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Abstract

Studies on factors of low birth weight in Malawi have neglected the flexible approach of
using smooth functions for some covariates in models. Such flexible approach reveals
detailed relationship of covariates with the response. The study aimed at investigating risk
factors of low birth weight in Malawi by assuming a flexible approach for continuous covari-
ates and geographical random effect. A Bayesian geo-additive model for birth weight in kilo-
grams and size of the child at birth (less than average or average and higher) with district as
a spatial effect using the 2010 Malawi demographic and health survey data was adopted. A
Gaussian model for birth weight in kilograms and a binary logistic model for the binary out-
come (size of child at birth) were fitted. Continuous covariates were modelled by the penal-
ized (p) splines and spatial effects were smoothed by the two dimensional p-spline. The
study found that child birth order, mother weight and height are significant predictors of birth
weight. Secondary education for mother, birth order categories 2-3 and 4-5, wealth index of
richer family and mother height were significant predictors of child size at birth. The area
associated with low birth weight was Chitipa and areas with increased risk to less than aver-
age size at birth were Chitipa and Mchinji. The study found support for the flexible modelling
of some covariates that clearly have nonlinear influences. Nevertheless there is no strong
support for inclusion of geographical spatial analysis. The spatial patterns though point to
the influence of omitted variables with some spatial structure or possibly epidemiological
processes that account for this spatial structure and the maps generated could be used for
targeting development efforts at a glance.

Introduction

Low birth weight (LBW) has been defined by World Health Organization [1] as weight less
than 2.5kg. LBW is a leading cause of prenatal and neonatal deaths as such it is a world wide
issue and one of the most important public health problems. According to UNICEF and WHO
[2], half of low birth weight children are in the South Central Asia where more than a quarter
of all born children are less than 2.5kg, representing 27% of all new births with LBW. Sub-
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Saharan Africa has the second highest incidence of LBW, pegged at 15%. Malawi is part of sub-
Saharan Africa with the latest LBW incidence at 12% [3].

Epidemiology of LBW shows that it is multi-factorial. The primary cause of LBW is preterm
delivery, occurring less than 37 weeks gestation, and intra uterine growth retardation or associa-
tion of these two. Other determinants of LBW are smoking [4], low maternal education [5],
younger maternal age [6], marital status, slight weight gain during pregnancy, hypertension, gen-
itourinary tract infection in pregnancy, parity and fewer prenatal consultations [7]. In addition,
low income family, demographic and reproductive variables such as other children with low
birth weight and history of miscarriage have been reported to be associated with low birth weight
[8]. Finally, environmental factors such as maternal exposure to air pollutants are also associated
with this condition [9]. Furthermore, the risk factors of child birth weight are known to be hier-
archical occurring at both the individual-level and the neighborhood-level with complex interac-
tions [10,11]. Most studies have focused on individual level factors of low birth weight. A few
studies though have considered the hierarchical nature of child birth weight factors [11-14] but
none in Malawi. Our study aimed at investigating factors of low birth weight in Malawi by taking
into account the hierarchical nature of child birth weight factors using a Bayesian hierarchical
model. The Bayesian hierarchical model modelled second level unit as correlated random com-
ponent which was the surrogate of unobserved contextual factors. The study assumed the flexible
approach of using spline functions for metrical continuous covariates and the geographical ran-
dom component so as to have detailed relationships between the covariates and the response.

Materials and Methods
Study area and data

The study focused on under five children in Malawi and used the standard and nationally rep-
resentative 2010 Malawi demographic and health survey (MDHS) data. The 2010 MDHS was
conducted from June to November in 2010. The 2010 MDHS data was downloaded from the
DHS web site after being granted permission. The MDHS was a two stage cluster sampling
design with enumeration areas (EAs) as primary sampling units and households as secondary
sampling units. EAs were stratified as rural or urban. A total of 849 EAs were sampled with 158
in urban areas and 691 in rural areas. A representative total sample of 27307 households was
selected and 25311 households were occupied in the 2010 MDHS. Data collection was by ques-
tionnaires. There were three types of questionnaires, women, men and household question-
naire. Households that were successfully interviewed were 24825, yielding a response rate of
98%. Eligible women were 23748 and 23020 were successfully interviewed, yielding a response
rate of 97%. Eligible men were 7783 and those that were successfully interviewed were 7175,
yielding a response rate of 92%. The data set that was used in the analysis was child record data
set which was based on women and household questionnaire.

Data sets were extracted and new variables generated using STATA version 12. Data vari-
ables used in this study were based on the variables used in previous studies on child birth
weight [4-11]. The response variable in the first extracted data set was child birth weight in kilo-
grams. The covariates in this data set were mother smoking status, mother age in years, mother
education, mother height (<150cm, > = 150cm), mother weight (<45kg, 45-70kg, >70kg),
number of antenatal visits for pregnancy, birth order (1, 2-3,4-5,6+), wealth index and district
of the child. Birth order, mother smoking status, mother education, wealth index, mother
height, mother weight and district of the child were categorical variables. All children records
where birth weight was missing were dropped so that the final sample size of children for the
birth weight data was 13087. The response variable in the second extracted data set was child
size at birth which had two categories (smaller than average and average or higher). Child size
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at birth had actually three categories based on mother recall of child size at birth (very small,
smaller than average, average and higher) but two categories were considered so as to have a
binary logistic model. Child size at birth was also considered as the response so as to compare
results with those where birth weight in kilograms was the response. The covariates in this data
set were all those that were in the first data set. Similarly all children records where child size at
birth was missing were dropped so that the final sample size of children for the child size at
birth data was 19486. The missing covariate values in both data sets were left unremoved.

Statistical analysis

First univariate logistic regression was performed in STATA version 12 to select potential covari-
ates for the multiple regression models. Covariates that were significant at 20% significance level
were considered as candidate variables for multiple regression models. The significance level of
20% rather than 5% was used in selecting covariates for multiple regression analysis so as to
allow more potential covariates to be selected. Cross tabulations between categorical covariates
and categorized birth weight (< 2.5kg or > = 2.5kg) and child size at birth was done to have per-
centage distributions of low birth weight and size at birth per covariate categories. The histogram
of birth weight in kilograms was also plotted to see the plausibility of Gaussian model.

The following multiple variable hierarchical model was then fitted in R

g(u) = Xp+u, o

where g is the link function linking the mean of the response to the predictor X + u;, and u; is
the area level random effect representing unmeasured contextual factors. In case of child birth
weight as a response, the link function was the identity link resulting in the Gaussian regression
model. For the child size at birth as the response, the link function was the log of odds of less
than average size at birth resulting in the binary logistic model. To take a more flexible approach,
the continuous covariates and the area level random effects were modelled by the nonlinear
smooth functions. This revealed their subtle influences which could not be shown if modelled
parametrically. To reflect this flexible approach, (1) is changed toa geo-additive model

g(u) = W;‘TV + i) Hh(x) + - +fp(xip) +f;pat(si) (2)

Where f; forj=1,2, 3, .. .,p are smooth functions expressing nonlinear relationship between the
response variable and the continuous covariate and f,4(s;) is the area of the child random effect.
The vector of coefficients y determine the parametric relationship between the response and the
categorical covariates. The smooth functions f; were specified as Bayesian splines. According to
[15], this assumes approximating f; by the polynomial spline of degree ! defined at equally spaced
knots x/"" = {;, (... , {;, = x"™ which are within the domain of the covariate x;. The Bayes-

ian spline can be written as a linear combination of d = s+I basis functions, B,,,, that is,
d
ﬁ(x;) = Zm:l eijm (xj) (3)

Now Bayesian estimation of the penalized spline (3) is equivalent in estimating model param-
eters £ = (€j1,€j. - -,€jm) Where first or second order random walk priors for the regression coef-
ficients are assigned. A first order random walk prior for equidistant knots is given by: &;,, = &; .-
1+ Uj,, where m =2,3,.. .,d and a second order random walk prior for equidistant knots is given
by: &, = 28} ;m1+€j,m-2+ 1. where m = 34,. . .,d and uj.an (0, If) are random errors. The spatial

effect was modelled by the tensor product of two dimensional p-spline defined as

fspaz(xlv x,) = Zf Z]k Bsput‘ijBli(xl)BZj(x2) (4)
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where (x7,x,) refers to the coordinates of the location of the data point, latitude and longitude, or
location centroids based on the map. Note that f,.,(x,x;) represents the effect of correlated
unmeasured or unobserved location effects. The prior for Bypasij = (Bspat,115Bspat, 12>+ - -Bspatk) 18
based on spatial smoothness priors common in spatial statistics [16]. The most commonly used
prior specification based on the four nearest neighbours is defined as:

2
T
ij
Bspat.ij|'~N (Bspar,i—lj + Bspat.i+l,j + Bspat,ij—l + Bsput‘i.j+17 4>

For i,j = 2,...,k-1 with appropriate changes for corners and edges. Since model estimation
was by empirical Bayesian method, all variance parameters were treated as unknown constants
that were estimated by restricted maximum likelihood (REML) method and hence their priors
were not given. The fixed effects were assigned diffuse priors. An advantage of the empirical
Bayesian inference over full Bayesian inference is that questions about the convergence of Mar-
kov Chain Monte Carlo (MCMC) samples or sensitivity on hyper parameters do not arise [17].
Further more, a comparison of full Bayesian and empirical Bayesian approach in a simulation
study, has shown empirical Bayesian approach yielding better point estimates, especially for
Bernoulli distributed responses [18].

Results
Descriptive summaries

The percentage of low birth infants is higher in young mothers (aged 20 years or less) and in
older mothers (aged 35-49 years) than in mothers aged 20-34 years (Table 1). By birth order,
the percentage of low birth weight infants is higher for first births than for the subsequent
births. There is an inverse relationship between low birth weight and mother education. The
same trend is observed among wealth quintile. As education and household wealth increase,
the percentage of low birth infants decrease. For example the percentage of low birth weight
decreases from 13 percent among mothers with no education to 7 percent among mothers with
more than secondary education. Likewise percentage of births in which infants weigh less than
2.5kg decreases from 14 percent among mothers in the lowest wealth quintile to 11 percent
among mothers in the highest quintile. Among the regions (Table 2), the southern region has
the smallest proportion of low birth weight infants and the central region has the highest (11
and 14 percent respectively). Similar patterns in education and wealth quintile are seen for
births categorized as very small and smaller than average as was seen for births less than 2.5kg.

To check the suitability of a Gaussian model, a histogram of birth weight was plotted. Fig 1
gives the histogram of birth weight in kilograms. The histogram shows that birth weight is sym-
metrically distributed. This leads to a simpler model and analysis since the Gaussian assump-
tion is more tenable.

Empirical Bayesian

Fixed effects. Fixed variables associated with child birth weight under the Gaussian model
are birth order, mother weight, and mother height (Table 3). The birth order effects are positive
which means children with higher birth order are associated with higher child birth weight
than children of lower birth order. Positive effect of mother weight means that as mother
weight increase child birth weight also increase. The positive effect for mother height means
that the taller the mother the higher the child birth weight as well. Factors associated with child
size at birth under binary logistic model are birth order 2-3 and 4-5, wealth index of richer
family, mother education of secondary category, and mother height (Table 3). The effects of
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Table 1. Percentage distribution of birth weight and size at birth for some covariates.
Variable Birth weight Size of child at birth

less than 2.5kg very small less than average

Mother age at birth

<20 15.4 4.6 14.4
20-34 11.2 3.7 10.8
35-49 14.5 5.3 10.9
Birth order

1 15.0 4.6 144
2-3 11.0 3.3 111
4-5 11.0 4.4 10.1
6+ 13.3 4.2 10.9
Mother smoking

Smoke tobacco 14.0 10.4 154
Does not 12.3 4.0 11.5
Mother education

No education 13.3 4.7 12.9
Primary 12.8 4.1 11.8
Secondary 10.2 3.0 8.7
Higher 7.0 29 5.5
Wealth index

Poorest 13.5 4.7 12.8
Poor 13.2 4.0 12.7
Rich 12.6 4.4 10.6
Richer 11.8 3.6 11.0
Richest 10.6 3.2 9.9

doi:10.1371/journal.pone.0130057.t001

birth order 2-3 and 4-5 are negative which means children of birth order 2-3 and 4-5 are asso-
ciated with lower risk of being small at birth compared to those with first birth order. Mother
secondary education has a negative effect on child size at birth which means children of sec-
ondary education mothers have reduced chance of being small at birth than children of moth-
ers with no education. Negative effect of mother height on child birth size means that children
of mothers whose height is equal to or greater than 150 cm are less likely to be smaller than
average size at birth than children of mothers whose height is less than 150 cm.

Nonlinear effects. Starting with the nonlinear effects to child birth weight (Fig 2 left), chil-
dren of young mothers (aged 15 to 23 years) and older mothers (aged 35 to 49 years) are more
likely to have low birth weight than children of mothers aged 23 to 35 years. Furthermore as
number of antenatal visits for pregnancy increase, child birth weight also increases. With
regard to nonlinear effects to child size at birth (Fig 2 right), children of mothers aged 15 to 25
years and children of mothers aged 35 to 49 years are prone to have small size at birth than
children of mothers aged 25 to 35 years. Children whose mothers have less prenatal visits are
prone to be small at birth.

Spatial effects. Most areas in the south are associated with increased birth weight (Fig 3)
while north and central regions have a mixture of areas increasing birth weight and decreasing
birth weight. Posterior probability map thoughindicates that there is no significant variation in
the residual spatial effects to birth weight (Fig 4). With regard to residual spatial effects to child
size at birth (Fig 5), Chitipa, Mchinji and Mangochi are associated with increasedrisk of child
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Table 2. District percentage distribution of birth weight and size at birth.

District Birth weight Size of child at birth
less than 2.5kg very small less than average
Northern Region 11.6 5.2 9.7
Chitipa 9.6 7.2 10.3
Karonga 8.9 4.6 8.8
Nkhata-bay 9.6 4.8 6.4
Rumphi 9.5 5.3 9.6
Mzimba 13.6 5.2 10.6
Central Region 13.5 3.9 11.3
Kasungu 11.9 3.8 8.8
Nkhota-kota 11.3 3.7 12.5
Ntchisi 12.3 4.0 6.5
Dowa 13.1 4.5 8.5
Salima 11.0 4.0 7.2
Lilongwe 17.2 3.5 9.7
Mchinji 14.8 41 28.0
Dedza 13.0 6.4 11.9
Ntcheu 9.2 0.9 10.6
Southern Region 11.3 3.8 121
Mangochi 9.4 2.1 20.0
Machinga 9.5 5.2 11.3
Zomba 10.1 3.8 13.9
Chiradzulu 12.2 4.4 7.3
Blantyre 12.6 4.3 9.8
Mwanza 9.3 2.1 6.7
Thyolo 16.7 4.2 17.5
Mulanje 11.1 3.0 8.4
Phalombe 9.9 5.0 71
Chikhwawa 10.5 5.6 9.9
Nsanje 7.5 2.7 6.2
Balaka 11.0 2.8 8.8
Neno 11.6 3.7 10.1

doi:10.1371/journal.pone.0130057.t002

being small at birth while Phalombe, Mulanje and Nsanje decrease the risk of child being small
at birth. Areas showing significant spatial effects to child size at birththough are Chitipa,
Mchinji and Nsanje (Fig 6).

Discussion

This study found that child birth order, mother weight, mother height, mother education and
family wealth are significant predictors of birth weight. The findings generally confirm what is
in the literature. The positive effect of birth order on birth weight in this study is in consistent
with that of [19] which found birth order as an important factor influencing birth weight and
that first order births are on average more likely to be small babies than higher order births.
The finding of a positive effect of mother weight, and height on birth weight is also in line with
[20] where it is said that such a relationship is because mother weight and height reflect food
taken which has a direct influence on child birth weight. The mechanisms associated with
small size at birth among the less educated according to [5] may include poor diet as a result of
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low dietary literacy. Furthermore limited education may also result in limited access to prenatal
care, especially in settings where clients are expected to pay for service. Positive effect of family
wealth on child birth weight may be due to the fact that wealth is associated with income level
which determines kind of diet.

The study has also documented that women at the reproductive ages of 25 years or less and
35 years and over are more prone to deliver low birth weight or small sized babies (Fig 2 top
left and Fig 2 top right). Mothers less than 25 years are actually prone to have physical and
emotional maturity issues which may contribute to their elevated incidence of small size births
or low birth weight infants. Their ignorance of how to take care of themselves during preg-
nancy works against child birth weight or size at birth. Accordingly, among mothers who are
35 years or older, there is a greater tendency to develop prenatal complications and a higher
probability of inadequate nutrition, thus increasing their likelihood of delivering less than aver-
age size or low birth weight babies. The study has further shown that mothers whose prenatal
visits are less than four are prone to have low birth weight or less than average size babies (Fig
2 bottom left and Fig 2 bottom right). Increased prenatal visits ensure mothers receive adequate
diet literacy which helps improve child birth weight.

The observed residual spatial patterns in child birth weight and child size at birth may be
due to unobserved factors not captured by the covariates in the models, and it is a matter of
conjecture to identify them. According to [21], some of the possible factors are the area natural
resources such as soil type and land slope, area population density, and distance to health
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Table 3. Summary of Gaussian and binary logistic models.

Variable

Intercept
Birth order

1

2-3

4-5

6+

Wealth index
Poorest

Poor

Rich

Richer
Richest
Weight
<45kg
45-70kg
>70kg
Height
<150cm
>150cm
Mother education
No education
Primary
Secondary
Higher
Variance Components

Spatial effect
Non-linear effects
Prenatal visits
Mother age

Gaussian
Coefficient(95%Cl)

2.851(2.645 3.058)

0.105%(0.014 0.196)
0.138*(0.017 0.258)
0.166%(0.018 0.314)

0.058(-0.029 0.146)
0.027(-0.058 0.112)
0.047(-0.040 0.134)
0.056(-0.039 0.152)

0.163%(0.064 0.263)
0.214%(0.065 0.363)

0.126* (0.044 0.208)

-0.004(-0.090 0.082)
-0.020(-0.131 0.091)
-0.160(-0.467 0.147)

0.0227

0.0000
0.0003

Logistic
Coefficient(95%Cl)

-0.482(-1.003 0.039)

-0.350%(-0.657-0.043)
-0.540*(-0.952-0.129)
-0.406(-0.902 0.090)

-0.151(-0.414 0.111)
-0.225(-0.493 0.044)
-0.340%(-0.631-0.048)
-0.302(-0.643 0.040)

-0.262(-0.548 0.024)
-0.262(-0.775 0.251)

-0.500%(-0.740—0.260)

-0.200(-0.450 0.049)
-0.398%(-0.779-0.017)
-0.702(-2.195 0.792)

0.6396

0.0016
0.0017

- means reference category, and
* means significant at 5% significance level

doi:10.1371/journal.pone.0130057.t003

facilities. Natural resources like soil type and slope may have an impact on crop yield which
may affect mother nutrition. Population density may affect spatial variation in child birth
weight or child size at birth in the way that, high population density may result in competition
for food in area which may affect mother nutrition status. Mother nutrition status in turn may
have a direct effect on child birth weight. Distance to health facility affect mother frequency of
going to the health facilities for prenatal care which has an influence on child birth weight.

The study was not without weaknesses. Due to the cross-sectional nature of the data collec-
tion exercise, no temporal linkages can be made between birth weight or size at birth and any
of the explanatory variables. Moreover, because the analysis was based on an existing data set,
the study was limited to the use of variables found in the data set. For instance, our study did
not take into account the effect of histories of maternal health and pregnancy (previous abor-
tion/miscarriage) which was found to be significantly associated with the incidence of low
birth weight by [22].
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Fig 3. Residual spatial patterns from the Gaussian model .

doi:10.1371/journal.pone.0130057.g003
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Fig 4. The 95% posterior credible intervals map for the spatial effects from the Gaussian model. Red means positive effect, green means negative
effect and grey means insignificant effect.

doi:10.1371/journal.pone.0130057.g004
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Fig 5. Residual spatial patterns from the logistic model.

doi:10.1371/journal.pone.0130057.g005
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Fig 6. The 95% posterior credible intervals map for the spatial effects from the logistic model. Red means positive effect, green means negative effect
and grey means insignificant effect.

doi:10.1371/journal.pone.0130057.9g006
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Conclusion

The study found support for the flexible modeling of some covariates that clearly have non-lin-
ear influences. Nevertheless there is no strong support for inclusion of geographical spatial
analysis as there was no significant spatial variation of child birth weight under Gaussian
modelling and that most areas showed insignificant spatial effects to child size at birth under
binary logistic model The spatial patterns shown though point to the influence of omitted vari-
ables with some spatial structure or possibly epidemiological processes that account for this
spatial structure, and the maps generated could be used for targeting development efforts at a
glance.
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