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Abstract

It is known that cadmium (Cd) induces cytotoxicity in hepatocytes; however, the underlying
mechanism is unclear. Here, we studied the molecular mechanisms of Cd-induced hepato-
toxicity in rat liver cells (BRL 3A) and in vivo. We observed that Cd treatment was associat-
ed with a time- and concentration-dependent decrease in the cell index (CI) of BRL 3A cells
and cellular organelle ultrastructure injury in the rat liver. Meanwhile, Cd treatment resulted
in the inhibition of gap junction intercellular communication (GJIC) and activation of mito-
gen-activated protein kinase (MAPK) pathways. Gap junction blocker 18-3-glycyrrhetinic
acid (GA), administered in combination with Cd, exacerbated cytotoxic injury in BRL 3A
cells; however, GA had a protective effect on healthy cells co-cultured with Cd-exposed
cells in a co-culture system. Cd-induced cytotoxic injury could be attenuated by co-treat-
ment with an extracellular signal-regulated kinase (ERK) inhibitor (U0126) and a p38 inhibi-
tor (SB202190) but was not affected by co-treatment with a c-Jun N-terminal kinase (JNK)
inhibitor (SP600125). These results indicate that ERK and p38 play critical roles in Cd-in-
duced hepatotoxicity and mediate the function of gap junctions. Moreover, MAPKs induce
changes in GJIC by controlling connexin gene expression, while GJIC has little effect on the
Cd-induced activation of MAPK pathways. Collectively, our study has identified a possible
mechanistic pathway of Cd-induced hepatotoxicity in vitro and in vivo, and identified the par-
ticipation of GJIC and MAPK-mediated pathways in Cd-induced hepatotoxicity. Further-
more, we have shown that salidroside may be a functional chemopreventative agent that
ameliorates the negative effects of Cd via GJIC and MAPK pathways.

Introduction

Cadmium (Cd) is a serious environmental toxicant with harmful effects on health in both ani-
mals and humans. It is known to target multiple organ systems, particularly the kidneys and
liver[1]. Damage resulting from Cd-induced oxidative stress activates signaling cascades,
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including the Ca** pathway, the mitogen-activated protein kinase (MAPK) pathway, the phos-
phatidylinositol-3-kinase (PI3K)-Akt pathway and the nuclear factor-kB (NF-xB) pathway,
which cause cellular injury, apoptosis and carcinogenesis[2]. However, the definitive signaling
pathway that plays the crucial role in Cd-induced apoptosis remains unclear.

Gap junction intercellular communication (GJIC) is one of the most important cellular
communications and plays an important role in many biological processes [3, 4]. Gap junctions
are formed from two connexons on adjacent cells, with each connexon comprised of six con-
nexins (Cx). GJIC, by nature, implies the passive diffusion of small (<1000 Da), hydrophilic
substances (e.g., ions, small metabolites and secondary messengers) and there are more than 20
connexin species known to be present in animals and humans, where Cx32 makes up about
90% of the hepatic connexin content. Connexin gene expression and gap junction channel gat-
ing are two major mechanisms of GJIC control [5]. It is well known that the functional loss of
gap junctions can result in apoptosis, necrosis and carcinogenesis [6-9] and it is also known
that Cd disrupts gap junction activity in hepatocytes in vitro and in vivo [10, 11].

MAPKs are a family of Ser/Thr protein kinases of highly conserved enzymes that are unique
to eukaryotes. They have been shown to participate in many facets of cellular regulation, such
as the control of gene expression, cell proliferation and programmed cell death [12]. Extracellu-
lar signal-regulated kinase (ERK), JNK and p38 MAPK are three major members of the MAPK
family. These enzymes are activated by phosphorylation and the strength and duration of the
activated MAPKSs, as well as the cell type, determine the diversity of gene expression, which re-
sults in different physiological consequences. Studies have shown that MAPKs are involved in
Cd-induced apoptosis in various cell types, including hepatocytes [13].

Salidroside (Sal) is an active constituent of Rhodiola rosea L., which has been used over
many years as a medicinal herb for the treatment of altitude sickness [14]. Previous studies
have shown that Sal exhibits several pharmacological activities, including anti-oxidant, anti-
aging, anti-inflammatory, anti-cancer, anti-fatigue and anti-depressant effects [15-19]. Addi-
tional studies have found that Sal exerts a protective effect against cellular injury and apoptosis
by altering signal transduction in cells. For example, Sal has been shown to protect brain neu-
rons from ischemic injury via the mammalian target of rapamycin (mTOR) signaling pathway
[20] and has also been shown to protect against oxygen-glucose deprivation (OGD)/re-oxy-
genation-induced H9¢2 cell necrosis via activation of Akt-Nrf2 signaling [21]. Furthermore,
Sal has been found to attenuate H,0,-induced bone marrow-endothelial progenitor cell
(BM-EPC) apoptosis by inhibiting the up-regulation of phosphorylated c-Jun N-terminal ki-
nase (JNK) and p38 MAPK, whilst down-regulating the Bax/Bcl-xL expression ratio [22].

Based on these considerations, in this study we chose Sal as a protective agent against Cd-in-
duced apoptosis to investigate the interactional effects of the MAPK pathway and GJIC, as well
as the protective mechanism of Sal both in vitro and in vivo.

Materials and Methods
Materials

Sal (purity >99%) was obtained from the National Institute for the Control of Pharmaceutical
and Biological Products (Beijing, China). Dulbecco’s modified Eagle’s medium (DMEM) and
fetal bovine serum (FBS) were obtained from Gibco (Grand Island, NY, USA). The enhanced
chemiluminescence (ECL) detection kit was from Millipore (Burlington, MA, USA). Cadmium
acetate (Cd), Lucifer yellow (LY), 18-B-glycyrrhetinic acid (GA), U0126, SP600125, SB202190
and the anti-ERK, anti-P-ERK, anti-JNK, anti-P-JNK, anti-p38, anti-P-p38 and anti-B-actin
antibodies were purchased from Sigma-Aldrich (Shanghai, China). PrimeScript RT Reagent
kit and SYBR Premix Ex Taq were obtained from TaKaRa Biotechnology (Dalian, China).
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Oligonucleotide primers were synthesized by Invitrogen (Shanghai, China). All other reagents
were of analytical grade.

Animals and treatment

Thirty female Sprague-Dawley rats weighing 80-100 g were obtained from the Laboratory Ani-
mal Center of Jiangsu University (Zhenjiang, China). The animals were housed individually on
a 12 h light/dark cycle with unlimited standard rat food and double distilled water (DDW). All
experimental procedures were conducted in accordance with the recommendations in the
Guide for the Care and Use of Laboratory Animals of the National Research Council and were
approved by the Animal Care and Use Committee of Yangzhou University (Approval ID:
SYXK (Su) 2007-0005). All surgeries operations were performed under sodium pentobarbital
anesthesia, and all efforts were made to minimize any suffering experienced by the animals
used in this study. The animals were divided randomly into three groups as follows. (1) Control
group: 10 rats consuming DDW as their drinking water. (2) Cadmium group: 10 rats consum-
ing a solution of Cd (50 mg/L) as their drinking water. (3) Cadmium + Sal group: 10 rats treat-
ed daily with Sal (35 mg/kg body weight, intragastric gavage, i.g.) and consuming a solution of
Cd (50 mg/L) as their drinking water. All rats were sacrificed by cervical dislocation 12 weeks
after initial treatment.

Cell culture

Rat liver cells (BRL 3A) were purchased from the Cell Bank of the Institute of Biochemistry
and Cell Biology (Shanghai, China). The cells were suspended in DMEM supplemented with
10% FBS, 100 U/mL penicillin and 100 pg/mL streptomycin, and then incubated in a humidi-
fied 5% CO,/95% air atmosphere at 37°C. BRL 3A cells from passages 10 to 30 were used for all
experiments and treated at 90% confluence with different concentrations of Cd (2.5 pM or

10 uM) in the presence or absence of Sal (50 uM) for 12 h.

Real time analysis of cytotoxicity using an xCELLigence DP system

The xCELLigence system consists of three components: an analyzer, a real-time cell analyzer
(RCTA) station and an E-plate. The dimensionless parameter cell index (CI) was used to quan-
tify cell status and was derived from the measured cell-electrode impedance that directly re-
lates to cell number, cell viability, adhesion and morphology|[23].

The xCELLigence system (Roche Applied Science, Basel, Switzerland) was operated accord-
ing to the manufacturer’s instructions [24]. The background impedance of the E-plate was de-
termined in 100 mL medium. Then, 100 mL of the BRL 3A cell suspension was added (10,000
cells/well). Cells were incubated for 30 min in the incubator and then the E-plate was placed
into the xCELLigence station. The CI was measured every 15 min. During the phase of rapid
Cl increase, the growth medium was replaced by serum-free culture medium containing differ-
ent compounds according to the experimental design. The results were normalized at the end
of the assay.

Western blot analysis

Equal amounts of protein (40 pg), were separated by 10% sodium dodecyl sulfate-polyacryl-
amide gel electrophoresis and transferred onto nitrocellulose membranes. The membrane was
incubated with 5% nonfat milk in Tris-buffered saline with 0.1% Tween-20 (TBST) at room
temperature for 30 min before incubation with primary antibodies against ERK, P-ERK, JNK,
P-JNK, p38, P-p38 (1:1000) or B-actin (1:5000) overnight at 4°C, followed by incubation with
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horseradish peroxidase (HRP)-conjugated goat anti-rabbit IgG (1:5000) at room temperature
for 2 h. The membranes were then washed with TBST and the protein bands were visualized by
ECL reagents. The results were analyzed using Image Lab software (Bio-Rad, Hercules, CA,
USA).

Scrape-loading/dye-transfer assay for GJIC

A scrape-loading/dye-transfer method (SL/DT) for assessing GJIC using LY was performed as
originally described by El-Fouly et al. [25]. In brief, after washing three times with PBS, the
cells or fresh liver tissue were scraped with a sharp blade in the presence of LY (0.5 mg/mL),
followed by incubation in the dark for 3 min at 37°C and then washed three times with PBS
and fixed with 4% paraformaldehyde. The liver tissue samples were then processed by a stan-
dard histological technique and mounted on glass slides. The level of GJIC was quantified as
the average distance traveled by the LY dye from the scraped edge to the neighboring cells,
which was measured using a fluorescent microscope (Leica DMI 3000B, Solms, Germany).

Transmission electron microscopy and immuno-electron microscopy

Internal cellular structures were examined using a Philips CM-100 transmission electronic mi-
croscope. Fresh liver tissue was cut into small pieces and fixed with glutaraldehyde (2.5% in

0.1 mol/L cacodylate buffer, pH 7.4) at 4°C for 24 h and embedded in agar. Then, the samples
were treated with 1% osmium tetroxide for 2 h. After dehydration with a graded acetone series,
the samples were placed in pure acetone and Epon 812 epoxy solution for 30 min and then em-
bedded in Epon 812. Ultrathin sections were cut with a diamond knife and stained with uranyl
acetate and lead citrate for transmission electron microscopy. For immuno-electron microsco-
py, before staining with uranyl acetate and lead citrate, the sections were incubated with Cx32
antibody (1:100) at 4°C overnight, then incubated with 5 nm colloidal gold-conjugated anti-
rabbit IgG (Sigma-Aldrich, Shanghai, China; dilution: 1:100) at 4°C for 4 h.

RNA extraction, reverse transcription and quantitative reverse
transcription polymerase chain reaction (QRT-PCR)

Total RNA was extracted from cultured cells and liver tissue using TRIzol Reagent (Invitrogen)
according to the manufacturer’s instructions. The cDNA was synthesized from 900 ng total
RNA using a PrimeScript RT Reagent kit with gDNA Eraser (Takara, Japan). The primers were
designed using Primer Premier 5 as follows: B-actin forward, 5'- CGTTGACATCCGTAAAGA
CCTC-3'and reverse, 5'- TAGGAGCCAGGGCAGTAATCT -3'; Cx32 forward, 5'- TGGAAG
AGGTAAAGAGGCACAAG-3"and reverse, 5'- GGCGGGACACGAAGCAGT-3'. The expres-
sion levels of all genes were measured using a real-time PCR system (Applied Biosystems 7500,
USA) and the reactions were performed with a SYBR Premix Taq Il kit (Takara, Japan) accord-
ing the manufacturer’s instructions. mRNA levels were analyzed with the AACy method.

Transwell culture of BRL 3A cells

BRL 3A cells were seeded at a density of 5x10* cells/cm? on the inside surface of the polyester
membrane of Transwell cell culture inserts (pore size 0.4 pum, surface area 4.67 cm’; Corning,
UK), then incubated in serum-free DMEM with 10 uM Cd for 12 h after confluence was
achieved. After that, the insert was overturned and BRL 3A cells seeded at a density of 5x10*
cells/cm” on the outside surface of the insert before incubation of the insert in culture medium
with 50 uM Sal, 5 uM GA, 10 uM U0126, 10 uM SP600125 or 10 uM SB202190 for 36 h (Fig 1).
Finally, cells were carefully wiped from the inside surface of the insert with a cotton swab and
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Fig 1. Transwell culture system. BRL 3A cells were cultured on the inside surfaces of Transwell cell culture
inserts in serum-free DMEM with 10 uM Cd for 12 h (a). The inserts were then overturned and BRL 3A cells
seeded on the outside surface of the inserts(b), with both sides then incubated in culture medium with 50 yM
Sal, 5 yM GA, 10 uM U0126, 10 uM SP600125 or 10 pM SB202190 for 36 h.

doi:10.1371/journal.pone.0129788.g001

the insert washed with cold PBS three times. Cells were fixed in 4% (w/v) paraformaldehyde
(Sigma-Aldrich, Shanghai, China) in PBS for 15 min and then stained for 15 min with Hoechst
33258. Images were obtained by an inverted fluorescence microscope (Leica, Germany).

Statistical analysis

All of the experimental data are presented as the mean + standard deviation (S.D.). Statistical
data comparisons among groups were performed using a non-parametric, one way analysis of
variance (ANOVA) with p < 0.05 considered statistically significant.

Results
Cd triggers cytotoxicity in BRL 3A cells and rat liver tissue

We evaluated Cd toxicity in BRL 3A cells using the xCELLigence DP system. We found that
treatment with Cd (1, 2.5, 5, 10, 20 and 40 uM) resulted in a time- and concentration-depen-
dent decrease of the cell index (CI) in BRL 3A cells (Fig 2A). To assess the influence of Sal on
Cd-induced cytotoxicity, cells incubated in the presence of Sal were compared to cells treated
with Cd alone. In comparison to BRL 3A cells exposed to Cd alone, the addition of Sal was as-
sociated with a slower decrease of the CI (Fig 2B). These results show that Cd triggers cytotoxic
injury in a time and dose-dependent manner and Sal at a concentration of 50 uM, can amelio-
rate the effect of Cd.
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Fig 2. Cd triggers cytotoxicity in BRL 3A cells and rat liver tissue. a, b: The effect of Cd treatment and Sal on the cell index in BRL 3A cells. Data were
normalized at the time of treatment. Curves were plotted as an average of quadruplicate treatments. Error bars show the standard deviation. ¢: Transmission
electron microscopy reveals the ultrastructure changes of nuclei and mitochondria. Bar = 0.5 pm.

doi:10.1371/journal.pone.0129788.9002
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Transmission electron microscopy was used to confirm that the mitochondria and the nu-
clei were indeed affected by Cd (Fig 2C). In untreated cells the nuclei were normal, with evenly
distributed chromatin, and the mitochondria did not exhibit edema and had clear mitochon-
drial cristae. Cd was noted to induce nuclei shrinkage and chromatin karyopyknosis, as evi-
dence by the intense staining and marginalization. Mitochondrial swelling was noted and
mitochondrial cristae fused partly and became blurry or were even missing. These cellular or-
ganelle ultrastructure injuries were partly rescued by treatment with Sal.

GJIC has a dual effect on Cd-induced cytotoxic injury

To determine gap junction activity after treatment of BRL 3A cells and rat liver tissue with Cd,
the GJIC was measured by a scrape-loading/dye-transfer method. We found that treatment
with Cd resulted in inhibition of GJIC in both BRL 3A cells and rat liver tissue, while Sal had a
protective effect on GJIC (Fig 3A). We then investigated the effect of Cd treatment on the
mRNA expression level of Cx32 using qRT-PCR. As shown in Fig 3B and Fig 3C, the relative
expression level of Cx32 was significantly (p < 0.05 or p < 0.01) decreased following Cd treat-
ment compared with the control group, while co-treatment with Sal significantly attenuated
the Cd-induced decrease of Cx32 mRNA. Immuno-labeled Cx32 was observed by transmission
electron microscopy (Fig 3D). In the control group, Cx32 was seen at the gap junctions be-
tween adjacent hepatocytes; however, the gold particles appeared decreased in number and
scattered after Cd treatment. Notably, Sal appeared to suppress the Cd-induced Cx32

mRNA decrease.

Using a Transwell culture system we co-cultured Cd-exposed cells on the inside surface
with BRL 3A cells on the outside surface in the presence of 50 pM Sal and 5 uM GA (Fig 3E).
Cd-exposed cells exhibited decreased viability, nuclei chromatin condensation and even nucle-
ar fragmentation. However, these injuries could be ameliorated by the addition of 50 pM Sal.
To verify the role of GJIC in Cd cytotoxicity, BRL 3A cells were co-treated with 10 uM Cd and
5 uM GA, which is a prototypical gap junction blocker. As shown in Fig 3F, Cd decreased cell
viability and co-treatment with GA exacerbated the reduction in cell viability, as well as nuclei
injury, compared with the cells treated only with Cd. However, in the Transwell co-culture sys-
tem, GA had a protective effect on BRL 3A cells co-cultured with Cd-exposed cells (Fig 3E).

Cd activates the MAPK pathway in BRL 3A cells and rat liver tissue

Western blot analysis was performed to determine the phosphorylation of MAPKs in BRL 3A
cells and rat liver tissue (Fig 4A and 4B). The phosphorylation levels of ERK, JNK and p38 in
BRL 3A cells were increased after Cd treatment for 12 h, significantly so for ERK. However, Sal
co-treatment significantly inhibited the up-regulation of phosphorylated ERK, JNK and p38.
Similar results were also seen in rat liver tissue. To define the roles of MAPKs in Cd-induced
cytotoxicity in hepatocytes, cells were co-treated with 10 uM Cd and U0126 (10 uM),
SP600125 (10 uM) or SB202190 (10 uM). The ERK inhibito (U0126) and the p38 inhibitor
(SB202190) prevented the CI decrease induced by Cd (Fig 4C and 4E). However, the JNK in-
hibitor (SP600125) had little effect on the decrease of the CI induced by Cd(Fig 4B). These data
demonstrate that the phosphorylation of ERK and p38 is essential for Cd-induced cytotoxicity
and that co-treatment with Sal has a protective effect.

The interaction between GJIC and the MAPK pathway plays an
important role in Cd-induced cytotoxicity

To assess the interaction between GJIC and the MAPK pathway following Cd-induced cytotox-
icity, MAPK inhibitors (U0126, SP600125 and SB202190) were added to cells in vitro. We
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found that co-treatment with U0126 significantly blocked decreases in Cd-induced Cx32
mRNA and SB202190 also restored Cx32 levels to some extent, whereas SP600125 had no ef-
fect on the expression of Cx32 mRNA (Fig 5A). In addition, alterations in Cx32 mRNA expres-
sion were found to be in accordance with GJIC function (Fig 5B). To verify the role of the
MAPK pathway in Cd-induced cytotoxicity, BRL 3A cells were incubated in the presence of Cd
(10 uM) on the inside surface of a Transwell insert for 12 h (an untreated control was also es-
tablished). After this time, cells were seeded on the outside surface of the insert in the presence
of U0126 (10 uM), SP600125 (10 uM) or SB202190 (10 uM) and compared with untreated con-
trol cells and cells treated only with Cd. As shown in Fig 5C, U0126 and SB202190 had a pro-
tective effect on Cd-exposed cells, with a decrease in nuclei chromatin condensation and
nuclear fragmentation, while SP600125 had little effect. Meanwhile, Fig 5D demonstrates that
GA had no effect on the Cd-induced up-regulation of phosphorylated ERK, JNK and p38.

Discussion

Cd is a persistent environmental contaminant with toxic effects in both humans and animals.
There is growing evidence that Cd induces apoptosis, but the underlying mechanism remains
unclear. The goal of this study was to examine the toxic mechanism of Cd exposure in rat hepa-
tocytes in vitro and in vivo, with a focus on the MAPK pathways and GJIC. In the present
study, Cd was demonstrated to be toxic to rat hepatocytes, resulting in decreased cell viability
and inhibition of GJIC function. Furthermore, MAPK pathways were found to have critical
functions in Cd-exposed hepatocytes, and GJIC inhibition had the dual effect of protecting
healthy cells, while damaging injured cells. The protective agent Sal partly attenuated Cd-
induced hepatotoxicity.
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Fig 5. The interaction between GJIC and the MAPK pathway plays an important role in Cd-induced cytotoxicity. a: Effect of U0126, SP600125 and
SB202190 on Cx32 mRNA expression in BRL 3A cells; b: Effect of U0126, SP600125 and SB202190 on the Cd-induced down-regulation of GJIC in BRL 3A
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cells. LY transferred to adjacent cells via open gap junctions. Scale bar = 100 pm. ** p < 0.01 compared with control group; # p < 0.05 and ## p < 0.01
compared with the 10 uM Cd group. ¢: The influence of Cd-exposed cells on BRL 3A cells in a Transwell culture system. Scale bar = 50 um. d: Effect of GA
on the Cd-induced phosphorylation of MAPKs in BRL 3A cells.

doi:10.1371/journal.pone.0129788.g005

Sal, as an efficacious anti-oxidant, has been widely researched both in vitro and in vivo. A
previous study has demonstrated that Sal (10 uM, 50 uM and 100 pM) inhibits 1-methyl-
4-phenylpyridinium (MPP+)-induced apoptosis in PC12 cells in a concentration-dependent
manner [26]. In addition, Sal (20 or 50 mg/kg) has been shown to reduce neuronal damage in
C57BL/6 mice [27]. Based on these reports, we selected Sal at a concentration of 50 uM for our
in vitro studies and 35 mg/kg body weight (i.g.), for our in vivo studies. According to our find-
ings, Cd exerted a cytotoxic effect in BRL 3A cells in a time- and concentration-dependent
manner (Fig 2A), with ultrastructural damage of nuclei and mitochondria in vivo (Fig 2C).
Similar findings have been reported in PC12 cells and rat liver tissue [28-30]. These injuries
were attenuated by co-treatment with Sal.

In multicellular organisms, the global interplay between the extra-, intra- and inter-cellular
communication controls the maintenance of homeostatic balance [31-33]. Direct intercellular
communication is mainly mediated by gap junctions [34] and the liver was one of the first or-
gans in which GJIC was studied [35]. In the adult liver, gap junctions occupy about 3% of the
hepatocyte membrane surface and Cx32 is the major connexin, comprising as much as 90% of
the total connexin content [36]. Previous studies have indicated that GJIC can spatially extend
apoptosis through the communication of cell death signals from apoptotic cells to healthy cells
[8]. In the present study, Cd induced inhibition of GJIC and down-regulation of Cx32 mRNA
expression both in BRL 3A cells and the rat liver (Fig 3A, 3B and 3C). Correspondingly, Cx32
decreased and scattered following Cd treatment (Fig 3D). Meanwhile, GJIC inhibition also
caused injured cells to lose the rescue signals (such as glucose, ATP and ascorbic acid) provided
by healthy cells, which shows a loss of normal growth regulation by the surrounding cells and
growth independence [34]. Cells co-treated with GA, a gap junction blocker, exacerbated the
effect of Cd in BRL 3A cells (Fig 3F), which is consistent with previous findings, while GJIC in-
hibition protected healthy cells by limiting the flux of toxic metabolites, such as nitric oxide
and superoxide ions, from conjoint damaged cells [37].

To assess whether healthy cells were affected by apoptosis cells, Guo et al. [38] co-cultured
normal PC12 cells and Pb**-exposed PC12 cells, which were transfected with the EF1A-eGFP
vector. They found that Pb*"-exposed PC12 cells induced apoptosis in the unexposed cells via
a reactive oxygen species (ROS)-dependent mitochondrial pathway, which was achieved by
GJIC. Accordingly, in the present study, Transwell inserts with a 0.4 um pore size were used in
a co-culture system. The pore size was selected so that cells could not cross through the insert
membrane but small-size substances could be shared via hemi-channels and/or establishment
of gap junctions (as is known for pore sizes less than 3 pm). As such, we co-cultured Cd-ex-
posed BRL 3A cells and normal BRL 3A cells independently on the two sides of a Transwell in-
sert (Fig 1). The resulting findings showed that the inside surface of Cd-exposed cells induced
cell damage to the unexposed cells on the outside surface, as shown by nuclei injuries, and that
GA and Sal have a protective effect (Fig 3E). This shows that GJIC inhibition has the dual effect
of protecting normal cells and exacerbating damage in Cd-exposed cells.

The liver has been identified as a major target of Cd-mediated toxicity; however, not all as-
pects of the mechanism have been fully elucidated [39]. Cd is known to induce cytotoxic injury
via various cell signal-transduction pathways. Wang et al. [40] demonstrated that Cd induced
apoptosis via oxidative stress and calcium overload in rat hepatocytes, while Xu et al. [41] have
demonstrated that Cd resulted in the caspase-dependent apoptosis of neuronal cells, which was
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induced by [Ca®*]; elevation, implicating ROS and activated MAPK and mTOR pathways.
MAPKs are important signaling enzymes that play a critical role in controlling gene expression,
cell survival and cell death; however, the regulation of cytotoxic injury by MAPKs is complex
[12]. In this study, we showed that ERK, JNK and p38 activation may be involved in Cd-in-
duced hepatotoxicity both in vitro and in vivo (Fig 4A and 4B), which is in agreement with our
previous study [42]. Others studies have shown that ERK is mainly activated by growth factors
and tumor promoters and is necesssary for cell proliferation and differentiation, whereas JNK
and p38 are involved in apoptosis by promoting cell death [43, 44]. Both survival and death sig-
nals can activate ERK. Depending on the cell type and stimulus, ERK has a dual effect: besides
its involvement in cell proliferation and differentiation, the duration of the activation of ERK
also acts as a negative regulator of cell survival and promotes apoptosis [45-47]. Our results
showed that ERK, JNK and p38 phosphorylation are altered in Cd-exposed BRL 3A cells and
the injured liver, and these changes can be attenuated by Sal. Furthermore, ERK and p38 inhi-
bition blocked the decrease observed in the CI following Cd treatment (Fig 4C and 4E). These
results showed that ERK and p38 play a crucial role in Cd-induced hepatotoxicity and they are
in line with previous findings. However, it should be noted that Chen et al. [48] have developed
a different opinion. They found that activation of p38 MAPK is not involved in Cd-induced
cell death in PC12 cells, suggesting that p38 may play a different role in different cell types.

In addition, MAPKs are considered to play important roles in GJIC [47, 49]. Previous find-
ings have shown that H,O,-induced GJIC inhibition is involved in both ERK and p38 MAPK
activation [50, 51], while Cx32 plays a critical role in biological processes of hepatocyte prolif-
eration and cell death [35]. Inhibition of ERK and p38 MAPK-attenuated oxygen—-glucose dep-
rivation has been shown to induce Cx32 up-regulation and hippocampal neuron injury [52].
Our findings show that the MAPK inhibitors recover GJIC that was inhibited by Cd (Fig 5B)
and inhibition of ERK and, to some extent, p38 blocked the Cd-induced down-regulation of
Cx32 mRNA expression (Fig 5A). In the co-culture system, we observed that U0126 and
$B202190 had a protective effect on BRL 3A cells injured through communication with Cd-ex-
posed cells (Fig 5C). Meanwhile, GA, a GJIC blocker, had little effect on the Cd-induced activa-
tion of ERK, JNK and p38 (Fig 5D). The results demonstrate that MAPKs induce changes in
GJIC most likely by controlling connexin gene expression[53].

In summary, the present work shows that Cd induces rat hepatotoxicity via inhibition of
GJIC and activation of MAPK pathways. Interestingly, inhibition of GJIC has the dual effect of
protecting healthy cells, while exacerbating injury in damaged cells. ERK and p38 have been
found to play critical roles in Cd-induced hepatotoxicity and mediate the function of gap junc-
tions. Finally, Sal may be a potent chemopreventive agent that can prevent the negative effects
of Cd via GJIC and MAPK pathways.
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