mapping method
termed composite interval mapping based on lattice design (CIMLD), which is based on lattice
design and the most popularly used CIM method, is proposed. Simulations demonstrated that
our model improved the power of QTL detection. Real soybean (Glycine max) data analyses
were performed as a practical example of the proposed method.

Materials and Methods
CIMLD

Following the CIM method [12], the linear model for testing a QTL on a marker interval (v, v
+1) in an RIL population with an experiment incorporating lattice design can be written as:
Vi = B+ 0+ P + b'x, + Z bixy, + Eijks (1)
I#vv+1
where y;; is the phenotypic observation of the k-th (k =1, 2,.. ., t) linein the j-th (j= 1,2, ..,
s) block within the i-th (i = 1, 2,. . ., r) replication, y is the overall mean, ¢; is the effect of i-th
replication, 7, is the effect of j-th block within i-th replication, b* is the effect of the QTL and
x™ is a dummy variable taking a value of 0 or 1 and denotes the genotype of k-th line at the
QTL, b, is the effect of I-th (I=1, 2, . . ., p) covariate marker representing the background effect
and xy; denotes the genotype of k-th line at [-th covariate marker, taking a value of 0 or 1. & is
the random error effect. All effects were regarded as fixed except yj;) and e, 7, ~ N(0, 7}),
;% ~ N(0, %), where o} is the variance of the block effect within the replication and o” is the

error variance.
The model (1) can be rewritten in matrix notation as

y=1u+X;b, +X,b,+X,b,+Zu+e
= [1n’XR’ XQ7 XM] [:“3 by; bQ; bM] +Zu+te, (2)
=Xb+Zu+e

where y denotes the nx1 vector of y;j, n is the total number of observations and equals txr, 1,,
is an nx1 vector of 1s, Xy is an nxr design matrix whose i-th column is the dummy variable
(taking a value 0 or 1) of a;, by is x1 vector of a;, X is an nx1 design matrix of QTL, by is the
same as b*, X,/ is an nxp design matrix of covariate markers, b, is a px1 vector of b;, Z is an
nxs design matrix of block, and u is a sx1 vector of yj).

The variance of y is

V = Var(Zu +e) = ZZ ¢’ + 1,6 = ¢*(ZZ 5 + 1) = ¢°%, (3)

where I, is an nxn identity matrix, d = g, /6>, 6 may be used to measure the variance of a
block within the replication; the covariance structure is ¥ = ZZ'6+ 1.
Then the phenotype is adjusted as

y =Xy =32""Xb+2*(Zu+e)=Xb +e". (4)
The variance of y* is £/?Var(Zu + e)£"/* = I¢*. Thus, when X is known, model (4) is just a

simple linear model and can be used to test a QTL under the framework of CIM. Here, we
make use of the error variance and block-within-replication variance parameter estimated
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from ANOVA of the lattice design to provide an estimate of 8. Then, the estimate of X can be
obtained according to eq (3).

The QTL genotype is generally unknown in QTL mapping. In the standard IM method,
conditional probabilities for the QTL genotypes were calculated according the genotype of two
flanking markers and incorporated into a mixture of normal distributions [9]. In the present
study, multiple versions of the complete QTL genotype were imputed based on the hidden
Markov model technology in the R/qtl package [32, 33]. Thus, the model (4) can be solved
using standard statistical methods for simple linear regression [34]. Although an F-test can be
used to test a QTL, we used the traditional logarithm of odds (LOD) score as a convenient sta-
tistical test [32]:

LOD = glogw(RSSO /RSS,), (5)

where RSS is the residual sum of squares; the subscript 1 indicates a linear model including the
QTL effects and 0 indicates the null model without the QTL effect. There are multiple versions
of the QTL genotype; therefore, the LOD scores at a particular position are averaged to obtain
an appropriate combined LOD score for QTL detection [35].

Simulated data

The genotype data of a RIL population comprising 196 lines were simulated using the R/qtl
package [32]. The genome consisted of five chromosomes, each of 150 ¢cM in length and with
16 evenly distributed markers. Ten QTLs (represented by Q1-Q10) were simulated with the
same positions and effects as used by Zeng [12]. Three QTLs were located on each of the first
three chromosomes, one QTL on the fourth chromosome and no QTLs on chromosome five.
The positions and effects of QTL were 16 cM, 48 cM, 108 cM and 0.42, 0.75, 0.58 for the first
chromosome;, 3 cM, 43 ¢M, 77 cM and 1.02, —1.23, —1.26 for the second chromosome; 33 cM,
68 cM, 129 cM and —0.46, 1.61, 0.88 for the third chromosome; and 26 cM and 0.74 for the
fourth chromosome, respectively. Furthermore, 100 polygenes with effects drawn from U (0,
0.1) were simulated to make the simulated quantitative trait more natural. The genotypic val-
ues for each line were obtained as the sum of the QTL and polygene effects.

Simulated phenotype data for a 14x14 simple lattice design experiment with two replica-
tions were generated. The replication effect was set to 2. The random error effect was drawn
from a normal distribution with a mean of zero and variance of Var(g)x(1/h* — 1), where Var
(g) is the total genetic variance and h” is total heritability, and was fixed as 0.7. The block-
within-replication effect was drawn from a normal distribution with a mean of zero and vari-
ance of Var(e)xd, where Var(e) is the error variance and ¢ is the same as defined in model (3),
and was set to 0.5, 1, 5, and 10, respectively. One hundred replications were performed for each
scenario.

Performance analysis

Our proposed CIMLD method was compared with two other mapping strategies: the standard
CIM method with the arithmetic mean as the response (referred as RCBD hereinafter) and the
standard CIM method with the adjusted mean as the response (referred as AMLD hereinafter).
The threshold for the LOD score was determined by a permutation test [36] with 1000 replica-
tions or a predefined empirical value of 2.5 [19]. The false discovery rate (FDR) and the power

of QTL detection were calculated and used for performance comparisons. A detected QTL was
considered a false positive if none of the predefined QTLs were found within a 10 cM window,

centered at the detected QTL. A predefined QTL was considered as detected if at least one QTL
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was found within a 10-cM window, centered at the true QTL. Standard CIM analysis was per-
formed using the cim function of R/qtl [32].

Soybean data set

A RIL population of soybean comprising 184 lines derived from the cross between cultivars
Kefeng No.1 and Nannong1138-2 was planted in a 14x14 simple lattice design, with two repli-
cations, for 2 years, in 2005 and 2006, in the National Center of Soybean Experiment, Jiangsu,
Nanjing Agricultural University, China [37, 38]. The biomass of each RIL was obtained by
measuring the dry weight of all plants in each plot. The linkage map of the population was ini-
tially constructed from 452 markers and was refined recently [38, 39]. The new map contains
834 molecular makers covering 2308 cM in 24 linkage groups.

Statistical analysis

A random effects model was used for ANOVA of biomass and the phenotypic value for the i-
th environment, j-th replication, and I-th genotype was expressed as y;j; = u + ; + o) + Yiqj) +
&1+ (ge)i + ;i Where yjji; is the phenotypic observation of the I-th line in the k-th block within
the i-th environment and j-th replication, y is the overall mean, ¢; is the effect of i-th environ-
ment, a; is the effect of j-th replication, () is the effect of k-th block within i-th environment
and j-th replication, g is the effect of I-th line, (ge); is genotype by environment interaction ef-
fect, and &;; is random error. All effects were regarded as fixed except yiij) and €;jup, Yic(ij) ~ N
(0,63), €ijxs ~ N(O, 0°), where o; is the variance of the block effect within the replication and o
is the error variance.

The computation for ANOVA was performed by using the GLM procedure in the SAS/STAT
software [40]. Trait heritability of biomass was estimated as h* = a7 / [0} + 0, /s + 0° /(s - 1)],
where og, a; and o” are genotype, genotype by environment interaction and error variance esti-
mated from expected mean squares in ANOVA, respectively, and s is the number of environ-
ments and r is the number of replications [41].

Results
Simulation

Researchers have realized that it is necessary to adopt a lattice design to control experimental
errors. However, the lack of methods to analyze the full data from a lattice design for QTL
mapping caused some previous reports to use the arithmetic means of genotypes as response
variables to map QTLs with the CIM method, although the experimental design was lattice. In
that case, the experimental design was actually equivalent to RCBD. In other reports, adjusted
means of genotypes of the lattice design were used as response variables for QTL mapping with
the CIM method. Here, we have described a model (CIMLD) for QTL mapping based on a lat-
tice design. To compare the three strategies, we simulated four error conditions of block-with-
in-replication relative to error variance of the model.

The genome-wide average LOD score profiles under the four block variance conditions
(Fig 1) showed that as the block variance increased, the LOD score of the RCBD method de-
creased rapidly, especially when the block variance was large, e.g. d = 10, where the genome-
wide LOD score decreased to almost zero, indicating a rapid loss in power. There is no direct
correspondence between the size of the LOD score and power; therefore, we calculated the fre-
quency that a LOD score was greater than the threshold from a permutation test among the
100 replications at each genome position. The pointwise power analysis (Fig 2) confirmed that
the RCBD method suffered a high false-negative rate with large block variance. In contrast, the
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Fig 1. Average LOD scores across 100 replications under different block variances. The arrow size and direction represent the approximate effect size
and direction of a QTL, respectively. (A) 6=0.5; (B) 6=1; (C) 6 = 5; (D) 6 = 10. d represents the size of the block variance and is defined as ¢ = 4} /0°, where

o? is the error variance and 47 is the variance of a block within the replication.

doi:10.1371/journal.pone.0130125.g001

LOD scores of AMLD and CIMLD methods were not sensitive to block variance and stayed
stable across the four block conditions, as expected. However, the CIMLD method was likely to

be more powerful than AMLD, because the LOD score was generally greater than that of

AMLD at the predefined QTL locations in all block conditions. The pointwise power analysis
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Fig 2. Pointwise power under different block variances. The arrow size and direction represent the approximate effect size and direction of a QTL,
respectively. (A) 6=0.5; (B) 5=1; (C) 5=5; (D) 6= 10. 5 represents the size of the block variance and is defined as 6 = 42 /4, where o® is the error variance
and g}, is the variance of a block within the replication. Pointwise power was calculated as the proportion of replications whose LOD score at each testing
position was greater than the threshold determined by a permutation test with 1000 replications.

doi:10.1371/journal.pone.0130125.9002
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further showed that CIMLD method had a higher power peak at the predefined QTL locations
than the AMLD method, especially for small effect QTL locations, such as Q1, Q3, and Q7.
Furthermore, clear peaks were observed only around most of the predefined QTL in all the
three methods under all block conditions, indicating good accuracy for all three mapping
methods for the different block variance conditions.

The power of each QTL detection (Fig 3) showed that with increasing block variance, the
power of RCBD method decreased rapidly, while the power of AMLD and CIMLD method
stayed stable. For all block variances, the power of the RCBD method was generally less than
AMLD and CIMLD, especially for large block variances: a large power gap was observed. This
indicated that the lack of error control of the RCBD method resulted in a bad performance for
QTL mapping. The CIMLD method showed a higher power than the AMLD method for most
of the QTL, except for Q5, Q6, and Q8, where the AMLD method had a comparable power to
the CIMLD method. For those QTLs with small effects, especially at Q3, the power of the
CIMLD method was approximately 40% greater than that for AMLD. The results indicated
that the CIMLD method is much more powerful than AMLD, especially for small-effect QTLs.

The FDR and overall power of the three methods were investigated. The FDR for each
method (Table 1) was in a reasonable range and was generally less than 1% either for the per-
mutation test or an empirical threshold of 2.5. With increasing = block variance, the FDR of

100 - _ 100 o
A N _ - _ B - M _
Al A iy
80 ] 11 q 80 - M s
60 - Al 60 - Al 1O ]
40 - 40 -
207 20 -
3\0/ :J:| |: =J:|
g 0 - L LA L) LAl L LAl L] L4 0 - LI LAl Led Al Ly LAl L Lidl
100 - —_ 100 __
[¢) C = - _ D - _
o 1 /oo A H
80 - N ] 80 - N 4 s
60 - Al ] 60 Al ]
40 - 40 -
20 - I 20 -
0 - I:_‘_ I:é.. |:__ A1 L J LA | |:__. =4 0 - ol 04l I:__ |:.4_ |:__ J A | l:__ =
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

O RCBD @ AMLD O CIMLD

Fig 3. The power of QTL detection for each QTL under different block variances. (A) 6=0.5; (B) = 1; (C) =5; (D) 6 = 10. 6 represents the size of the
block variance and is defined as d = ¢ /5?, where o2 is the error variance and o} is the variance of a block within the replication. For the purpose of
computing the detection power, a predefined QTL counted as detected if at least one QTL was found within a 10 cM window centered at the true QTL. A
permutation test with 1000 replications was used to determine the threshold.

doi:10.1371/journal.pone.0130125.9003
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Table 1. False discovery rate (FDR) of QTL detection under different block variances and thresholds.

[} Permutation test LOD > 25
RCBD AMLD CIMLD RCBD AMLD CIMLD
0.5 0.00508 0.00518 0.00788 0.00698 0.00811 0.00788
0.00452 0.00518 0.00667 0.00752 0.00811 0.00667
5 0.00333 0.00500 0.00756 0.01183 0.00911 0.00756
10 0.00500 0.00500 0.00756 0.01917 0.00911 0.00756

J represents the size of the block variance and is defined as § = 2 /42, where 67 is the error variance and o2 is the variance of a block within the
replication. For the purpose of computing the detection power and FDR, a predefined QTL was counted as detected if at least one QTL was found within a
10 cM window centered at the true QTL, and a detected QTL was considered as a false positive if none of the predefined QTLs were found within a 10-cM
window centered at the detected QTL. A permutation test was performed with 1000 replications.

doi:10.1371/journal.pone.0130125.t001

each method remained relatively stable. This indicated that large block variances would not
cause an increase in FDR for all three methods.

The overall power of QTL detection (Table 2) showed that the RCBD method was very sen-
sitive to the size of block variance. With the increase of block variance, the power of the RCBD
method decreased from 51.3% to 9.4%. The power of CIMLD and AMLD methods were both
higher than the RCBD method under all four block conditions. The power of the three methods
may be ordered as CIMLD > AMLD > RCBD. In contrast to the RCBD method, the power of
CIMLD and AMLD did not change for different block variances.

The power of RCBD and AMLD methods under the permutation test was generally less
than the empirical threshold of 2.5; however, the CIMLD method was more stable for the two-
threshold strategy. The power of the CIMLD method was approximately 14% higher than
AMLD in case of the permutation test and approximately 6% higher under an empirical
threshold of 2.5. This was because the LOD score of the CIMLD method was much greater
than those of the RCBD and AMLD methods (Fig 1), and the threshold from the permutation
test was generally greater than 2.5.

Thus, the CIMLD method has a higher power of QTL detection because an appropriate
model is implemented and the experimental error is effectively controlled.

Application to a real soybean data set

Soybean biomass data of a RIL population were used as an example of our proposed CIMLD
method (S1 Fig). ANOVA for biomass showed that that the genotype variance was significant

Table 2. Overall power of QTL detection under different block variances and thresholds.

9 Permutation test (%) LOD > 2.5 (%)

RCBD AMLD CIMLD RCBD AMLD CIMLD
0.5 51.3 57.4 7.7 63.2 67.7 73.2
1 46.0 57.3 71.5 59.0 67.6 731
5 19.7 57.5 715 35.3 67.8 73.3
10 9.4 57.2 71.5 20.4 67.6 73.3

& represents the size of the block variance and is defined as § = 2/42, where 6° is the error variance and o? is the variance of a block within the
replication. For the purpose of computing the detection power, a predefined QTL was counted as detected if at least one QTL was found within a 10-cM
window centered at the true QTL. A permutation test was performed with 1000 replications.

doi:10.1371/journal.pone.0130125.t002
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and the line-by-environment interaction was also significant (S1 Table); however, the F value
of the statistical test for the interaction was much less than that of main line effects, thus the
phenotypic values of the lines agreed well across environments relative to the variation of the
genotypic effect. The estimated heritability of biomass was approximately 82.1%.

To analyze the 2-year soybean data for QTL mapping, a modification of model (1) was
needed to include the QTL by environment interaction effect. Although our previous model
for QTL mapping did not explicitly take environment factors into account, such environment
factors can be treated as fixed effects and modeled as covariates without any further assump-
tions. Accordingly, the resulting modified version of model (2) can be expressed asy = 1,4 +
Xgbg + Xgbr + Xqbqg + Xqrbar + Xybm + Zu + e, where X, is the design matrix of the envi-
ronment effect by and Xqp, is the design matrix of a QTL by the environment interaction effect
bqr. Thus, the CIMLD method with genotype by environment interaction was employed to
map QTLs for biomass.

The LOD profile of biomass (Fig 4) showed clear peaks on linkage groups B1, C2, D2, E,
and O. The genome-wide thresholds were 4.09, 4.02, and 4.36 for the RCBD, AMLD, and
CIMLD methods at a genome-wide significance level of 0.05 by permutation test with 1000
replications, respectively. The RCBD method identified three QTLs located on B1 at 63 cM, C2
at 35.2 cM, and O at 118 cM, respectively. The AMLD method identified two QTLs located on
C2at35cMand O at 117 cM.

By contrast, the CIMLD method identified 10 additive QTLs for biomass distributed on
eight linkage groups with a total narrow-sense heritability of 65.8%, which are summarized in
Table 3. The heritability of the single QTLs ranged from 2.0% to 16.7%, and four large effect
QTLs, located on linkage group B1 at 28 cM and 62 cM, C2 at 35.2 cM, and O at 117 cM, were
observed with a total heritability of 46.1%. Although no additive-environment QTLs were de-
tected, the additive environment effects of QTLs located on linkage group D2 at 34 cM and K
at 46 cM were relatively large, showing a weak environment interaction signal. As predicted by
the simulation results, the CIMLD method had a higher power than the RCBD and AMLD
method; we identified all the three QTLs detected by RCBD and AMLD (the positions were the
same or within 1 cM). The three common QTLs all belonged to the four large-effect QTLs. The
effects of newly identified QTLs are relatively small, except for a QTL on B1 at 28 cM, whose
heritability was 11.3%.

20 - G
— GxE
15 4 Join

LOD score
)

Linkage group

Fig 4. Genome-wide LOD profile for biomass in a population of 184 soybean RILs. G, LOD score of the additive effect; GXE, LOD score of the additive-
environment interaction effect; Join, LOD score of the joint additive and additive-environment interaction effects. Dashed lines are thresholds obtained by a
permutation test with 1000 replications.

doi:10.1371/journal.pone.0130125.g004
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Table 3. QTLs detected for the biomass trait in a population of 184 soybean RILs.

LG

B1
B1
C2
Cc2
D1b-1

Marker interval, Length (cM)

GMpti_D—Sat_247, 4.0
A3331—A118T, 2.9
LI26T—Satt286, 3.4
Satt365, -
GNT007—Satt698, 4.9
Satt135—Sat_277, 4.9
GNBO080, -
Sat_363—GNE097b, 7.3
Satt655—GNE042, 6.1
LE23T—GNEO035, 3.1

Support interval (cM) Position (cM) LOD a ae h? (%)
27.7-29.0 28.0 15.87 71.14 -5.35 11.3
61.0-62.3 62.0 22.28 63.70 6.37 9.2
12.0-15.7 13.0 5.27 -42.54 -3.28 41
34.0-35.7 35.2 18.20 87.84 6.96 16.7
76.0-87.0 84.0 5.11 44.42 0.42 4.5
33.0-37.0 34.0 11.00 45.54 23.038 4.8
37.0-40.0 37.9 6.33 -29.91 -0.32 2.0
37.0-61.0 46.0 4.37 29.26 24.69 2.0
95.0-97.0 97.0 5.51 32.08 2.44 2.3
116.7-118.0 117.0 20.33 -62.55 7.70 8.9

LG, linkage group; a, additive effect in kg hm™; ae, additive-environment interaction effect in kg hm2; h2, narrow-sense heritability. The support interval of
a QTL is the interval in which the LOD score is within 1.5 units of its maximum.

doi:10.1371/journal.pone.0130125.t003

Discussion

Large numbers of permanent population lines are generally required in QTL mapping, and ex-
perimental fields or space need to be enlarged accordingly, resulting in larger experimental er-
rors with the increase of lines or genotypes. As such, adopting an experimental design suitable
for large numbers of genotypes is critical to control the experimental error. However, most re-
searchers who used the RCBD method for QTL mapping ignored error control. As shown by
the simulation results, the RCBD method used in most QTL mappings with permanent popu-
lations has a low power of QTL detection because of its lack of local control. Thus, it should be
emphasized that error control in QTL mapping is very important for increasing the power of
QTL detection and the accuracy of QTL effect estimation. Furthermore, we believe that error
control is also important in association mapping, because the error not only affects the estima-
tion of a QTL’s position, but also its effects.

In a lattice design, environmental errors can be decomposed into block-within-replication
error and random error, which is the residual of the lattice design model. The CIMLD method
is beneficial to QTL studies because of its better error control. The previous QTL mapping
based on lattice design mis-specified the model. One mis-specified model, which was actually
an RCBD method in this study, has a larger error variance than the CIMLD method, which led
to a lower detection power. Another mis-specified model, redefined as the AMLD method,
takes block effect into account, and uses adjusted means of genotypes as response variables.
AMLD obviously improved the QTL detection power; however, it ignored partial dependence
of phenotypic values, caused by random block effect in the lattice design. It is this dependence
that violated the hypothesis of independence of observations in the CIM approach, and thus
lowered the QTL detection power relatively to the CIMLD method. Our proposed CIMLD
method directly modeled the full phenotypic data of the lattice design for QTL mapping, and
the simulation showed it to have a good performance in terms of power and FDR.

Our CIMLD implementation is based on CIM and a multiple imputation framework, but
could be extended easily to other, more sophisticated statistical methods for QTL mapping,
such as ICIM [13], Bayesian LASSO [16] and two-dimensional genome scan to identify epista-
sis. Furthermore, the concept can be applied to other widely used experimental designs for effi-
cient error control, such as the block-in-replication design, replication-in-block design, and
other incomplete block designs [42]. Our method is also applicable to association mapping
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with pure line populations, because lattice design is very suitable for phenotyping of a large
sample.

Conclusions

Error control is very important for accurate mapping of quantitative traits. Even if the experi-
mental design is implemented for efficient error control, an appropriate linear model is also
needed to achieve powerful QTL mapping. Our composite interval mapping method, based on
lattice design, was demonstrated to be more powerful for QTL mapping because of its better
error control. The concept presented in the current study may be extended to other statistical
methods or experimental designs for QTL mapping. An R language implementation of our
proposed method has been made publicly available at https://github.com/hjbreg/cimld.
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