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Abstract

Analysis has been done to investigate the heat generation/absorption effects in a steady
flow of non-Newtonian nanofluid over a surface which is stretching linearly in its own plane.
An upper convected Maxwell model (UCM) has been utilized as the non-Newtonian fluid
model in view of the fact that it can predict relaxation time phenomenon which the Newto-
nian model cannot. Behavior of the relaxations phenomenon has been presented in terms
of Deborah number. Transport phenomenon with convective cooling process has been ana-
lyzed. Brownian motion “D,” and thermophoresis effects “D;” occur in the transport equa-
tions. The momentum, energy and nanoparticle concentration profiles are examined with
respect to the involved rheological parameters namely the Deborah number, source/sink
parameter, the Brownian motion parameters, thermophoresis parameter and Biot number.
Both numerical and analytic solutions are presented and found in nice agreement. Compari-
son with the published data is also made to ensure the validity. Stream lines for Maxwell
and Newtonian fluid models are presented in the analysis.

Introduction

Growing industrial and technical applications enhanced the attention of researchers to analyze
the rheology of non-Newtonian fluid models. For example the non-Newtonian fluid can be
used as a coolant (tremendously reduces the pumping power), in flexible military suits for sol-
diers (fluid remain in liquid state while soldier moves or runs but instantly go into solid state
when bullet hits), shoe manufacturing (in which shoes would be filled with a non-Newtonian
fluid supports the feet and prevent injuries), purification of molten metal from non-metallic
inclusion, metal extrusion and metal spinning, in manufacturing lubricants for vehicles, food
and medicine industries etc. Various theoretical attempts to discuss the non-Newtonian behav-
ior witness that the constitutive equations of non-Newtonian fluids are much more compli-
cated and highly nonlinear as compared to those of Newtonian fluids. Scientist and researchers
have presented several non-Newtonian fluid models to describe the non-Newtonian behavior.
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There is one very special subclass of non-Newtonian fluid model namely upper convected
Maxwell (UCM) fluid model. This model can easily predict the relaxation time phenomenon
which the Newtonian model cannot. Various recent researchers have studied this model under
different flow aspects. For instance Zierep and Fetecau [1] investigated the energetic balance
for the Rayleigh Stokes problem of a Maxwell fluid. Authors have concluded the in comparison
with the Newtonian fluid, the power of the wall shear stress and the dissipation increase while
the boundary layer thickness decreases. Unsteady flow of a Maxwell fluid with fractional deriv-
ative due to a constantly accelerating plate has been presented by Fetecau et al. [2]. Authors
have employed Fourier sine and Laplace transforms techniques for the construction of an exact
close form solutions for velocity and shear stress. The exact analytical solutions have been pre-
sented in the form of double integrals of double series. Jamil and Fetecau [3] presented the
flows of Maxwell fluid between coaxial cylinders with given shear stress on the boundary. The
flows of helical type for a Maxwell fluid are developed and studied between two infinite coaxial
cylinders. Hankel transform method has been utilized for the solutions procedure and the
obtained solutions are presented in the form of series satisfying all imposed boundary condi-
tions. Renardy and Wang [4] presented the boundary layers for the flow of Maxwell fluid.
Authors have concluded that two quite distinct mechanisms for the formation of viscoelastic
boundary layer exists for slip and for stresses near wall respectively. Hayat et al. [5] presented
the effects of mass transfer on the stagnation point flow of a Maxwell fluid. Authors have con-
sidered the stretching wall geometry and pointed out a correction in the term representing the
magneto-hydrodynamics flow of Maxwell fluid. Mass transfer and chemical reaction effects on
the unsteady flow of an upper convected Maxwell (UCM) fluid over a surface which is stretch-
ing in its own plane has been studied by Hayat et al. [6]. The equation for the unsteady flow of
Maxwell fluid has been presented for the first time by the authors. Abbasbandy [7] computed
the numerical and analytical solutions for Falkner-skan flow of MHD Maxwell fluid. They
have considered the wedge type geometry and computed the solutions via homotopy analysis
method (HAM). Time-dependent three-dimensional boundary layer flow of a Maxwell fluid
has been investigated by Awais et al. [8]. They have considered the bidirectional stretching sur-
face and presented the unsteady three-dimensional flow. Zhao et al. [9] studied the onset of tri-
ply diffusive convection in a Maxwell fluid saturated porous layer. Authors have discussed the
effects of Vadasz number on the flow rheology numerical and graphically. A new numerical
approach to MHD flow of a Maxwell fluid past a vertical stretching sheet in the presence of
thermophoresis and chemical reaction has been presented by Shateyi [10].

Nanofluids (liquid containing nanometer-sized particles) are introduced recently by the sci-
entist to improve the thermal properties. Choi [11] presented seminal work on the flow of
nanofluids. He made a vital conclusion that the thermal conductivity of any fluid can be
enhanced efficiently by adding nanoparticles into it. The pioneer work of Choi has been
extended by various researcher and scientists. For-instance Masuda et al. [12] studied alter-
ation of thermal conductivity and viscosity of liquids by dispersing ultra-fine particles. He
noted that nanofluids are characterized by enhanced thermal conductivity. Therefore by sus-
pending nano/micro sized particle materials in liquids can improve the thermal conductivity.
Khan and Pop [13] presented the boundary-layer flow of a nanofluid past a stretching sheet.
They incorporated Brownian motion and thermophoresis effects. Makinde and Aziz [14] stud-
ied the boundary layer flow of a nanofluid past a stretching sheet with a convective boundary
conditions. An analytical solution for boundary layer flow of a nanofluid past a stretching sheet
has been found by Hassani et al. [15]. Rana and Bhargava [16] conducted the numerical study
of the flow and heat transfer of a nanofluid over a stretching sheet. They have analyzed the flow
over a nonlinearly stretching surface. Very recently Hamad and Ferdows [17] presented the
similarity solution of boundary layer stagnation-point flow towards a heated porous stretching
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sheet saturated with a nanofluid with heat absorption/generation and suction/blowing. They
have utilized the Lie group theory to analyze the outcomes of the problem. Alsaedi [18] pre-
sented the effects of heat generation/absorption on stagnation point flow of nanofluid over a
stretching surface. Nadeem et al. [19] recently presented the non-orthogonal stagnation point
flow of a nano non-Newtonian fluid towards a stretching surface with heat transfer.

In current article we have extended the topic of heat and mass transfer and nanofluid into
new direction. We have investigated the transport phenomenon in a non-Newtonian nanofluid
in the presence of heat generation/absorptions and convective cooling process. Since in several
industrial and engineering processes, the non-Newtonian nanofluid is considered to be more
appropriate as compared to the Newtonian nanofluid. For-instance in the design of building
components for energy consideration, compact heat exchangers, as a coolant for engines,
extraction of geothermal energy, the migration of moisture in fibrous insulation etc. Maxwell
fluid (a subclass of rate type non-Newtonian fluids) has been selected in view of the fact that it
can easily predict the relaxation phenomenon which the Newtonian fluid cannot. Due to
diverse characteristics of the non-Newtonian fluids, the features representing the dynamics
and rheology cannot be predicted by a single constitutive relationship. As in present situation
the constitutive equations representing the Maxwell fluid are highly nonlinear and more com-
plex than the Newtonian fluid. The Brownian motion, thermophoresis and convective cooling
phenomenon are also analyzed. Both numerical and analytic solutions are presented and a
comparison with the published data (Makinde and Aziz [14]) is also incorporated in the article
to prove the validity. An efficient approach namely the homotopy analysis method (HAM)
[20-27] is employed to construct the analytic solutions. Graphical results for various physical
parameters are presented and analyzed. Stream line analysis for the Newtonian and Maxwell
fluid model is presented with the help of graphical observations. The plotted streamlines show
the significance of the rheology of Maxwell fluid when compared with the Newtonian model.

Statement of Problem

Let us consider the flow of incompressible Maxwell nanofluid over a sheet which is stretching
linearly in its own place situated at y = 0. The fluid occupies the space y>0. The x— and y— axes
are taken along and normal to the surface stretched in a linear manner respectively. We men-
tion C,, as the value of nanoparticle fraction (C) at the surface, Tyas the temperature due to the
convective heating process and Hyas a heat transfer coefficient where ambient values of tem-
perature and nanoparticle fraction are taken T, and C,, respectively. Due to thermal equilib-
rium, no slip between the base (or ordinary) fluid and suspended nanoparticles are assumed.
Further, the convective cooling phenomenon is incorporated in presence of heat source or heat
sink. The laws of conservation of mass, momentum, energy and nanoparticle concentration in
the problem under consideration take the forms

Ou Ov

- = 1

8x+8y 0 M

@_’_ @"‘r 2@_1_ 2@ +2 Ou _v@_G_BS (2)
Yox Ty T T\ Mae Ty T akay) "oy T 0 Y
oT T #T  Q, ocoT D, (9T’

ua—i-va—y—ama—y?-l-p—cp(T—Tx)+T{DBa—ya_y+T_m 8_)/ ’ (3)
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aC  aC _ &C D, PT

—_— —=D,—— 41—~ 4
u8x+vc'9y 38y2+Tm8y2’ )
with the following boundary conditions
JdT(0)
0)= 0) =0,—k——= = H,(T, — T(0)),C(0) = C
u(0) = ex,v(0) =0, 3 (T, = T(0)), C(0) = Cy, )

u(oo) = 0,v(00) =0,T(c0) = T, ,C(c0) — C__,

in which the velocity components (u and v) are selected along x- and y- axes respectively, p, v,

Dy, Dy, 0y, T, Qo, k, Trare the density of the ordinary fluid, the kinematic viscosity, the Brown-

ian diffusion coefficient, the thermophoretic diffusion coefficient, the thermal diffusivity of

ordinary fluid, the ratio of the effective heat capacity of the nanoparticle material and the heat

capacity of the ordinary fluid, the dimensional heat generation/absorption coefficient, the ther-

mal conductivity of the ordinary fluid and the temperature of the hot fluid respectively.
Utilizing the suitable variables

c , B _T-T, _C-C,
1=\ = e O = Va0, 00) T b - e @
Eq 1 is satisfied whereas Eqs (2-5) take the following forms:
[ =+ B+ Off + BRI £ —Mf =0, (7)
0 +Pr(f0 + 1,0 + N,¢'0 + N,(0)°) =0, (8)
. , N, .
¢ +Lefp +—0 =0, 9)
N,

with the following dimensionless boundary conditions

f(O) = O>f,(0) =1, 6/(0) = _V(l - 9(0>)7 (i)(O) =1,

f'(00) =0, 0(c0) =0, ¢p(c0) =0 (10)

where the heat source (1,>0) or sink (1,<0), the Lewis number Le, the Prandtl number Pr, the
Brownian motion parameter N,, the thermophoresis parameter N;, and the Biot number ¥, the
Deborah number $ and the magnetic parameter M are defined as

Ay = Qy/epe,, Le = v/Dy, Pr=v/a,, N, = (pc),Dy(C, — C..)/(pec)v,

GB2 (11)
Nt _ (pC)PDT(Tf _ Tx)/(pc)f’]‘mv) Yy = Hf\/ V/C/k, ﬁ = ;\467 M = 760’

The local Nusselt (Nu) and Sherwood (Sh) numbers have the following definitions

xqw ij
YTk, -T.) 7 T Dy(C, —C)

w o0

o) neonl
w ay y:07 w B ay =0

in which g,, and j,, represent the surface heat flux and surface mass flux respectively. In
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dimensionless form

Nu/Re!/? = —0/(0),Sh/Re!* = —¢'(0), (13)

Method of Solution
Shooting method

The nonlinear differential Eqs (7-9) along with conditions (10) are solved numerically using
an efficient approach namely shooting method. Runge-Kutta fourth-order algorithm combined
with secant method is utilized to approximate the shoot values in order to match at a finite
value of n—00 say 7. For this we first suppose

f=tifi=h £ L 11)13[2[%}22%)2 M

0 =0, 0,=0 =—Pr(f0, + 0+ N,0,¢, — N,0°), (14)

= b1, & = —Le(f¢>1 +Z’je)

with conditions
f(0) =0, £,(0) =1, 6,(0) = —y(1 = 6(0)), $(0) = 1. (15)

It is noted that to solve the above system of equations as an initial value problem, we require
the values f'(0), 0;(0) and ¢;(0) whereas no such values are given initially. In order to find
these values we initially selected an initial guesses and then applied the fourth-order Runge-
Kutta method to approximate the values upto the desired accuracy of 10~°. Figs 1 and 2 are pre-
pared to show a comparison between the numeric and HAM solution. It is evident from these
plots that both the solutions are in a nice agreement with each other. An abstract computer
code “S1 File” for the Shooting method with Runge-Kutta fourth order algorithm is also pre-
sented for the young researchers to excel in the numerical computations.

HAM solution

The analytic solutions of Eqs (7-9) subject to the boundary conditions (10) have been com-
puted by homotopy analysis method (HAM). Various researcher ([20-27] and refs. there in)
have already successfully applied this method to compute various flow problems. We have
selected the suitable initial guesses and the linear operators satisfying the given conditions for f,
0 and ¢. The initial guesses and linear operator for the present problem are of the form

N

foln) =1 —exp(=n),  Oy(n) =1 VeXp(—n), bo(n) = exp(—n). (16)
and
L) =f ~f, L0)=0-0. Lyd)=¢ —¢. (17)
We construct the problems at zeroth order as follows
(1= p)L;[f(n; p) — fy()] = phy N [f (n: p)], (18)
(1 = p)Ly[0(n; p) — 0,(n)] = phy N, [0(n; p), £ (n; P)], (19)
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Fig 1. Comparison of analytic (solid line) and numeric (dots) solutions for temperature.
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Fig 2. Comparison of analytic (solid line) and numeric (dots) solutions for temperature.

doi:10.1371/journal.pone.0129814.9002
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Ny[0(n; p), f(n; p), (05 p)]

(1= p)Ly[@(n; p) — ¢ ()] = phy N, [¢(n; p), £ (n; )], (20)

where Nj Ng and N, are nonlinear operators defined as

NG p) =72 8(Z’ P (2B + 1)f(n: p) a‘fg,’j; D e 8f§;7,; &
) 2 : 2£( 1 3000 (21)
—(—81[((,;’7;1’)) + ﬁ<2f(n;p) 8f((;]r;p)8fa(;];p) (n;p)afa(Z;p)),

:azo<n;p>+1,r< a9 ) 0 ) + v (200 +Nb8d>(n;1>)80(n;1>)>’(22)

on? on on on

N, 001 ). 101 ), 00 )] = ) g p) PO 4 SLETD),

(23)

where h4 hg and h,, are convergence control parameters and p€[0,1] is an embedding parame-
ter. Note that the process of “p” varying from 0 to 1 is just the continuous variation of the func-
tions f, 8 and ¢ from the known initial approximation f;, 8, and ¢, to the final solutions.
Expanding f(n;p) 6(n;p) and ¢(13;p) according to Taylor's formula and considering that the
resulting series are convergent at p = 1 we get

(M +> " faln)
)+, )

(24)
= py(n +Z L baln
where
O"f (n; 0" o
) = IR ) = S g = TR o)
p=0 p=0 p=0

The problems at mth order are obtained by first differentiating Eq (18) m times with respect
to p and then setting p = 0 and finally dividing it by m! i.e.

Lylf,,(n) = Zufos ()] = RRL, (),
Ly[0,,(1) = 1,0, .(n)] = B, RS, (n), (26)

Ly[¢, (1) = 1, r (n)] = B,RD (1),

R () = i, + (M6 + 1) Z[fml fz}i;,l,kﬁ:]

k=0

SMEf ﬂi}mlkZuf;ﬁ' —fi .
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Table 1. Convergence of the computed solutions whenPr=1.0=Le=M,f=0.2=A,y=0.1=N;=N, and /= hg=h, =-0.7.

Order of approximation

1
5

10
15
20
25
30
30
40
50

doi:10.1371/journal.pone.0129814.t001

-'(0) -6'(0) -¢'(0)
1.38500 0.08819 0.76413
1.44992 0.08149 0.50016
1.45024 0.06378 0.48315
1.45024 0.06364 0.48311
1.45024 0.06364 0.48311
1.45024 0.06364 0.48311
1.45024 0.06364 0.48311
1.45024 0.06364 0.48311
1.45024 0.06364 0.48311
1.45024 0.06364 0.48311

m—1
0 _ /! / / ! / /
R, (n) =0,_,(n) +Pri,0, , +Pr E 01 ifi + NG, b + NG, 0] ] (28)
k=0
m—1
) " Nt " /
Rm(n) = (pmfl(rl) + ﬁemfl + Le (pmflfkﬁc’ (29)
b k=0
0, m<1, (30)
A, = 30
" 1, m>1.

Table 1 is prepared showing the convergence of the Eqs (7-9). In present article we have uti-
lized the two different techniques namely “Shooting method” and “homotopy analysis method
(HAM)”. Shooting method is a numerical approach which utilizes the RK4 and secant method
whereas homotopy analysis method (HAM) is an analytic approach. The solution obtained by
HAM must be convergent and has to be in agreement with the solution obtained by shooting
method. Thus we have prepared Figs 1 and 2. These plots show a comparison of analytic and
numeric results and from these plots it is verified that both solutions are in nice agreement
with each other.

Results and Discussion

In this section we have prepared various plots and table to analyze different rheological aspects
of the involved sundry parameters. Figs 3 and 4 presented the stream line behavior for the
Newtonian and Maxwell fluid flow. It is observed that the stream line for Maxwell fluid are
quite different as compared to the Newtonian fluid. Fig 5 presents the influence of the Deborah
number S on the velocity profile f. It is observed from this figure that Deborah number
retards the flow for the case of constant magnetic field. Basically Deborah number f defines the
difference between the solid and liquids (or fluids). The material behaves like fluids for smaller
Deborah number whereas for large value of Deborah number the material behaves like visco-
elastic solids. This is quite obvious from the present analysis that velocity field shows declara-
tion for larger Deborah number. The velocity profile and the boundary layer thickness
monotonically decreases with an increase in 77 and finally approaches to zero when n—>7,
(which for the present case equals to 6) representing the characteristics of the boundary layer
flow. The influence of § on the temperature profile 8 is shown in Fig 6. Since Deborah number
B causes a reduction in the molecular movement which conclusively increases the temperature
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Fig 3. Stream lines for Newtonian model.

doi:10.1371/journal.pone.0129814.g003

of the nanofluid as shown in the figure. The significant enhancement is noted in temperature
profile f when N, and N; are increases (Fig 7). Since an increase in the strength of Brownian
motion process causes an effective movement of the nanoparticles which enhances the thermal
conductivity of the fluid. Figs 8 and 9 elucidate that magnetic field M and Biot number y (the
conjugate parameter for convective cooling) enhance the temperature. The effects of heat
source parameter (1>0) and heat sink parameter (1<0) on temperature profile 6 are presented
in Figs 10 and 11. It is noted from these plots that the temperature of the fluid increases with
an increase in heat source whereas it decreases with an increase in heat sink parameter. It is
also observed that the magnitude for the case of heat source parameter is larger when com-
pared with the case when heat sink is present in the system. It is quite obvious because of the
fact that nanoparticles has the property to enhance the temperature of the fluid and addition-
ally when heat source is present into the system then the temperature is further increases as
shown in Fig 10. Moreover we can also conclude that one can control the heat enhancement
phenomenon can be controlled very efficiently by adding the heat sink into the system (Fig
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Maxwell model
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Fig 4. Stream lines for Maxwell model.

doi:10.1371/journal.pone.0129814.9004

11). Effects on Deborah number 5 on nanoparticle concentration ¢ are portrayed in Fig 12. It is
seen that nanoparticle concentration increases due to an increase in 8. Moreover the nanoparti-
cle concentration boundary layer is also become thicker with an increase in 5. Influences of
magnetic field M, the Brownian motion parameter N;, and the thermophoresis parameter N,
on ¢ are shown in Figs 13 and 14. It is noted from these plots that ¢ increases with an increase
in magnetic field M, the Brownian motion parameter N, and the thermophoresis parameter N,.

Table 2 presents a comparative study for the results of local sherwood and Nusselt num-
bers obtained in the current analysis with those of Makinde and Aziz [14] From this table
one can see that the obtained results in a limiting sense are in nice agreement with the pub-
lished results (Makinde and Aziz [14]). Tables 3 and 4 present the comparison of series and
numerical solution for local Nusselt and Sherwood number when different physical parame-
ters are varied. From these table one can see that local Nusselt number is a decreasing func-
tion of A, N; and N}, whereas local Sherwood number is a decreasing function of 4 and N;
whereas it increases by increasing Nj,. Moreover it is also seen that the numeric and analytic
solutions are in a nice agreement.
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M=0.0,=0.0,0.51.0,15

Fig 5. Influence of Deborah number Sonf.

doi:10.1371/journal.pone.0129814.g005

M=05,1=02,Pr=10=Le, f=0.0,0.5,1.0, 1.5
0.8

Nb

0.8, Nt=0.5

’)/:

Fig 6. Influence of Deborah number g on 6.

doi:10.1371/journal.pone.0129814.9006
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M=05=y,Nt=Nb=0.1,0.5,1.0, 1.5

=Le

02=pPr=10

A=

Fig 7. Influence of (N, N;) on 6.
doi:10.1371/journal.pone.0129814.g007

M=0.0,0510,15Pr=10=Le, =02=2
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Fig 8. Influence of magnetic field M on 6.

doi:10.1371/journal.pone.0129814.g008
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Fig 9. Influence of Biot number y on 6.

doi:10.1371/journal.pone.0129814.g009
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Fig 10. Influence of heat source (A>0) on 6.

doi:10.1371/journal.pone.0129814.g010
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Fig 11. Influence of heat sink (A<0) on 6.
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Fig 12. Influence of Deborah number 8 on ¢.

doi:10.1371/journal.pone.0129814.9012
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Fig 13. Influence of magnetic field M on ¢.
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Fig 14. Influence of (N, Ny) on ¢.
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Table 2. Comparison of results for &(0) and ¢'(0) when N, =0.5=N;,Pr=Le=5.0andM=0=8=A.

Y 0'(0) ¢'(0)
Present Makinde and Aziz [14] Present Makinde and Aziz [14]
1.0 0.1476 0.1476 1.6914 1.6913
10.0 0.1549 0.1549 1.7122 1.7122
100.0 0.1557 0.1557 1.7144 1.7144
00 0.1557 0.1557 1.7146 1.7146

doi:10.1371/journal.pone.0129814.t002

Conclusions

Heat generation/absorption effects in a non-Newtonian fluid filled with nanoparticles are ana-
lyzed. Velocity, temperature and mass fraction field are discussed in details. Numerical and
analytical solutions are computed and presented via graphical and numerical results. Compari-
sons with the previous data (Makinde and Aziz [14]) have been made which show the validity
of the obtained results. Some key observations are mentioned below

Table 3. Series and numeric solutions for Nusselt number for different values when M =1.0=Pr =Le,
B=0.2andy=0.1.

A Np N; -6(0)
HAM Numerical

-0.3 0.1 0.1 0.32165 0.32165

-0.1 0.1 0.1 0.29421 0.29421
0.1 0.1 0.1 0.23807 0.23807
0.3 0.1 0.1 0.06142 0.06142
0.2 0.1 0.1 0.17024 0.17024
0.2 0.2 0.1 0.15233 0.15233
0.2 0.3 0.1 0.13399 0.13399
0.2 0.1 0.1 0.17024 0.17024
0.2 0.1 0.2 0.16205 0.16205
0.2 0.1 0.3 0.15335 0.15335

doi:10.1371/journal.pone.0129814.t003

Table 4. Series and numeric solutions for Sherwood number for different values when M =1.0 =Pr =
Le,B=0.2andy=0.1.

A Ny N; -¢'(0)
HAM Numerical

-0.3 0.1 0.1 0.60805 0.60805

-0.1 0.1 0.1 0.60335 0.60335
0.1 0.1 0.1 0.59613 0.59613
0.3 0.1 0.1 0.59195 0.59194
0.2 0.1 0.1 0.59219 0.59219
0.2 0.2 0.1 0.62637 0.62637
0.2 0.3 0.1 0.63772 0.63772
0.2 0.1 0.1 0.59219 0.59219
0.2 0.1 0.2 0.51966 0.51966
0.2 0.1 0.3 0.44625 0.44625

doi:10.1371/journal.pone.0129814.t004
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o Numerical results obtained for the variations in Biot number y with those obtained by
Makinde and Aziz [14] agree up to four decimal places.

« Stream lines for Newtonian and Maxwell fluid models are presented.
« Increase in the Deborah number § decelerates the velocity of the fluid and retards the flow.
« Biot number y enhances the temperature profile rapidly near the boundary.

« Presence of magnetic field results in to decrease in to internal molecular movement which
enhances the temperature of the fluid

o Presence of heat source in a system can enhances the temperature whereas heat sink cause
into decrease in temperature.

« Thermophoresis N, and Brownian motion N, have significant effects on temperature as com-
pared to concentration.

Supporting Information

S1 File. Computer code.
(DOC)

Acknowledgments

We sincerely thank the editor and the reviewer for the constructive suggestions for the
improvement of this article. The first author thanks Higher Education Commission (HEC) of
Pakistan for the support via IPFP/HRD/HEC/2014/870.

Author Contributions

Conceived and designed the experiments: MA SI. Performed the experiments: MA TH SI AA.
Analyzed the data: MA TH. Contributed reagents/materials/analysis tools: MA TH SI AA.
Wrote the paper: MA TH.

References

1. Zierep J, Fetecau C (2007) Energetic balance for the Rayleigh-Stokes problem of a Maxwell fluid. Int. J.
Engng. Sci., 45:617-627.

2. Fetecau C, Athar M, Fetecau C(2009) Unsteady flow of Maxwell fluid with fractional derivative due to a
constantly accelerating plate. Comp. Math. Appl., 57: 596-603.

3. Jamil M, Fetecau C (2010) Helical flows of Maxwell fluid between coaxial cylinders with given shear
stresses on the boundary. Nonlinear Anal., Real World Appl., 11:4302-4311.

4. Renardy M, Wang X (2012) Boundary layers for the upper convected Maxwell fluid. J. Non-Newtonian
Fluid Mech., 189-190: 14-18.

5. HayatT, Awais M, Qasim M, Hendi A A (2011), Effects of mass transfer on the stagnation point flow of
an upper convected Maxwell fluid, Int. J. Heat Mass Transfer, 15-16: 3777-3782.

6. HayatT, Awais M, Sajid M (2011) Mass transfer effects on the unsteady flow of UCM fluid over a
stretching sheet. Int. J. Mod. Phys. B, 25: 2863-2878.

7. Abbasbandy S, Naz R, Hayat T, Alsaedi A (2014) Numerical and analytical solutions for Falkner Skan
flow of MHD Maxwell fluid. Appl. Math. Comp., 242: 569-575.

8. Awais M, Hayat T, Alsaedi A, Asghar S (2014), Time dependent three dimensional boundary layer flow
of a Maxwell fluid. Comp. Fluids, 91:21-27.

9. Zhao M, Wang S, Zhang Q (2014), Onset of triply diffusive convection in a Maxwell saturated porous
layer. App-l. Math. Mod., 38: 2345-2352.

PLOS ONE | DOI:10.1371/journal.pone.0129814 June 26, 2015 17/18


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0129814.s001

@’PLOS ‘ ONE

Heat Generation/Absorption Effects in a Maxwell Nanofluid

10.

11.

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24,

25.

26.

27.

Shateyi S (2013) A new numerical approach to MHD flow of a Maxwell fluid past a vertical stretching
sheet in the presence of thermophoresis and chemical reaction. Boundary Value Problems, 2013:
196-202.

Choi S U S (1995) Enhancing thermal conductivity of fluids with nanoparticles. ASME Int. Mech.
Engng., 66: 99-105.

Masuda H, Ebata A, Teramae K, Hishinuma N (1993) Alteration of thermal conductivity and viscosity of
liquids by dispersing ultra-fine particles. Netsu Bussei, 7: 227-2383.

Khan W A, Pop | (2010) Boundary-layer flow of a nanofluid past a stretching sheet. Int. J. Heat Mass
Transfer, 53: 2477-2483.

Makinde O D, Aziz A (2011) Boundary layer flow of a nanofluid past a stretching sheet with a convective
boundary condition. Int. J. Therm. Sci., 50:1326-1332.

Hassani M, Tabar M M, Nemati H, Domairry G, Noori F (2011) An analytical solution for boundary layer
flow of a nanofluid past a stretching sheet. Int. J. Therm. Sci., 50: 2256-2263.

Rana P, Bhargava R (2012) Flow and heat transfer of a nanofluid over a nonlinearly stretching sheet: A
numerical study. Com. Nonlinear Sci. Numer. Simulat., 17: 212-226.

Hamad M A A, Ferdows A (2012) Similarity solution of boundary layer stagnation-point flow towards a
heated porous stretching sheet saturated with a nanofluid with heat absorption/generation and suction/
blowing: A Lie group analysis. Com. Nonlinear Sci. Numer. Simulat., 17: 132—140.

Alsaedi A, Awais M, Hayat T (2012) Effects of heat generation/absorption on stagnation point flow of
nanofluid over a surface with convective boundary conditions. Comm. Nonlinear Sci. Numer. simulat.,
17:4210-4223.

Nadeem S, Mehmood R, Akbar N S (2013), Non-orthogonal stagnation point flow of a nano non-Newto-
nian fluid towards a stretching surface with heat transfer. Int. J. Heat Mass Transfer, 57: 679-689.

Liao S J (2009) Notes on the homotopy analysis method: Some definitions and theorems. Commun.
Nonlinear. Sci. Numer. Simulat. 14: 983-997.

Xu H, Liao S J (2009) Laminar flow and heat transfer in the boundary-layer of non Newtonian fluids over
a stretching flat sheet, Comput. Math. Appl., 57: 1425-1431.

Hayat T, Awais M, Asghar S, Obaidat S (2012) Unsteady flow of third grade fluid with Soret and Dufour
effects. ASME: J. Heat Transfer, 134: 062001.

Hayat T, Safdar A, Awais M, Mesloub S (2012) Soret and Dufour effects for three-dimensional flow in a
viscoelastic fluid over a stretching surface. Int. J. Heat Mass Transfer, 66: 2129-2136.

Abbasbandy S, Shirzadi A (2011) A new application of the homotopy analysis method: Solving the
Sturm-Liouville problems. Comm. Nonlinear Sci. Num. Simul. 16: 112-126.

Abbasbandy S, Shivanian E, Vajravelu K (2011) Mathematical properties of-curve in the frame work of
the homotopy analysis. Comm. Nonlinear Sci. Numer. Simulat. 16: 4268—4275.

Rashidi M M, Pour S A M (2010) Analytic approximate solutions for unsteady boundary-layer flow and
heat transfer due to a stretching sheet by homotopy analysis method. Nonlinear Analysis: Modelling
and Control, 15:83-95.

Rashidi M M, Hayat T, Erfani E, Pour S A M, Hendi A A (2011) Simultaneous effects of partial slip and
thermal-diffusion and diffusion-thermo on steady MHD convective flow due to a rotating disk. Comm.
Nonlinear Sci. Numer. Simulat., 16: 4303—4317.

PLOS ONE | DOI:10.1371/journal.pone.0129814 June 26, 2015 18/18



