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Abstract
Despite the significant progress made in recent years, the computation of the complete set

of elementary flux modes of large or even genome-scale metabolic networks is still impossi-

ble. We introduce a novel approach to speed up the calculation of elementary flux modes by

including transcriptional regulatory information into the analysis of metabolic networks. Tak-

ing into account gene regulation dramatically reduces the solution space and allows the pre-

sented algorithm to constantly eliminate biologically infeasible modes at an early stage of

the computation procedure. Thereby, computational costs, such as runtime, memory

usage, and disk space, are extremely reduced. Moreover, we show that the application of

transcriptional rules identifies non-trivial system-wide effects on metabolism. Using the pre-

sented algorithm pushes the size of metabolic networks that can be studied by elementary

flux modes to new and much higher limits without the loss of predictive quality. This makes

unbiased, system-wide predictions in large scale metabolic networks possible without re-

sorting to any optimization principle.

Introduction
Elementary flux modes (EFMs) are indivisible sets of reactions that represent biologically
meaningful pathways [1, 2] under steady state condition. Removing only a single reaction of an
EFM results in the extinction of the entire pathway. EFMs can be used to mathematically de-
compose metabolic networks into minimal functional building blocks and investigate them
unbiasedly. For that reason EFMs have gained increasing attention in the field of metabolic en-
gineering in recent years [3]. However, the computational costs for calculating EFMs increase
sharply with the size of the analyzed network [4]. The calculation of all EFMs of small networks
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(up to 50 reactions) is straightforward and simple. Despite the major progress made recently
[5–8] the computation of the complete set of EFMs of large scale networks is still very challeng-
ing if not impossible. There is a number of tools specifically designed to calculate the complete
set of EFMs as efficiently as possible, such asMetatool[9], CellNetAnalyzer[10] and efmtool[6].
The efmtool written by Marco Terzer is—to the best of our knowledge—currently the fastest
program available [11]. It is written in the multi-platform programming language Java, sup-
ports multi-threading, is published under the open source software license Simplified BSD Style
License[12], and can be downloaded from [13].

In the presented work we introduce a novel approach to speed up the computation of the
complete set of biologically feasible EFMs. Our aim is to not enumerate all topologically feasi-
ble EFMs, but only the much smaller subset of biologically relevant EFMs. To this end we take
into account the gene regulatory information of the investigated metabolic network.

Basically, there are two main ways to model gene regulatory networks: a) discrete models,
such as Boolean models and Petri networks and b) continuous models, such as linear models
and differential equation models [14]. The determination of the parameters of continuous
models is non-trivial [15]. Hence, transcriptional regulatory networks (TRN) are often provid-
ed as a Boolean rule set, e.g. [14–18]. These rules exclude many of the topologically feasible
EFMs for biological reasons. We implemented our algorithm by extending efmtool, thereby, ex-
ploiting the full power and advantage of open source software. By utilizing a specific feature of
the binary approach [5] which was applied in efmtool, the elimination of biologically infeasible
modes can be done constantly and at an early stage of the EFM computation process. Thereby,
a huge reduction of the computational costs, such as execution time, memory consumption
and hard disk space, is achieved.

Methods

Binary approach
Modern EFM computation programs, such as efmtool, use a binary approach [5] of the double
description method (DDM) [19]. In the following we briefly review this binary approach. We
will introduce our modifications for the inclusion of transcriptional regulation in the next
section.

The binary approach is characterized by splitting each mode into a binary part and a nu-
merical part. The binary part of a mode contains only a single bit for each reaction, where ‘1’
means that the reaction carries a flux and ‘0’ stands for a reaction not carrying a flux. While it-
erating through the algorithm, the numerical part of each mode is successively converted into
the binary representation. The iteration procedure terminates when each mode has been
completely transformed to its binary form. In a final post-iteration step the computed binary
modes are converted back to their numerical forms. The numerical representation of a mode
gives the exact stoichiometric flux values of each participating reaction.

We demonstrate the general principles of the binary approach with the simple example net-
work shown in Fig 1. For the sake of clarity the network will not be compressed in order to
keep all originally specified reactions and metabolites of the network. In a ‘real-life’ computa-
tion several compression strategies would be applied first in order to combine and remove to-
pographically redundant reactions and metabolites [5, 20]. The internal stoichiometric matrix,
S, of the example network is shown in S1 Table. External metabolites act as sources and sinks
for EFMs, they do not obey the steady state condition and are therefore omitted in S.

First, the reversible reaction R7r is split into a forward and a backward irreversible reaction.
This is done by negating the column of the reversible reaction and appending the newly created
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column right after the original one. S2 Table shows the extended stoichiometric matrix, Sext,
that only contains irreversible reactions.

The main process of computing all EFMs is based on the DDM [19]. First DDM determines
an initial set of intermediate EFMs which are then iteratively combined and added to the set of
existing EFMs until the complete set of final EFMs is obtained. The (intermediate) EFMs are
stored in the mode matrix, R, that contains one column for each EFM. Typically, the initializa-
tion of the mode matrix, R, is obtained by calculating the kernel, K, of the extended stoichio-
metric matrix, Sext. K is defined by Sext K = 0 and is shown in Table 1.

Next, the initial conversion to the binary representation of the mode matrix, R, is per-
formed. The final set of EFMs of the extended network must only contain non-negative flux
values, as the extended network contains only irreversible reactions. As pointed out by Gagneur

Fig 1. Example network consisting of 12 metabolites (rectangles), 11 reactions (diamonds), and a gene regulatory network:R7r = NOT(R9). All
reactions are irreversible, except for R7r.

doi:10.1371/journal.pone.0129840.g001
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and Klamt [5] using only irreversible reactions is of major importance, as all non-zero elements
of a mode will be retained if a new mode is created by combining this mode with other modes
that have already been determined during the calculation procedure. All rows that contain only
non-negative values can directly be transformed to the binary representation. For the sake of
clarity we use the character “t” for true or binary “1” indicating a flux carrying reaction and the
character “f” for false or binary “0” indicating that no flux occurs. Usually, the initial mode ma-
trix, R, is sorted in a way that all rows containing only positive values are at the top. Table 2
shows the properly sorted mode matrix, R, containing binary and numerical values before the
iteration process is started. Note that R1 and R2 were re-ordered for computational reasons.

Table 1. Kernel matrixK of the extended stoichiometric matrix shown in S2 Table.

R1 -0.5 0.5 -0.5 0.5 1.0 0.5

R2 -1.0 -1.0 1.0 1.0 0.0 1.0

R3 1.0 0.0 0.0 0.0 0.0 0.0

R4 0.0 0.0 0.0 1.0 0.5 0.5

R5 0.0 0.0 0.0 0.0 0.0 1.0

R6 0.0 0.0 0.0 0.0 1.0 0.0

R7f 0.0 1.0 0.0 0.0 0.0 0.0

R7b 0.0 0.0 1.0 0.0 0.0 0.0

R8 0.0 0.0 0.0 1.0 0.0 0.0

R9 0.0 0.0 0.0 0.0 0.5 0.5

R10 0.0 0.0 0.0 0.0 1.0 0.0

R11 0.0 0.0 0.0 0.0 0.0 1.0

doi:10.1371/journal.pone.0129840.t001

Table 2. Initial modematrixR for EFM calculation. Note that the order of the reactions has changed to
maximize the number of leading rows that can directly be converted to binary form in the pre-iteration phase.
The first ten rows were already transformed to the binary representation. Here “t” represents a binary “1”
(true) and indicates that the reaction carries flux. “f” stands for a binary “0” (false) and indicates that the reac-
tion flux is zero.

M1 M2 M3 M4 M5 M6

R3 t f f f f f

R4 f f f t t t

R5 f f f f f t

R6 f f f f t f

R7f f t f f f f

R7b f f t f f f

R8 f f f t f f

R9 f f f f t t

R10 f f f f t f

R11 f f f f f t

R2 -1.0 -1.0 1.0 1.0 0.0 1.0

R1 -0.5 0.5 -0.5 0.5 1.0 0.5

doi:10.1371/journal.pone.0129840.t002
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The order of the reactions has no effect on the final set of computed EFMs, but might have a
significant influence on the performance of the nullspace algorithm [21].

Next, the iteration procedure is performed. Step by step each row that is still in numerical
form is transformed to its binary representation. As shown in Table 2 the next reaction to be
processed is R2. The DDM requires that all modes containing non-negative values at R2 are re-
tained, whereas the modes with negative values are removed. Furthermore, the method re-
quires that all modes with negative values at R2 are combined with adjacent modes exhibiting a
positive value at R2. Hence, the modes M1 and M2 are combined with M3, M4, and M6 result-
ing in six potential new modes. Two modes are adjacent if the binary part of the new mode is
not a superset of any already existing modes—except the two parent modes. For the binary
part, the combination of two adjacent modes is a simple and fast bitwise OR operation of the
involved modes. Combining the numerical part is achieved by a weighted subtraction of the
two numerical vectors. The new numerical value, vnewr

, of row r is calculated by
vnewr

¼ ðvþ1 v�r � v�1 v
þ
r Þ=ðvþ1 � v�1 Þ, where vþr and v�r are the values of the positive (+) and of the

negative (-) column at row r, respectively. The row index r runs from 1 to n, where row r = 1 is
the row to be converted at current iteration step and n is the number of rows left to be con-
verted. By construction, vnew1

= 0.0, and thus can directly be converted to binary form. All
other values vnewr

, r 2 [2, n] will be converted in successive iteration steps. Applying these in-
structions to the initial mode matrix, R, given in Table 2 results in the new mode matrix shown
in Table 3.

Applying the mode combination procedure again for the last row to be converted (R1) re-
sults in the final mode matrix, R, as shown in Table 3. Now, the matrix, R, contains only binary
elements. Note that the performance of the described iteration procedure for ‘real-life’ net-
works can be tremendously increased if tree structures are utilized to store the binary represen-
tation of the modes [6].

Next, the futile 2-cycle mode (M6) that was created by splitting the reversible reaction R7r is
removed. Then the irreversible forward and backward reactions R7f and R7b are combined by

Table 3. ModematrixR after the first iteration step (left) converting reactionR2 from numerical to binary form and after the last iteration step (right)
for an ordinary EFM analysis. After the final step R contains only binary values. In the final matrix M6 is a futile 2-cycle mode and can be removed.

After first step After last step

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12

R3 f f f f f f f t t t f f f f f f t t t f f f

R4 f t t t t t f t t f t t t t t f t t t t t t

R5 f f f t t f f t f f f f t t f f t f f t f f

R6 f f t f f f f f f f f t f f f f f f t f t f

R7f f f f f t t t f f f f f f t t t f f f f f f

R7b t f f f f f t f f t f f f f f t f f t t t t

R8 f t f f f t f f t f t f f f t f f t f f f t

R9 f f t t t f f t f f f t t t f f t f t t t f

R10 f f t f f f f f f f f t f f f f f f t f t f

R11 f f f t t f f t f f f f t t f f t f f t f f

R2 t t f t f f f f f f t f t f f f f f f t t t

R1 -0.5 0.5 1.0 0.5 0.5 0.5 0.0 0.0 0.0 -0.5 t t t t t f f f f f f f

doi:10.1371/journal.pone.0129840.t003
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a simple bitwise OR operation in order to obtain the reversible reaction R7r again. The final set
of modes in binary form is shown in S3 Table.

Recovering the numerical representation is achieved by using the fact that the reduced null-
space matrix, Nred, multiplied by the sought numerical mode has dimension one and is equal to
zero [5]. Nred is a sub-matrix of the kernel, K, that only contains columns/reactions where the
binary mode to be transformed carries a flux. Hence, only a homogeneous linear system has to
be solved to obtain the 1-dimensional solution vector that represents the numerical form of a
mode. The result of this re-conversion for the simple example network is listed in Table 4.

The binary approach combines several essential advantages: a) modes are stored in binary
format which dramatically reduces the memory usage, b) new modes are calculated from exist-
ing adjacent modes by using simple bitwise Boolean functions which are very fast compared to
numeric operations, and c) the bitwise Boolean operations used are ‘exact’, hence, numerical
accuracy problems are minimized.

Gene regulatory information
Transcriptional regulatory networks (TRNs) control the process of gene expression in cells
and, thereby how certain fluxes are activated or repressed. They determine how genes activate
or repress certain fluxes. Hence, the gene regulatory information of a network imposes addi-
tional constraints on the reactions, and, as a consequence, has the potential to reduce the solu-
tion space resulting in a lower number of biologically feasible EFMs. Typically, the gene
regulatory information is provided in form of Boolean functions [17], such as the NOT, OR,
and AND operations. In what follows we will use a simple example to demonstrate the integra-
tion of TRNs into an EFM analysis.

As illustrated in Fig 1 we assume a TRN which only consists of a gene GR that activates reac-
tion R7r and deactivates reaction R9. The function of gene GR can be transformed to a single
Boolean expression: R7r = NOT(R9). This constraint means that the reaction R7rmust not
carry a flux when reaction R9 carries a flux and vice versa.

Table 4. Numerical representation of all EFMs of the example network shown in Fig 1 calculated with ordinary EFMtool (left) and regEFMtool (right)
using the gene regulatory rule R7r = NOT(R9). Note that the irreversible reactions R7f and Rfb were combined to the reversible reaction R7r and the futile
two-cycle mode caused by R7r was removed.

EFMtool regEFMtool

R1 R2 R3 R4 R5 R6 R7r R8 R9 R10 R11 R1 R2 R3 R4 R5 R6 R7r R8 R9 R10 R11

EFM01 0.00 1.00 0.00 0.50 0.00 0.00 -0.50 0.50 0.00 0.00 0.00 0.50 1.00 0.00 0.50 1.00 0.00 0.00 0.00 0.50 0.00 1.00

EFM02 0.00 1.00 0.00 0.25 0.50 0.00 -0.50 0.00 0.25 0.00 0.50 0.00 1.00 0.00 0.50 0.00 0.00 -0.50 0.50 0.00 0.00 0.00

EFM03 0.00 1.00 0.00 0.25 0.00 0.50 -1.00 0.00 0.25 0.50 0.00 1.00 0.00 0.00 0.50 0.00 1.00 0.00 0.00 0.50 1.00 0.00

EFM04 0.00 0.00 1.00 0.50 0.00 1.00 -1.00 0.00 0.50 1.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00

EFM05 0.50 1.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.50 1.00 0.00 0.00 0.00 0.50 0.00 1.00

EFM06 0.50 1.00 0.00 0.50 1.00 0.00 0.00 0.00 0.50 0.00 1.00

EFM07 1.00 0.00 0.00 0.50 0.00 1.00 0.00 0.00 0.50 1.00 0.00

EFM08 1.00 0.00 0.00 0.50 1.00 0.00 1.00 0.00 0.50 0.00 1.00

EFM09 1.00 0.00 0.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00

EFM10 0.00 0.00 1.00 0.50 1.00 0.00 0.00 0.00 0.50 0.00 1.00

EFM11 0.00 0.00 1.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

doi:10.1371/journal.pone.0129840.t004
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A simple approach to get the reduced solution space is the application of this gene regulato-
ry rule after all mathematically possible modes were calculated. Naturally, this method does
not result in any performance improvement.

However, if we consider the basic principle of the binary approach described above, a dra-
matic speed up of the computation process can be obtained. The Boolean operation R7r =
NOT(R9) implies that the rule is not obeyed if: a) R9 = 1 = t and R7r = 1 = t or b) R9 = 0 = f
and R7r = 0 = f. The first expression is of particular interest, as it can be used to eliminate all
modes from the solution matrix, R,—at any time of the iteration process—if R9 and R7r do
carry a flux. This statement is true, as a) the considered EFM itself disobeys the rule and b) all
children EFMs generated from the parent EFM by combination with other EFMs will also dis-
obey the rule. The latter property is owed to the fact that an active flux at a certain reaction will
be retained by the bitwise OR operation for the rest of the computation procedure (see previous
subsection for further details).

Removing a mode as soon as possible is of essential importance, as this mode is hindered to
create offspring modes that would have to be eliminated at a later stage. The second expression
(if R9 = 0 = f and R7r = 0 = f) is of no use during the iteration process, as a zero flux value of R9
or R7r can become a flux carrying reaction in a child mode that is created in a later iteration
step. Hence, removing a currently disobeying mode with R9 = 0 and R7r = 0 would result in
the loss of children modes that obey the rule R7r = NOT(R9). However, the rule R7r = NOT
(R9) for R9 = 0 and R7r = 0 can still be used to remove infeasible modes after finishing the com-
putation of all binary modes

The above considerations make clear that there are two types of situations: a) a rule can be
applied during the iteration process and b) a rule can be applied during the post-processing
step after finishing the mode calculation.

Determining if a Boolean rule Ro = ℬ(R1, . . ., Rn) qualifies for the iteration phase is simple.
If the output reaction Ro of the rule is 0 (does not carry a flux) when all input reactions R1, . . .,
Rn are 1 (carry a flux) then the rule can be used during the iteration phase.

Special care must be taken for reversible reactions, as they are split and, hence, occur twice
in the extended set of reactions. If either the forward or the backward reaction carries a flux
then the original reaction is supposed to be flux carrying when checked against a Boolean rule.
Thus, in the example of Fig 1 the rule could also be written as R9 = NOT(R7f OR R7b).

Applying these concepts to the example network with the gene regulatory rule R7r = NOT
(R9) results in a mode matrix, R, after the first iteration step as shown in Table 5. Table 5 high-
lights in italic font style all reactions which disobey the rule R7r = NOT(R9). It can be seen that
mode M5 disobeys the rule and is removed from the matrix, R.

In the next step mode M5 does not exist and, hence, fewer adjacency tests have to be per-
formed. Table 5 shows the mode matrix R after the final iteration step. It can be seen that mode
M8, M9, and M10 do not obey the iteration phase rule, as R9 and R7f or R7b carry a flux.
Hence, M8, M9, and M10 can be removed.

Furthermore, Table 5 illustrates that mode M1 and M7 disobey the post-processing rule, as
R9, R7f, and R7b do not carry a flux value. Consequently, after removing the futile 2-cycle
mode M5 the final mode matrix, R, only contains the five modes M2, M3, M4, M6, and M11.
Before transforming the binary modes back to their numerical form the split irreversible reac-
tions R7f and R7bmust be combined to the reversible reaction R7r. The final set of feasible
EFMs is listed in Table 4. Note that in comparison to the unregulated network six EFMs are bi-
ologically infeasible of which two are removed during the post-processing phase.

Often transcriptional regulation is not specified for both states of a reaction, e.g. a flux
through Ra that represents the expression of a gene Gamight inhibit the flux of the reaction
Rb, but no statement for reaction Rbmight be possible if gene Ga is not expressed: Rbmay or
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may not carry a flux [22]. Such a case cannot be expressed with the simple Boolean rule Rb =
NOT(Ra), as this rule would require that Rb carries a flux if Ra does not.

In order to increase the flexibility of how rules can be formulated, we implemented a mathe-
matical logic that knows three states: (i) false, (ii) true, and (iii) undefined. If the evaluation of a
Boolean rule for a given set of input reactions yields the undefined state, then the rule is not
consulted to constrain the solution space. The undefined state is introduced to the Boolean sys-
tem by defining an activity for each reaction in all rules. A reaction can either be (i) 0-active,
(ii) 1-active, or (iii) full-active. 0-activity means that the flux value is only considered if the re-
action does not carry a flux. If a 0-active reaction carries a flux, then the undefined state is used
for this reaction during the evaluation of the rule. If a reaction is 1-active then the flux value is
only valid if the reaction does carry a flux. If a 1-active reaction does not carry a flux, then the
undefined state is used. Full-active reactions exhibit defined values for both situations, when
they carry a flux and when they do not. We denote the activity of rules by prefixing the charac-
ters ‘0’, ‘1’, and ‘f’ to the reactions, e.g. the full-active reaction Rx would be written as fRx.

Applying this concept to the above example would result in the following rule: R7r = NOT
(fR9). If we assume 1-activity for R9, the rule is only considered if R9 carries a flux and a state-
ment for R7r can be made, as it is required that R7r is 0. However, if 1R9 does not carry a flux,
the rule evaluates to undefined and the rule is not used. If we assume 1-activity rather than full-
activity in the above example, we will find seven EFMs. This compares to five EFMs if we as-
sume full-activity and eleven EFMs if no rules at all are used (see Table 4).

Note that one single reaction might appear within a rule multiple times with any of the
three defined activities. If more than one rule is specified, each of the rules must be obeyed by a
tested mode. Hence, the rules of a given rule set can be considered as combined by Boolean
AND operations. If—due to network compression—reactions are combined with other reac-
tions, we apply the same transformation to the rule set as well. For instance, rather than
R7r = NOT(fR9) we use a rule acting on the compressed reaction R7r_compressed = NOT

Table 5. ModematrixR after the first iteration step (left) converting reactionR2 from numerical to binary form and after the last iteration step (right)
for a regulated EFM analysis. After the final step R contains only binary values. Note that in the last step regEFMtool calculates fewer modes than the ordi-
nary EFMtool (see Table 3). The italic font type highlights reactions disobeying the rule R7r = NOT(R9). After the first step M5 (highlighted in bold font) dis-
obeys the iteration phase rule and is removed from the matrix. After the final step M8, M9, and M10 do not obey the iteration phase rule. Additionally, M1 and
M7 (also highlighted in bold font) disobey the post-processing rule. M5 is also removed, as it is a futile 2-cycle mode created by splitting the reversible reaction
R7r into two irreversible reaction.

After first step After last step

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11

R3 f f f f f f f t t t f f f f f t t t f f f

R4 f t t t t t f t t f t t t t f t t t t t t

R5 f f f t t f f t f f f f t f f t f f t f f

R6 f f t f f f f f f f f t f f f f f t f t f

R7f f f f f t t t f f f f f f t t f f f f f f

R7b t f f f f f t f f t f f f f t f f t t t t

R8 f t f f f t f f t f t f f t f f t f f f t

R9 f f t t t f f t f f f t t f f t f t t t f

R10 f f t f f f f f f f f t f f f f f t f t f

R11 f f f t t f f t f f f f t f f t f f t f f

R2 t t f t f f f f f f t f t f f f f f t t t

R1 -0.5 0.5 1.0 0.5 0.5 0.5 0.0 0.0 0.0 -0.5 t t t t f f f f f f f

doi:10.1371/journal.pone.0129840.t005
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(fR9). This is possible as the compression provides a bijective transformation, that is R7r = 0 if
and only if R7r_compressed = 0. (The same one-to-one correspondence applies for “1” and
“undefined”.) For further details regarding our implementation of the three-state logic and
Boolean rules see [23].

Implementation
We implemented our approach as an extension to the open source software efmtool[6]. The
mode elimination algorithm was realized by adding three Java packages to the original version
of efmtool. The three packages contain ten new Java classes. These new classes are responsible
for handling the genetic rules and checking the modes against them. Two already existing Java
classes were slightly enhanced in order to invoke the mode check. The Boolean rules are pro-
vided by an additional input file using the command line argument -generule. The extend-
ed version of efmtool was compiled by JDK 1.7.0. The implementation of the extension was
performed as non-invasive as possible, which means that the performance gain might be even
better if the new method is integrated to efmtoolmore thoroughly. The mode checks for the it-
eration phase were implemented using binary bit patterns where the patterns are created sim-
ply by setting the involved reactions (all input reactions and the output reaction) to 1. Note
that efmtool uses an inverse logic where 0 stands for flux carrying reactions and 1 stands for
not carrying a flux. Hence, the involved bitwise operations and comparison have to be changed
accordingly. If a tested mode has every bit set that occurs in the binary bit pattern of a rule then
the mode is eliminated. The mode check for the post-processing step was realized by utilizing a
reverse polish notation approach that allows a simple and fast execution of Boolean functions
with any values for the input reactions. The general sequence of operation of our extended ver-
sion of the binary DDM is shown in S1 Table.

Results
A brief introduction to and an initial test of our approach can be found in [23], where we used
the E. coli core model by [17] and gene regulatory information in form of a gene-enzyme-reac-
tion mapping [24]. The used rule set consisted of 58 Boolean functions of which just four rules
were iteration phase rules. The results in [23] showed that the performance gain in terms of
memory usage and execution time is mainly caused by the four iteration phase rules. In the
present work, we study the effects of iteration phase gene rules on the number of adjacency
candidates, intermediate modes, and on the obtained performance gain in greater detail.

We used the medium sized metabolic yeast model by [25] and transcriptional rules by [26].
The model consisted of 218 metabolites and 230 reactions (of which 197 were irreversible) in
two compartments (cytosolic and mitochondrial). An SBML description of the model can be
found in S1 File. The gene-enzyme-reaction mapping used to exclude infeasible EFMs con-
tained four Boolean functions which are listed in Table 6. The rules consider four genes
(ACH1, ICL1, MDH1 and MDH2) which are glucose repressed in S. cerevisiae[26]. This
means, in terms of the model, that when R_GLCt1 is active, the reactions corresponding to the
above genes must be inactive. Five reactions participate in these four rules. We did not consider
any post-processing rules in our analysis, as the post-processing rules are merely a simple filter-
ing procedure applied after the iteration phase. The performance gain obtained by post-pro-
cessing rules mainly depends on the number of modes that are eliminated by those rules. Post-
processing rules have (i) no effect on the required main memory, (ii) a minor effect on the exe-
cution, and (iii) a strong effect on the hard disk space if many modes are eliminated [23].

Table 7 compares a regular run without regulatory information and a run using the available
gene regulation rules. Both runs were performed on a Linux Ubuntu 12.04 computer with 2
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Intel Xeon CPUs (6 cores each) and a total of 192 GB of RAM using 10 parallel threads. The
table shows that after the iteration phase 92.4 million modes were obtained without regulatory
information. Using all four Boolean rules resulted in a mode reduction by a factor of more than
200 and resulted in 453,563 modes. This mode removal during the iteration phase caused a re-
duction of the iteration runtime from 54.5 hours to 24.7 minutes and a decrease of the maxi-
mum number of adjacent candidates from 1.5 � 1015 to 1.4 � 1011. This huge reduction of the
total number of modes had a major influence on the required hard disk space which was de-
creased from 357.4 GB to 1.7 GB when an uncompressed double precision text format was
used. Table 7 clearly shows that considering gene regulatory information in the computation
process has a huge impact on the computational key properties of the calculation of EFMs.

In order to verify that the presented extension of the efmtool computes the correct EFMs, an
extra software tool was developed that applies the Boolean rules to the complete and unfiltered
set of EFMs in a post-processing step. The two tools computed identical sets of EFMs ensuring
that the efmtool extension produces the correct result.

Table 8 shows the development of the number of intermediate modes as a function of fin-
ished iterations. The number of intermediate modes mainly determines the required amount
of RAM. In total, 47 iteration steps were performed in order to compute the complete set of
EFMs. Up to iteration 4 not a single EFM was eliminated and the inclusion of gene regulatory
information had no effect. The first removal occurred at iteration 5, where 11 modes were de-
leted. Although in total only 0.91 million modes were removed during the iteration phase, the
final number of modes was reduced by 91,98 million modes. This huge reduction is a result of
lost parent modes which otherwise could have spawned a multitude of new children. The large
difference of intermediate modes (1.7 million with regulation vs. 209 million modes without
regulation) has a direct impact on the required RAM which is just 1.1 GB for the run with gene
regulation compared to 161 GB for the case without regulation.

Table 6. The four Boolean rules, X = NOT(1R_GLCt1), used by the introduced elimination algorithm to exclude biologically infeasible EFMs during
the iteration phase.R_GLCt1 denotes the glucose uptake transporter. R_GLCt1 is considered to be 1-active, i.e. X = 0 if R_GLCt1 = 1 and undefined other-
wise. Gene regulatory information for this model was taken from [26].

Rule X Gene Function

GR1 R_ACOAH ACH1 Acetyl-CoA hydrolase

GR2 R_ICL ICL1 Isocitrate lyase

GR3 R_MDH MDH2 Malate dehydrogenase

GR4 R_MDHm MDH1 Malate dehydrogenase (mitochondrial)

doi:10.1371/journal.pone.0129840.t006

Table 7. Comparison of EFM calculation with andwithout taking into account gene regulatory informa-
tion. The required disk space is given for a result file containing all modes in text format using double preci-
sion. The line ‘max. adjacent candidates’ shows the maximum number of potentially occurring adjacent pairs.

w/o gene regulation with gene regulation

No. of modes 92.4 � 106 0.45 � 106
Max. adjacent candidates 1.5 � 1015 1.4 � 1011
Max. RAM usage 161 GB 1.1 GB

Runtime 54.5 h 0.41 h

Disk space 357.4 GB 1.7 GB

doi:10.1371/journal.pone.0129840.t007
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Table 8. Comparison of the number of intermediate EFMs as a function of the iteration step for simulations with gene regulatory information (rule
GR1, GR2, GR3, and GR4) and without gene regulatory information.

Iteration No. No. of removed infeasible modes No. of modes incl. gene regulation No. of modes w/o gene regulation

1 0 66 66

2 0 70 70

3 0 75 75

4 0 85 85

5 11 122 133

6 1 119 142

7 0 377 468

8 0 1625 2,175

9 0 2,529 3,359

10 1,397 13,467 20,316

11 13,764 35,327 78,937

12 3,921 62,373 158,870

13 1,166 122,144 331,088

14 3,292 90,172 352,506

15 1,963 129,289 530,164

16 5,495 176,374 803,112

17 9,533 281,685 1,498,951

18 47,530 256,339 1,830,652

19 488 317,390 2,305,473

20 1,171 219,660 2,308,759

21 0 211,660 2,253,813

22 66,394 96,340 1,491,202

23 0 81,745 1,470,314

24 0 89,665 1,481,940

25 0 113,156 2,143,606

26 0 95,962 2,203,512

27 0 129,159 2,668,814

28 0 209,405 4,454,288

29 0 209,405 5,370,688

30 0 209,405 6,034,256

31 0 289,852 7,413,300

32 0 289,852 7,413,300

33 0 289,852 8,050,776

34 0 356,188 10,693,536

35 0 582,988 17,777,572

36 0 682,332 28,376,662

37 0 754,827 30,042,830

38 754,777 410,403 49,312,818

39 0 635,137 75,527,292

40 0 635,137 82,370,868

41 0 826,802 108,752,476

42 0 1,655,574 209,418,474

43 1 437,237 58,830,104

(Continued)
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In order to study the effect of varying number of iteration phase rules on the execution time,
we performed runs with all possible combinations of the four used iteration phase rules. Fig 2
depicts the number of modes as a function of gene rules. The figure clearly shows that the num-
ber of modes increases with decreasing number of rules. The red bars show the results of the in-
dividual runs for cases with one, two or three iteration phase rules, whereas the green bars
show the averaged results for these cases.

Similar to the decrease in the number of EFMs we found that the average execution time ex-
tremely decreases with increasing number of rules, too (see S1 Fig). Fig 2 and S1 Table show
data of runs that used 10 parallel threads. Although the gain of execution times of the

Table 8. (Continued)

Iteration No. No. of removed infeasible modes No. of modes incl. gene regulation No. of modes w/o gene regulation

44 0 437,237 58,830,104

45 0 355,714 63,325,875

46 0 355,714 72,412,386

47 0 453,590 92,433,694

sum 910,903

doi:10.1371/journal.pone.0129840.t008

Fig 2. Number of modes as a function of all possible combinations of the four iteration phase rules. The green bars show the average mode number
for cases with one, two, or three gene rules.

doi:10.1371/journal.pone.0129840.g002
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individual runs vary significantly, the average values clearly illustrate the performance gain ob-
tained by using iteration phase rules.

In order to find an initial value of the mode matrix, R, the kernel of the extended stoichio-
metric matrix is computed. Before the iteration phase is started the reactions/rows of the kernel
matrix K are sorted. This is done by putting all reactions with only positive values to the top
(e.g. see Table 2), which results in the maximum number of reactions that can be transformed
to the binary form before the iteration procedure is even started.

The performance of the DDM is very sensitive to the order of the reactions in the Kernel
matrix, K[19]. Several approaches can be applied to sort those reactions that also contain nega-
tive values, e.g. taking no special measures (random order), ordering by increasing potential
adjacency candidates (number of negative values times number of positive values), and various
dynamic re-ordering methods [19, 21, 27]. As the iteration phase rules can only be applied if
the involved reactions are already converted to the binary representation, it seems beneficial to
convert all reactions—that are involved in iteration phase rules—to the binary form as soon as
possible. We illustrate this point by means of an example. Structure and details of the example
network used may be found in S2 Fig and S6, S7 and S8 Tables.

Table 9 shows the standard re-ordering of reactions in increasing order of adjacency candi-
dates for the example network in S2 Fig Suppose that the reactions R1 and R5 are involved in a
single iteration phase rule, e.g. R1 = NOT(fR5). Thus R1 and R5 should get a higher priority.
Table 9 shows the effect of rearranging the reaction order. Note that the position of a reaction
is not changed if it is already converted to its binary form before the start of the iteration phase.

In order to investigate the effect of re-ordering the reactions on the program runtime, we
used the S. cerevisiaemodel and the rules listed in Table 6 and performed two sets of runs: (i)
runs with a standard efmtool reaction order (by increasing number of potential candidates) (ii)
runs with a rearranged order of the reactions to allow for an early conversion of the involved

Table 9. Effect of re-arranging the order of reactions for the simple example shown in S7 Table because of a gene rule that involves reaction R1
and R5.

Initial order before
execution

Sorted by adjacency
candidates

Number of adjacency
candidates

Re-
ordered

Number of adjacency
candidates

R1 R3 0 R3 0

R2 R6f 0 R6f 0

R3 R6b 0 R6b 0

R4f R7f 0 R7f 0

R4b R7b 0 R7b 0

R5 R8 0 R8 0

R6f R9 0 R9 0

R6b R10 0 R10 0

R7f R4b 0 R4b 0

R7b R11b 0 R11b 0

R8 R12f 0 R12f 0

R9 R12b 0 R12b 0

R10 R11f 2 R5 4

R11f R5 4 R1 6

R11b R1 6 R11f 2

R12f R2 6 R2 6

R12b R4f 12 R4f 12

doi:10.1371/journal.pone.0129840.t009
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reactions to binary form. The re-ordering was obtained by moving all reactions involved in
rules directly behind the set of reactions that have only positive values. The number of reac-
tions of the used yeast model after the initial compression step of the efmtool was 112, of which
65 reactions only contained positive values and, hence, could be binarized prior to the iteration
procedure. Consequently, during the iteration phase 47 steps had to be executed. Therefore,
only reactions at a position larger than 65 were rearranged. Note that a single rule with just two
participating reactions, such as R1 = NOT(fR5) may involve more than two reactions during
the iteration process, as (i) an involved reaction might be reversible and is split in the pre-pro-
cessing phase and (ii) the network compression algorithm maps the original reaction to multi-
ple compressed reactions. Table 10 lists the key properties of the reactions regarding the re-
ordering approach. It can be seen that the rules GR1 and GR4 only involved reactions at posi-
tion indices which were less or equal to 65. Hence, no re-ordering was required for these rules.
The rules G2 and G3 involved reactions larger than 65 and, hence, they were subject to re-sort-
ing. The reactions at position 69, 82, 86, 102 were moved to the positions 66, 67, 68, and 69, re-
spectively, corresponding to the iterations 1, 2, 3, and 4.

Fig 3 shows the speedup of the execution time as a function of used gene rules. The speedup
was defined as the ratio of the execution time without resorting to the execution time with re-
sorting the reactions. As shown in Fig 3 the maximum speed up was achieved when all four
gene rules were used in which case the program run 2.76 times faster when the reactions were
resorted before the iteration phase. Furthermore, it can be seen that the runtime improvement
decreased with a decreasing number of used iteration phase rules. If only GR1 or GR4 were
used no runtime gain could be achieved, as no re-ordering was performed for those two rules.

As can be seen in Fig 4a the execution time dropped by a factor of 2.76 from 0.41 to 0.15
hours if all four rules were used and re-reordering was applied. Our analysis showed that re-
sorting the reactions results in an increased number of eliminated modes during the first itera-
tion steps. The elimination of the modes reduced the number of intermediate modes during
the iterations 10 to 37 (Fig 4c), caused by the reduced number of adjacent candidates (Fig 4b).
Fig 4d shows the effect of rule GR3 which removed more than 0.75 million modes at iteration
47, corresponding to the reaction index 102 (see Table 10). When reaction re-ordering was ap-
plied all those 0.75 million biologically infeasible modes were already eliminated at previous it-
erations and, hence, reduced the total number of intermediate modes that had to be processed
and decreased the total number of adjacency tests that had to be performed. Note, however,
that a significant reduction of modes only occurs if the rule is disobeyed by enough intermedi-
ate modes. If a rule only removes a small number of modes, the mode elimination might not
outweigh the negative effects of creating more adjacency candidates and intermediate modes at
early stages of the procedure and, consequently, might result in longer runtimes if reaction re-
ordering is applied. This is of considerable relevance, as it is not known a priori how effective

Table 10. Key properties of reactions participating in iteration phase rules regarding the re-ordering approach. A reaction is subject to re-ordering if
the position index after splitting, compression, and initial sorting is larger than 65.

Reaction Rule Num. reactions after splitting/compression Position after splitting/compression

R_GLCt1 GR1, GR2, GR3, GR4 3 12, 20, 65

R_ACOAH GR1 2 30, 31

R_ICL GR2 3 69, 82, 86

R_MDH GR3 2 46, 102

R_MDHm GR4 1 11

doi:10.1371/journal.pone.0129840.t010
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an iteration phase rule is going to be. Even though our analysis only considers an isolated case,
the results show that—in general—finding the optimal reaction order is not trivial and indicate
that re-sorting the reactions might have a positive effect on the runtime.

In order to further show the capability of our approach, we performed three simulations for
an E. coli core model augmented by amino acid metabolism. The extended model consisted of
178 metabolites and 209 reactions (84 reversible). An SBML description of the model can be
found in S2 File. The simulations were performed on a Linux Ubuntu 12.04 computer with 2
Intel Xeon CPUs (12 cores each) and a total of 384 GB of RAM using 20 parallel threads. With-
out using gene regulatory information the simulation was terminated by the operating system
after 29 days, as the program requested more than the available 384 GB of RAM. The simula-
tion reached 37 of a total of 39 iterations. At that point more than 702 million intermediate
modes had been calculated indicating that the final set of EFMs consists of considerably more
than 1 billion elements. If the four gene rules reported in [23] were included the entire simula-
tion could be finished in just over 61 hours and resulted in 185 million EFMs. Activating the re-
action resorting by the command line option -rulesort true reduced the execution time
by additional 4 hours.

Applying the four regulatory rules listed in Table 6 restricted the metabolic capabilities of
the organism. In the following analysis we will look at the global effects of the gene rules on
other reactions in the network. Note that these effects were consequences of the network struc-
ture and not of the rules per se. A summary of the most significant changes was listed in
Table 11.

Fig 3. Runtime speedup (ratio of execution time without resorting to execution time with resorting reactions) as a function of used gene rules.

doi:10.1371/journal.pone.0129840.g003
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GR2 states that isocitrate lyase R_ICL (gene ICL1) is inactive under high glucose conditions,
shutting down the glyoxylate cycle. As a consequence two succinate transporters were disabled:
R_SUCFUMtm (gene SFC1, a succinate—fumarate antiporter between the cytosol and the mi-
tochondrion) and R_SUCCtm (gene DIC1, which catalyzes a dicarboxylate-phosphate ex-
change across the mitochondrion). Both transporter are known to be tightly co-regulated with
the glyoxylate cycle and their predicted inactivity under high glucose conditions is in accor-
dance with experimental data [28]. Note that with inactive DIC1 and SFC1 an uptake of succi-
nate is impossible, too. Under this condition our analysis revealed that no EFM was able to
metabolize extracellular succinate.

The used metabolic model contains four biochemical reactions for the production of acetyl-
CoA [mitochondrial pyruvate dehydrogenase (R_PDHm, genes PDE1 to PDE3), cytosolic and
mitochondrial acyl-CoA synthetase (R_ACS, gene ACS2 and R_ACSm, gene ACS1, respective-
ly), and acetyl-CoA hydrolase (R_ACOAH, gene ACH1)]. In the unregulated case none of the-
ses reactions is essential. However, when acetyl-CoA hydrolase (R_ACOAH, gene ACH1) was

Fig 4. Comparison of runs with (green) and without (red) resorting the reaction order for a case with four rules (GR1, GR2, GR3, and GR4). The
diagrams show the accumulated runtime (a), the number of adjacency candidates (b), the number of intermediate modes (c), and the number of modes
eliminated by the rules (d) as a function of the iteration step.

doi:10.1371/journal.pone.0129840.g004
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inactivated (GR1) all biomass producing EFMs needed an active cytosolic acyl-CoA synthetase
(R_ACS, gene ACS2). This prediction is in agreement with experimental findings that ACS2 is
essential for growth on glucose [29].

In addition we found that if the cytosolic or the mitochondrial malate dehydrogenase was
deactivated (GR3 or GR4), glycerol-3-phosphate phosphatase (R_G3PT, genes GPP1 and
GPP2) became essential for growth—in contrast to experimental evidence [30]. That finding
highlighted a deficiency of the metabolic model, as an inactive malate dehydrogenase has the
effect that in the model NAD regeneration is only possible via the production of glycerol.

Discussion
Currently, extensive transcriptional regulatory information is available only for a limited num-
ber of organisms. In particular this is true for continuous regulatory models such as differential
equation models [15]. However, growing scientific effort is put into the investigation of tran-
scriptional regulatory mechanisms. In recent years regulatory models for more and more or-
ganisms have been developed, e.g. Escherichia Coli[24], Arabidopsis thaliana[31], Drosophilia
melanogaster[32], and Saccaromyces cerevisiae[26, 33, 34]. Consequently, it can be expected
that in the near future our approach will not suffer from the unavailability of regulatory infor-
mation any longer. Most important, our method does not require knowledge of the complete
transcriptional network of the organism as even an incomplete data set of regulatory informa-
tion can have a huge positive influence on the execution time. Our study shows that just four
simple rules not only have a huge effect on the runtime and RAM consumption, but also

Table 11. Changes in the reaction activity frequency with (aw
i ) and without (aw=o

i ) applying the four GRs listed in Table 6. αi is defined as the frequency
of an active reaction i in all EFMs. For simplicity we only listed reactions with j awi � aw=o

i j> 10%.

Rule Reaction Gene aw=oi (%) awi (%) aw=oi —awi (%point)

GR1 R_ACOAH ACH1 50.70 0.00 -50.70

GR2 R_ICL ICL1 90.17 0.00 -90.17

GR3 R_MDH MDH2 66.81 0.00 -66.81

GR4 R_MDHm MDH1 70.09 0.00 -70.09

R_ACS ACS2 49.30 100.00 50.70

R_ICDHy IDP2 42.27 62.26 19.99

R_PYRt2m – 77.52 94.10 16.58

R_ACt2r BPH1 31.18 45.88 14.70

R_H2Otm – 60.60 75.20 14.60

R_GLYCt FPS1 86.51 100.00 13.49

R_G3PT GPP1, GPP2 86.52 100.00 13.48

R_TKT2 TKL1 40.97 54.22 13.25

R_GLUSxm GLT1 83.25 95.51 12.26

R_GLNt2m – 83.25 95.51 12.26

R_ICDHxm IDH1, IDH2 70.32 81.17 10.85

R_CSm CIT1, CIT3 87.88 77.41 -10.47

R_PIt2m MIR1 95.45 80.61 -14.84

R_SUCCt2r – 28.36 0.00 -28.36

R_SUCFUMtm SFC1 38.44 0.00 -38.44

R_SUCCtm DIC1 42.25 0.00 -42.25

doi:10.1371/journal.pone.0129840.t011
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improve the predictive quality of the model. This is not only true for the set of rules but for
each individual rule as well as. However, note that not all rules can be used for speeding up the
enumeration process. “Iteration phase rules” have to evaluate to zero, while all its input argu-
ments are logical one. This particular structure guarantees that our algorithm does not errone-
ously identify feasible EFMs to be infeasible. The simplest form of such a rule is a NOT
statement, e.g. the condition specific repression of the glyoxylate shunt E. coli, Rhodobacter
capsulatus[35], Streptomyces collinus[36], or Paracoccus versutus[37] is of such a form and can
be used as an iteration phase rule. The examples above show that simple iteration phase rules
can be found in various, even less well studied organisms too.

As described above, the used binary nullspace algorithm heavily relies on the fast execution
of bit vectors. Naturally, the presented method does not allow to access continuous values of
the computed fluxes during the iteration phase. Consequently, our approach cannot gain from
the use of continuous regulatory models, such as linear models and differential equation mod-
els [14], which describe the system state of the regulatory network with continuous values.
However, regulatory effects are often sigmoidal and, hence, can be sufficiently modeled by dis-
crete systems [38]. Boolean regulatory networks have been successfully combined with other
metabolic modeling applications, such as flux balance analysis [22, 39]. As EFMs are minimal
pathways under steady state, dynamic regulatory rules which consider time dependent effects
on the relationships between genes cannot be incorporated easily into our approach.

In general, the number of modes of metabolic networks is very high. By using a novel ap-
proach of parallel execution the authors of [8] were able to compute all 1.9 billion EFMs of a
Phaeodactylum tricornutummodel that consisted of 318 reactions and 355 metabolites. It re-
quires approximately 1.1 TB to save these 1.9 billion EFMs in binary format to a hard disk. Con-
sequently, storing, handling, analyzing, and using such a huge number of EFMs is
computationally extremely challenging. Several approaches try to reduce the numerical effort by,
for instance, computing only the binary projection of EFMs in subsystems of interest [40], or by
representing the complete set of EFMs by a (randomly drawn) subset of EFMs [41–44]. In fact, it
has been suggested that only very few EFMs are physiologically relevant [45]. Thus, it would be
desirable to identify only those EFMs. Here we presented a method which achieved exactly that.
By using transcriptional regulatory rules we efficiently eliminated only biologically infeasible
EFMs. Thus, rather than randomly reducing the number of EFMs our approach implements a re-
duction method based on biological knowledge. By applying available biological knowledge we
were also able to detect new information, as demonstrated in the case of acyl-CoA synthetase and
glycerol-3-phosphate phosphatase. The former was correctly identified to be essential while the
latter identified gaps in the used model. Note however, that all findings are independent of any
optimization principle commonly used in approaches that are based on flux balance analysis
(FBA), as EFMs characterize the full solution space. Hence, we may also use our approach to de-
tect so far unknown regulatory rules. Suppose we do not know about the down regulation of ace-
tyl-CoA hydrolase during growth on glucose but rather only know that a knockout of ACS2
causes a growth phenotype. That is, we are interested in candidate genes which—if repressed—
eliminate growth. The question is essentially a metabolic engineering problem where the aim is
to eliminate undesired metabolic capabilities. Optimal targets can be identified based on an EFM
analysis by calculating minimal intervention sets removing all undesired states [46, 47]. These
targets represent potential regulatory switches allowing for an iterative discovery of new regulato-
ry rules and triggering further experiments. In principle we may also use FBA to derive these pre-
dictions. While gene essentiality can easily be checked by FBA, predicting for instance synthetic
lethal pairs is computationally challenging. Due to the explosion of possible combinations detect-
ing synthetic lethality in groups of four or more is impossible to do in an FBA framework. Here
an EFM analysis in combination with efficient methods for calculating minimal cut sets is
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currently the only feasible option [48, 49]. In fact, based on our (regulated) EFM analysis we
computed 22,533 synthetic lethalities in groups of up to six reactions with a modified hitting
set algorithm [50] in less then two hours (see S3 File).

We used Boolean rules to describe transcriptional regulation. Although Boolean regulation
has successfully been coupled with flux balance analysis [33, 51] it is plagued by two major
problems: (i) Boolean rules sometimes over-restrict metabolic models [52], and (ii) a Boolean
description of transcriptional networks is dependent on the specific problem representation
[22]. That is, the feasible metabolic network states are different if the transcriptional network is
described by explicit rules (where each state of a gene can be calculated explicitly from the
states of all other input data) or implicit rules. However, our activity based three-value logic in-
troduced in this work is a more general way of expressing transcriptional networks in a mathe-
matical formulation. Our approach is able to represent explicit rules, implicit rules, and a rule
set which less restrictive than either of the two alternative formulations (see S4 Table). Thus
compared to standard approaches our activity based formulation can be used to implement ex-
tremely conservative rules and, therefore, is less prone to over-restriction.

We implemented a novel approach to speed up the computation of EFMs of a metabolic
network by extending the open source program efmtool written by Marco Terzer. Our exten-
sion allows the consideration of gene-enzyme-reaction mappings in the process of the EFM
calculation. Consequently, our method computes the complete set of EFMs with the exception
of all modes that are detected to be biologically infeasible because they disobey the provided
gene regulatory rules. The biologically infeasible flux modes are constantly eliminated during
the calculation process. By implementing an early stage exclusion of modes a dramatic reduc-
tion of computational costs was achieved which pushes the maximum size of computable net-
works to new and higher limits. In a brief introduction we successfully tested our approach
with E. coli[23]. In this work we presented a detailed description of our method and an elabo-
rate analysis of the effect of gene regulatory rules using a medium-scale yeast model. We think
that our approach is another step to the final goal of studying genome-scale metabolic net-
works by elementary flux modes.

Supporting Information
S1 Fig. Execution time of regEfmtool as a function of all possible combinations of the four
iteration phase rules. The green bars show the average execution time for cases with one, two,
or three gene rules.
(TIFF)

S2 Fig. Example network used to demonstrate reaction-reordering due to gene regulatory
information. The network consists of five metabolites and twelve reactions of which five are
reversible and, hence, split in non-reversible forward and backward reactions. The stoichiomet-
ric matrix of the example is shown in S6 Table. The network has 30 elementary flux modes if
no gene rules are used to restrict the solution space (see S8 Table). If the rule R1 = (!fR5) is ap-
plied, the network contains only eleven modes.
(TIFF)

S1 Table. Stoichiometric matrix, S, of the example network. External metabolites which are
irrelevant for the calculation of the elementary flux modes are omitted.
(PDF)

S2 Table. Extended stoichiometric matrix, Sext, of the example network shown in Fig 1 after
splitting the reversible reaction R7r into the two irreversible reactions R7f and R7b.
(PDF)
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S3 Table. Binary representation of all elementary flux modes of the example network
shown in Fig 1. 1 means that the reaction carries a flux and 0 means the reaction carries no
flux. Note that the futile two-cycle of the reversible reaction R7r has already been removed and
the forward and backward irreversible reactions (R7f and Rfb) have been combined to the re-
versible reaction R7r by a bitwise OR operation.
(PDF)

S4 Table. Comparison of four methods of genetic rule formulations: (i) explicit by Jensen
et al., (ii) implicit by Jensen et al., (iii) three state logic—implicit functionality, and (iv)
three state logic—direct implementation. The values of the reactions are shown in columns
mig1, mth1, gln, rgt1. The characters ‘)’ and ‘,’ denote the explicit and implicit formulation
as defined by Jensen et al. Feasible combinations of reactions are highlighted in color. For the
undefined state of the three-state logic the character ‘u’ is used.
(PDF)

S5 Table. Pseudocode for the regEFMtool. Text sections in italic style indicate our modifica-
tions compared to the binary method reported by Gagneur and Klamt [5].
(PDF)

S6 Table. Extended stoichiometric matrix Sext of the example network shown in S2 Fig.
(PDF)

S7 Table. Mode matrix R of a simple example network after sorting the reactions and be-
fore executing the iteration phase.
(PDF)

S8 Table. The complete set of elementary modes of the example network shown in S2 Fig if
no gene rules are used to restrict the solution space.
(PDF)

S1 File. SBML file of the used yeast model consisting of 218 metabolites and 230 reactions
(197 irreversible) in two compartments.
(SBML)

S2 File. SBML file of the used E. coli core model consisting of 178 metabolites and 209 reac-
tions (84 irreversible).
(SBML)

S3 File. List of synthetic lethality in groups of up to six reactions for the extended E. coli
network used in this work.
(BZ2)

S4 File. Used version of the software regEfmtool.
(GZ)
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