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Abstract

Background

Breast cancer (BC) is a leading cause of death among women. Among the major risk fac-

tors, an important role is played by familial history of BC. Germ-line mutations in BRCA1/2

genes account for most of the hereditary breast and/or ovarian cancers. Gene expression

profiling studies have disclosed specific molecular signatures for BRCA1/2-related breast

tumors as compared to sporadic cases, which might help diagnosis and clinical follow-up.

Even though, a clear hallmark of BRCA1/2-positive BC is still lacking. Many diseases are

correlated with quantitative changes of proteins in body fluids. Plasma potentially carries im-

portant information whose knowledge could help to improve early disease detection, prog-

nosis, and response to therapeutic treatments. The aim of this study was to develop a

comprehensive approach finalized to improve the recovery of specific biomarkers from plas-

ma samples of subjects affected by hereditary BC.

Methods

To perform this analysis, we used samples from patients belonging to highly homogeneous

population previously reported. Depletion of high abundant plasma proteins, 2D gel analysis,

liquid chromatography-tandemmass spectrometry (LC-MS/MS) and bioinformatics analysis

were used into an integrated approach to investigate tumor-specific changes in the plasma pro-

teome of BC patients and healthy family members sharing the same BRCA1 gene founder mu-

tation (5083del19), previously reported by our group, with the aim to identify specific signatures.

Results

The comparative analysis of the experimental results led to the identification of gelsolin as

the most promising biomarker.
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Conclusions

Further analyses, performed using a panel of breast cancer cell lines, allowed us to further

elucidate the signaling network that might modulate the expression of gelsolin in breast

cancer.

Introduction
Breast cancer (BC) is the most commonly diagnosed cancer in women worldwide, representing
about 12% of all new cancer cases and 25% of all cancer cases in women [1]. Due to the high
morphological and genetic heterogeneity, traditional methods for subgrouping BC, which rely
on pathological and clinical data can only partially reflect the clinical variety of the disease. Mo-
lecular profiling has been shown to be well suited to phenotypic characterization of BC and to
discover potentially new molecular classes among cancers with similar histological appearance
[2].

It is estimated that 5%–10% of all breast and ovarian cancer (BOC) cases are genetically in-
herited, and the BC susceptibility genes BRCA1 and BRCA2 have been identified as being re-
sponsible for 21%–40% of these cases [3].

Women who carry a germline mutation in BRCA1 have a lifetime risk of 50%–85% of devel-
oping breast cancer and 12%–60% of developing ovarian cancer. BRCA1-mutated breast tu-
mours are generally ER, PgR, and HER2/neu negative and poorly differentiated with a poor
prognosis [4].

The BRCA1 tumour suppressor gene encodes for a multifunctional protein that has been
implicated in many normal cellular functions such as DNA repair, transcriptional regulation,
cell-cycle checkpoint control, and ubiquitination [5, 6].

A cell carrying a mutant BRCA1 gene, which therefore lacks functional BRCA1 protein,
shows a decreased ability to repair damaged DNA. In animal models, this defect may cause ge-
nomic instability [7]. In humans, BRCA1-positive breast tumours are characterized by a large
number of chromosomal changes, some of which differ depending on the genotype [8].

Early diagnosis of BC is difficult due to a lack of specific symptoms and to a limited under-
standing of breast tumorigenesis.

Presently, the diagnosis of BC relies on an integrated approach using clinical and physical
examination, imaging mammography and ultrasound, as well as histopathology. Although
plasma biomarkers have not yet displayed a major role in breast cancer diagnostic or prognos-
tic practice, an effective biomarker panel in an easily accessible biological fluid would be a valu-
able and minimally invasive tool [9–11].Therefore, the analysis of plasma proteome in BC
patients might be an important step to achieve more accurate, sensitive and specific diagnostic/
prognostic standards [12].

However, the identification and characterization of disease-related plasma biomarkers is
quite challenging because of the heavy presence of proteins such as albumin, immunoglobulins,
transferrin, lipoproteins, which constitute ~ 90% of the protein content of serum. These high
abundance proteins can interfere with proteomics investigation of less-represented signalling
proteins. Therefore, the reduction of sample complexity is considered an essential step in the
analysis of the plasma proteome [13, 14].

To this end, our group has used a robust and high-throughput quantitative method with
sensitivity and high-resolving power. This method is based on an integrated proteomic ap-
proach which includes: selective removal of the most abundant plasma proteins, 2D gel
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electrophoresis and LC-MS/MS analysis, followed by identification of the main networks in
which deregulated proteins are involved and validation of results through western blot
analysis.

In this study, we have performed a molecular profiling of plasma proteome from individuals
(BC-affected and non-affected carriers) bearing a BRCA1 germline mutation in their genome.
More specifically, we focused on families of Calabrian origin, with hereditary BOC, due to a
frameshift mutation in one copy of the BRCA1 gene and leading to a stop codon at position
1670 (5083del19) of the BRCA1 [15]. This mutation, which appears to be highly prevalent in
our region, allowed us to perform a reliable proteomic analysis in a highly homogeneous genet-
ic background.

Materials and Methods

Patients
The study was approved by the “Comitato Etico Azienda Ospedaliera Universitaria Mater Do-
mini” University Magna Graecia of Catanzaro. Blood samples were obtained from each affect-
ed patient and family members after obtaining written consent. Twelve subjects were enrolled
for the study.

Sample collection
Plasma samples were collected according with Plasma Proteome Project guidelines; we collect-
ed four plasma samples from patients with inherited BC, bearing a founder mutation on the
BRCA1 gene, four plasma samples from healthy family members sharing the same mutation
(unaffected carriers) and four healthy relatives, free of BRCA1-gene defects (Table 1). Approxi-
mately 4 ml of blood were drawn by venipuncture and collected in K2EDTA tube. The samples
were centrifuged within 2 hours of collection at 1.300 x g for 10 minutes, and resulting plasma
was aliquoted into silicone tubes and stored at -80°C until use.

Depletion of high-abundance plasma proteins
Depletion of high abundant proteins was performed using the Multiple Affinity Human-7
(Hu-7) Removal System (Agilent Technologies), an HPLC column that removes the seven

Table 1. List of analyzed samples.

SUBJECT BREAST CANCER BRCA1 FOUNDER MUTATION CARRIER

A1 YES CARRIER

A2 YES CARRIER

A3 YES CARRIER

A4 YES CARRIER

CN1 NO CARRIER

CN2 NO CARRIER

CN3 NO CARRIER

CN4 NO CARRIER

NN1 NO NO CARRIER

NN2 NO NO CARRIER

NN3 NO NO CARRIER

NN4 NO NO CARRIER

doi:10.1371/journal.pone.0129762.t001
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most abundant plasma proteins including: albumin, IgG, IgA, transferrin, antitrypsin, hapto-
globin and fibrinogen. [16]

Depletion was performed following the manufacturer’s protocols; for each sample, 2mg of
plasma proteins were diluted four times in the manufacturer’s Buffer A and filtered through a
0.22 μm spin filters, for removal of particulates. The liquid chromatography separations were
conducted on an automated ÄKTA FPLC (GE Healthcare). Briefly, 120 μl of diluted sample
was injected onto the MARS column in 100% Buffer A, at a flow rate of 0.25 ml/min for 10
min. After collection of the flow-through fraction, the column was washed with buffer “A” at a
flow rate of 1,0 ml/min, and the bound proteins were eluted with 100% Buffer B (a low pH urea
buffer) at a flow rate of 1.0 ml/min for 7 min. Afterwards, the column was regenerated by equil-
ibration in 100% Buffer A for 11 min, for a total run cycle of 28 min. The flow-through frac-
tions (containing the low abundance proteins from two sequential injections were collected,
pooled and buffer-exchanged into 20 mM Tris–HCl, pH 7.4, the resultant pools were concen-
trated using spin concentrators with 5 kDa MW cutoff (Agilent Technologies). The low-abun-
dance fractions were either analyzed immediately or aliquoted and stored at -80_C until use.

1D Gel electrophoresis
SDS-PAGE analysis of human plasma before and after depletion was performed to evaluate
high abundant protein removal. Total protein content of plasma samples was determined
using the Bradford Protein Assay (Bio-Rad) according to the manufacturer’s instructions with
human serum albumin (Sigma Aldrich) as standards [17]. Briefly, for SDS-PAGE gel experi-
ments 20 μg of each sample were diluted with Laemmli buffer and incubated at 100°C for 5
min. Following incubation all sample were loaded onto a 12% SDS-polyacrylamide gel and run
at 50 V [18]. Gels were then stained with EZBlue Gel Staining Reagent, (Sigma Aldrich).

2D Gel electrophoresis analysis
Plasma samples, depleted of high abundant proteins, were pooled to create three groups (affect-
ed patients, healthy carriers and controls) in the attempt to minimize intra-class sample vari-
ability. Resulting pools were subjected to high resolution 2D [19]. For each pool 130 μg of
proteins were diluted into Isoelectrofocusing (IEF) sample buffer containing 8 M urea, 4%
CHAPS, 0.1 M DTT, 0.8% pH 3–10 nonlinear (NL) carrier ampholyte buffer. IEF was carried
out on non-linear immobilized pH gradients (pH 3–10 NL; 24-cm-long IPG strips; GE Health-
care). The first dimension IPG strips were run on a GE Healthcare IPGphor unit, until a total
of 70 000 Vh was reached. Prior to SDS-PAGE, IPG strips were equilibrated with a dithiothrei-
tol (10 mg/mL) SDS equilibration solution followed by a treatment with iodoacetamide (25
mg/mL) SDS equilibration solution as described in the GE Healthcare Ettan DIGE protocol.
Second dimension separation was run on 10% SDS-polyacrylamide gels, (2W/gel; 25°C) until
the bromophenol blue dye front reached the end of the gels [20].Gels were stained with MS-
compatible silver staining procedure [21–23]. Each pool analysis was performed in triplicate.

Gel image analysis was carried out using the Image Master 2D-Platinum software, version
6.0 (GE Healthcare). The spot auto-detect function was used for all group comparisons apply-
ing identical parameters. Groups were matched automatically and corrected manually if neces-
sary. Differences in protein expression were identified using the relative volume (%Vol) option
of the software. This option allows the data to be independent of experimental variations be-
tween gels caused by differences in loading or staining [24]. Analysis was performed using
three independent experiments, respectively. All data were presented as mean ± SEM (N),
where SEM represents the standard error of the mean and N indicates the number of experi-
mental repeats. Unpaired t-test was used to compare protein levels in each data sets compared
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to control group. A two-sided p-value< 0.05 was considered statistically significant. Data were
plotted using Excel spreadsheet (Microsoft).

Electrophoretic spots, obtained from analytic 2D gels, were manually excised, destained,
and acetonitrile-dehydrated. They were then rehydrated in trypsin solution, and in-gel protein
digestion was performed by overnight incubation at 37°C [25]).

The resulting tryptic peptides were purified by Pierce C18 Spin Columns (Thermo Fisher
Scientific Inc.) according to the manufacturer’s procedure, eluted with 40μL of 70% acetonitrile
and dehydrated in a vacuum evaporator [26]. Each purified tryptic peptide was analyzed
through Nanoscale LC-MS/MS.

Nanoscale LC-MS/MS analysis
LC-MS/MS analysis was performed using an Easy LC 1000 nanoscale liquid chromatography
(nanoLC) system (Thermo Fisher Scientific, Odense, Denmark). The analytical nanoLC col-
umn was a pulled fused silica capillary, 75 μm i.d., in-house packed to a length of 10 cm with
3 μm C18 silica particles from Dr. Maisch (Entringen, Germany). The peptide mixtures were
loaded at 500 nL/min directly onto the analytical column. A binary gradient was used for pep-
tide elution. Mobile phase A was 0.1% formic acid, 2% acetonitrile, whereas mobile phase B
was 0.1% formic acid, 80% acetonitrile. Gradient elution was achieved at 350 nL/min flow rate,
and ramped from 0% B to 30% B in 15 minutes, and from 30% B to 100% B in additional 5
minutes; after 5 minutes at 100% B, the column was re-equilibrated at 0% B for 10 minutes be-
fore the following injection. MS detection was performed on a quadrupole-orbitrap mass spec-
trometer Q-Exactive (Thermo Fisher Scientific, Bremen, Germany) operating in positive ion
mode, with nanoelectrospray (nESI) potential at 1800 V applied on the column front-end via a
tee piece. Data-dependent acquisition was performed by using a top-5 method with resolution
(FWHM), AGC target and maximum injection time (ms) for full MS and MS/MS of, respec-
tively, 70,000/17,500, 1e6/5e5, 50/400. Mass window for precursor ion isolation was 2.0 m/z,
whereas normalized collision energy was 30. Ion threshold for triggering MS/MS events was
2e4. Dynamic exclusion was 15 s.

Data were processed using Proteome Discoverer 1.3 (Thermo Fisher Scientific, Bremen,
Germany), using Sequest as search engine, and the HUMAN-refprot-isoforms.fasta as se-
quence database. The following search parameters were used: MS tolerance 15 ppm; MS/MS
tolerance 0.02 Da; fixed modifications: carbamidomethylation of cysteine; variable modifica-
tion: oxidation of methionine, phosphorylation of serine, threonine and tyrosine; enzyme
trypsin; max. missed cleavages 2; taxonomy Human.

Protein hits based on two successful peptide identifications (Xcorr> 2.0 for doubly charged
peptides,>2.5 for triply charged peptides, and>3.0 for peptides having a charge state>3)
were considered valid.

Pathway analysis
Ingenuity Pathway analysis (Ingenuity Systems, www.ingenuity.com) was performed to exam-
ine functional correlations within differentially expressed proteins. IPA constructs hypothetical
protein interaction clusters on the basis of a regularly updated Ingenuity Pathways Knowledge
Base.

Data sets containing protein identifiers and corresponding expression values were
uploaded into the application. Proteins differentially expressed were overlaid onto global mo-
lecular networks developed from information contained in the knowledge base. Networks
were then algorithmically generated based on their connectivity. Networks were “named” on
the most common functional group(s) present. Canonical pathway analysis acknowledged
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function-specific proteins significantly present within the networks [27]. Each analysis was sta-
tistically evaluated by the Fischer exact test. This was used to calculate a p-value determining
the probability that each biological function and/or disease assigned to that network is due to a
random event.

Western Blotting on plasma samples
Western blot analysis was done to verify the expression of gelsolin in cancer and healthy carrier
patients compared to healthy control.

Equal amounts of plasma proteins (50μg/lane) were resolved by 10% SDS-polyacrylamide
gel electrophoresis and transferred to nitrocellulose membranes (Bio-Rad).

After addition of the blocking mixture, the membranes were incubated with anti-gelsolin
goat monoclonal antibody (clone C-20 Santa-Cruz) at appropriate dilutions at 4°C for 2 h. The
signal was detected using anti-goat horseradish peroxidase-conjugate secondary antibodies,
and ECL (Santa Cruz).

Serum protein concentration for each sample was measured in triplicate using the dye-bind-
ing protein (Bio-Rad) with human serum albumin as standard curve. To ensure uniform gel
loading, the membranes were stripped for 30 min at 50 C in 62.5 mm Tris-HCl (pH 6.8), 2%
SDS, and 100 mm β-mercaptoethanol, blocked in 2% BSA, and reprobed with specific γ-tubu-
lin horseradish peroxidase-conjugate primary antibodies, and ECL (Santa Cruz) accordingly to
Seonyoung C. et al. [28–29].

Cells culture
MCF-7 and HCC1937 cell lines were purchased from the American Type Culture Collection
(Rockville, MD, USA).

HCC1937 cells were grown in RPMI 1640 medium (Life Technologies, Paisley, UK), while
MCF-7 were grown in Dulbecco’s modified Eagle’s medium (DMEM) (Life Technologies). All
media were supplemented with 10% fetal bovine serum (FBS), 2mM L-glutamine, 100 mg/ml
streptomycin and 100U/ml penicillin. All cell lines were cultured at a constant temperature of
371C in a 5% carbon dioxide (CO2) humidified atmosphere.

EGF treatment
Both MCF-7 and BRCA1 cells lines were treated with EGF to induce the expression of BRCA1;
confluent cells (70%) were serum starved for 12 h and then incubated for 3, 6 and 12 h in the
presence of EGF (50 ng/ml). After incubation, the cells were collected and lysed as described
later [30–31].

Short interfering RNA
Transient BRCA1 interference was done in MCF-7 cells line for 24h, 48h and 72h.

Transfections were carried out using Lipofectamine 2000 reagent (Invitrogen, Paisley, UK),
as outlined in the manufacturer's instructions. Oligo siRNA/Brca1 duplex were obtained from
Sigma Aldrich and used at a final concentration of 100nM. [32].

Western blotting on cell lysates
Cells lines were washed with PBS and lysed at 0°C for 30 min using lysis buffer (120 mMNaCl,
30 mM KCl, 0.1% DTT, 0.5% Triton X-100) supplemented with protease and phosphatase in-
hibitor cocktail (Halt Protease Inhibitor Cocktail/ Halt Phosphatase Inhibitor Cocktail,
Thermo Fisher Scientific Inc.). Cell lysate was sonicated at 4°C for 10 sec and subsequently
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centrifuged at 15 000x g for 20 min. Supernatant was carefully removed and protein content
was measured by the Bradford method (Bio-Rad, Hercules, CA); and the supernatants were
stored at 80°C.

Equal amounts of proteins extracts were separated on a 4–15% SDS PAGE precast gel (Bio-
Rad), and transferred to a nitrocellulose membrane followed by immunoblotting.

Rabbit monoclonal antibody against BRCA1 (clone D-20, Santa Cruz) was used at a final
concentration of 1μg/ml. Goat monoclonal antibody against gelsolin (clone C-20, Santa Cruz)
was used at a final concentration of 1μg/ml.

HRP-conjugated γ-Tubulin (clone C-20, Santa Cruz) was used at a final concentration of
1μg/ml to ensure equal amount of protein loading.

The signal was detected using anti-goat horseradish peroxidase-conjugate secondary anti-
bodies, and developed by enhanced chemiluminescence (Santa Cruz)

Statistical Analysis
Western blot signals were quantified by Quantity One software (Biorad) and data were ana-
lyzed and plotted using Excel spreadsheet (Microsoft), and expressed as mean ± SEM (N),
where SEM represents the standard error of the mean and N indicates the number of experi-
mental repeats. Unpaired t-test was used to compare protein levels in each data set. A two-
sided p-value<0.05 was considered statistically significant.

Co-immunoprecipitation (Co-IP) assay
For immunoprecipitations, 6x1010 of MCF-7 and HCC1937 Cells were harvested and lysed in
lysis buffer (20 mM NaCl, 30 mM KCl, 0.1% DTT, 0.5% Triton X-100, supplemented with pro-
tease and phosphatase inhibitor cocktail, Halt Protease Inhibitor Cocktail/ Halt Phosphatase
Inhibitor Cocktail, Thermo Fisher Scientific Inc.); cell lysates were clarified by centrifugation at
18,000xg for 30 min. BRCA1 was immunoprecipitated with 10 ng of anti-BRCA1 monoclonal
antibody (clone D-20, Santa Cruz) during an overnight incubation with 1 ml of total cells ex-
tract (0.5 μg/μl). 20 μl of resuspended volume of Protein A/G PLUS-Agarose (Santa Cruz) were
added to the mixture and incubated at 4° C on rotating device for 2 hour. Immune complexes
were collected by low speed centrifugation, washed three times in 1 ml lysis buffer, and boiled
in 20 μl of SDS loading buffer; denatured proteins were separated by SDS-polyacrylamide gel
electrophoresis (4–15% Bio-Rad precast gel). Proteins were transferred to Nitrocellulose mem-
brane, which was blocked in 5% nonfat milk, 150 mM NaCl, 10 mM Tris (pH 8.0), and 0.05%
Tween. Immunoblots were performed with rabbit anti-ATF1 antisera at 1 mg/ml (C-20 Santa
Cruz.) and developed by enhanced chemiluminescence (Santa Cruz).

Chromatin immunoprecipitation (ChIP)
ChIP was performed as previously described [33]. Cells (12x106) were treated with 1% formal-
dehyde directly into the media for 10 min at room temperature on a rocking platform. The
cells were then washed and scraped with phosphate-buffered saline and collected by centrifuga-
tion at 700×g for 4 min at 4°C, resuspended in cell lysis buffer (10mMHepes pH 8.0, 85mM
KCl, 0.5% NP-40, protease inhibitor 1 μg/ml, leupetin, 1μg/ml aprotinin, 1mM PMSF) and in-
cubated on ice for 10 min. The pellet was resuspended in lysis buffer (50mM Tris–HCl pH 8.1,
10mM EDTA, 1% SDS, protease inhibitor) and incubated on ice for 10 min. The DNA was
sonicated to give fragments of approximately 500 bp. Initially, optimum conditions for sonica-
tion were determined by agarose gel analysis after reversing cross-links and precipitated DNA.
The lysate was diluted 5-fold in ChIP IP buffer (0.01% SDS, 1% Triton-X-100, 1.2mM EDTA,
16.7mM Tris pH 8.1, 167mMNaCl, protease inhibitor 1μg/ml leupetin, 1μg/ml aprotinin,
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1mM PMSF) and precleared with 100μl of protein A beads, which has been pre-adsorbed with
sonicated salmon sperm DNA for 90 min at 4°C on a rotary mixer. Beads were collected by
centrifugation at 2000×g, and chromatin solution was transferred to a fresh microcentrifuge
tube. At this stage, the solution was split into microcentrifuge tubes and immunoprecipitated
with 5 μg of ATF1 (C41-5.1 Santa Cruz) antibodies overnight at 4°C on a rotating wheel. The
immune complexes were then captured with 70μl of protein A beads, prepared as described
above, for 3 h at 4°C on a rotating wheel. The beads were then washed with 1ml of ChIP buffer
1 (0.1% SDS, 1% Triton-X-100, 2mM EDTA, 20mMTrispH8.1, 150mMNaCl, PMSF), ChIP
buffer 2 (0.1% SDS, 1% Triton-X-100, 2mMEDTA, 20mMTris pH 8.1, 500mMNaCl, PMSF),
ChIP buffer 3 (0.25M LiCl,1%NP-40,1%deoxycholate, 1mMEDTA, 10mM Tris pH 8, PMSF,
DTT), and finally twice with TE 1X and protease inhibitor 1μg/ml leupeptin, 1μg/ml aprotinin,
1mM PMSF. The protein–DNA complexes were then eluted by adding 250 μl of ChIP elution
buffer (1%SDS, 0.1MNaHCO3) to the beads and vortexing before incubating at room tempera-
ture for 15 min. After centrifugation, the eluate was transferred to a fresh tube and the elution
process was repeated with the beads. The eluates were then combined; the cross-links were re-
versed by adding 1 mg/ml RNAse, 5mMNaCl and incubating for 4 h at 65°C. After centrifuga-
tion, the pellet was resuspended in 100 μl ofH2Oand 2μl of 0.5mM EDTA, 4 μl of 1M Tris pH
6.5 and 1μl of proteinase K (20 mg/ml) were added and incubated for 1 h at 45°C. The DNA
was then recovered by phenol–chloroform extraction. DNA purity and concentration both for
IP than for Input were determined using a NanoDrop.

Quantitative real-time PCR (qPCR)
Real-time PCR analysis was performed in a total volume of 25 μl containing 12.5 μl of real-
time PCRMaster Mix (Exilent SYBR Green, Exiqon), 500 nmole each of forward and reverse
primers, and 20ng input, IP, or mock-IP (CK) DNA samples as templates. After incubation at
50°C for 2 minutes and at 95°C for 10 minutes, the mixtures were subjected to 40 amplification
cycles (15 seconds at 95°C for denaturation and 1 minute for annealing and extension at 62°C).
Incorporation of SYBR Green dye into PCR products was monitored in real time using an IQ5
real-time PCR machine (BIORAD). We obtained a CT value from each amplification curve
using the software provided by the manufacturer (Bio-Rad).

The primers for target gelsolin promoter amplification were designed using Primer design-
ing tool (http://www.ncbi.nlm.nih.gov/tools/primer-blast/). According with literature the
primers were complementary to the promoter over the region -134 –-3.

The amplifications were performed with the following primers set:
gelsolin promoter forward 5_ CCCATGAAGCGGCAATTCAG 3_
gelsolin promoter reverse 5_ TCGGAGTCAGAAGGCCTGG

Fold differences between samples were calculated as previously described [34]. Briefly, the
ΔCt value for each sample was calculated according to the equation: ΔCt [Ct (sample)—Ct
(input)]. Next, the ΔΔCt was calculated by ΔΔCt = ΔCt (IP sample)- ΔCt (mock-IP control). Fi-
nally, the fold difference between the IP sample and mock-IP control was calculated as 2(-ΔΔCt).

Results

Depletion of high-abundance plasma proteins
The large dynamic range of protein abundance in plasma represents a substantial analytical
challenge. Removal of abundant plasma proteins using antibody capture approaches is a com-
mon and attractive mean to reduce sample complexity and to aid the analysis of lower abun-
dance proteins of interest. Here, plasma most abundant proteins (albumin, IgG, antitrypsin,
IgA, transferrin, haptoglobin, fibrinogen) were depleted using the MARS “Top-7”HPLC
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system (Agilent). HPLC depletion chromatogram for each run is shown in supporting S1 Fig.
SDS-PAGE was applied to the samples before and after depletion to confirm the columns effi-
ciency. As shown in Fig 1, the most abundant band around the 70 kDa area, which corresponds
to albumin, was markedly reduced in the depleted samples. In addition, replicate analysis dem-
onstrated high column reproducibility, linearity and efficient removal of abundant proteins.

2D Gel electrophoresis analysis
To identify specific biomarkers with diagnostic potential, we compared the 2D gel plasma pro-
tein profiles of patients carrying the BRCA1 founder mutation with healthy controls; an addi-
tional analysis on plasma obtained from healthy carries (i.e. family relatives bearing the
BRCA1 mutation but clinically unaffected) was performed in the attempt to find prognostic
markers. The representative 2D maps are shown in Fig 2.

After automatic spot detection, background subtraction and volume normalization, about
629 protein spots were detected in BC patients, 747 in healthy carriers and 700 in healthy
controls.

Following the comparative analysis among the 3 groups, 48 spots of interest (matches) were
manually excised from the gels, trypsin digested, and used for tandem mass spectrometry anal-
ysis. Only reproducibly detected spots were subjected to statistical analysis. A list of up- or
down regulated proteins is provided as S1 Table. Thirty of these proteins were present in single
spots, while the rest were found in two or more spots. These latter spots might be the result of
posttranslational modifications including proteolytic cleavages of specific proteins. Supporting
information shows the list of the 48 distinct protein isoforms differentially expressed between
the three sample groups and ranked by statistical significance from highest to lowest.

Pathway analysis
The software IPA (Ingenuity Systems, www.ingenuity.com) was used to evaluate the significant
canonical pathways and networks associated to differentially expressed proteins, identified by
MS analysis;

We considered only proteins deregulated in a statistically significant way, and then discrimi-
natory between the groups; to this purpose, we included in the analysis only proteins that show
a fold change of at least 1.8 (p value<0.05) with respect to control group.

We performed two different analysis: i) for proteins differentially expressed in the plasma
samples of affected patients vs controls, we included 33 protein spot identifications (listed in S2
Table), some of which have an identical accession number because are products of post-trans-
lational modifications, therefore matching in IPA analysis to 23 unique proteins; ii) for pro-
teins differentially expressed in the plasma samples of healthy carriers vs controls, we included
32 protein spot identifications (listed in S3 Table) which in IPA database matched to 22
unique proteins.

Fig 1. SDS-PAGE gels stained with Coomassie blue, before and after depletion of the high abundant
proteins. Lanes 1, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22 and 24 are crude plasma samples from subjects enrolled
for the analysis. Lanes 2, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23 and 25 are MARS “Top-7” HPLC-treated plasma
samples for depletion of the high abundance proteins. Lane 3 is empty; M: molecular weight standard. 20 μg
of proteins were loaded in each lane.

doi:10.1371/journal.pone.0129762.g001
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Two domains are covered by the functional pathway analysis: networks and diseases. With
regard to the network analysis, we first explored the network characteristics of the proteins dif-
ferentially expressed in cancer patients vs. healthy controls. IPA analysis predicted four net-
works (Fig 3A) of interacting protein clusters. The most representative was the first, with a
score of 49, in which 19 nodes were enriched and had functions associated with Metabolic

Fig 2. 2D gel electrophoresis analysis.Representative 2d gel electrophoresis maps of plasma samples
pools for (A) patients with breast cancer, carrier of founder mutation, (B) Healthy familiar sharing the same
mutation and (C) Healthy control. Molecular mass separation is 200–10 kDa (top to bottom). Numbered spots
indicate proteins that have statistically significant differential expression between groups according to the
Image master 2D Platinum 7.0 software (GE Healthcare).

doi:10.1371/journal.pone.0129762.g002
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Disease, Immunological Disease, Developmental Disorder (Fig 3B). The associated functions
of the second network were Dermatological Diseases and Conditions, Immunological Disease,
and Inflammatory Disease (Fig 3C).

With regard to the disease analysis, performed on the same set of samples, we found that
the plasma proteins were connected to: i) Cancer including abdominal cancer (nmolecules = 23,
p = 1,65E-07) ii) Cancer including epithelial neoplasia (n molecules = 22, p = 7,35E-06); iii)
Cancer including carcinoma (n molecules = 20; p = 2,12E-04), respectively (S4 Table),

IPA analysis was further performed comparing proteins differentially expressed in healthy
BRCA1-mutation carriers vs. healthy controls; in this subset, we obtained 2 predicted networks
(Fig 4A): i) Cardiovascular Disease, Metabolic Disease, Cardiac Infarction (Fig 4B) and ii) Or-
ganismal Survival, Cell Death and Survival, Cellular Development (Fig 4C). Moreover, for links
to diseases and bio-functions, we found: Cancer, including abdominal cancer (n molecules = 13,
p = 2,74E-04); Cancer epithelial, including neoplasia (n molecules = 13, p = 5,37E-04); Cell
Death and Survival, including cell death (n molecules = 12 p = 1,48E-06) (S5 Table).

Fig 3. Ingenuity pathway analysis of proteins differentially regulated. (A) List of networks generated
from IPA and significantly modulated (log p-value) in cancer patients vs. controls. Top network (B) 1 and (C)
2.

doi:10.1371/journal.pone.0129762.g003

Fig 4. Ingenuity pathway analysis of proteins differentially regulated. (A) List of networks generated
from IPA and significantly modulated (log p-value) in healthy carrier vs. controls. Top network (B) 1 and (C) 2.

doi:10.1371/journal.pone.0129762.g004
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Finally, IPA software was used to explore potential relations between deregulated proteins
and carcinogenesis. This analysis revealed that most of the identified proteins are signaling
molecules associated with cell growth, cell death, and cellular metabolism. Among them, gelso-
lin appeared as the most promising target.

Western blot of plasma samples
The purpose of this step was twofold: on one hand, to verify that the expression of gelsolin was
discriminatory and reproducible among BC patients, healthy carriers and controls, and, on the
other hand, to verify if those differences were present in undepleted plasma samples. As shown
in Fig 5, the expression of gelsolin was sensibly reduced both in cancer patients and in healthy
carriers compared to controls.

Correlation between gelsolin and BRCA1 expression
To determine whether the expression of gelsolin was associated with the BRCA1 mutation sta-
tus, we examined gelsolin levels in the following panel of BC cell lines: MCF-7 (sporadic breast
ductal carcinoma cell line), HCC1937 (a near tetraploid cell line from breast ductal carcinoma,
homozygous for a frameshift mutation in BRCA1), and MCF-7shBRCA1 (MCF-7 cells in
which BRCA1 has been transiently silenced by Sh-RNA interference).

InMCF-7 (Fig 6A), Epidermal Growth Factor (EGF) treatment markedly increased the expres-
sion of BRCA1, up-regulating gelsolin as well. Conversely, in HCC1937 (Fig 6B), EGF did not af-
fect neither BRCA1 nor gelsolin levels. Lastly, we demonstrated that transient silencing of BRCA1
in MCF-7 cells (Fig 6C) induces down regulation of gelsolin up to 48 h, with a subsequent increase
at 72 h, due to the switch-off of interference as previously reported for later time points [32].
These results clearly indicate that gelsolin expression is regulated in a BRCA1-dependent manner.

Interaction between BRCA1 and ATF1
Previous studies have demonstrated that BRCA1 can physically interact with the cyclic AMP-
dependent transcription factor ATF1 [35]; here, an immunoprecipitation experiment was

Fig 5. Validation of gelsolin down-regulation by western blot. (A) Analysis was performed on undepleted
plasma samples. 50 μg of proteins was loaded in each lane. Lane 1: Molecular weight marker; Lane 2–5:
Controls; Lane 6–9: Healthy carrier; Lane 10–13: Cancer patients. (B) ɣ-tubulin blot shows equal amount of
protein loading. (C) Densitometric analysis for gelsolin protein levels. Analysis was performed using three
independent experiments. Data are mean ± SEM (N = 3). *p < 0.05.

doi:10.1371/journal.pone.0129762.g005
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performed to further assess this interaction. Five hundred μg of proteins extract fromMCF-7
and HCC1937 breast cancer cell lines were subjected to immunoprecipitation with a monoclo-
nal antibody directed against the C terminus of BRCA1 (D9-Santa-Cruz), followed by immu-
noblotting with an anti-ATF1 antibody. In MCF-7, ATF1 was identified by immunoblotting
analysis as a 38-kDa species present in BRCA1 immunoprecipitates (Fig 7A, right panel). On
the other hand we observed that, in HCC1937, the antibody, directed against BRCA1, was un-
able of co-precipitating ATF1 (Fig 7B, right panel), probably because the mutation might block
or reduce the interaction between BRCA1 and ATF1. It is noteworthy that the amount of
ATF1 in whole extract was equivalent in MCF7 and in HCC1937 cells (compare Fig 7A and
7B, left panels): therefore, the increased presence of ATF1 in MCF7-IP is a real experimental
finding and not dependent on higher levels of this transcription factor in the cell line. Fig 7C
shows the levels of BRCA1 in the two cell lines.

Fig 6. Western blot analysis of BRCA1 protein expression and gelsolin in MCF-7, HCC1937, and MCF-
7 ShBRCA1 cells. Analysis was performed on cells extracts. 4–15% precast SDS PAGE (Biorad) was used.
80 μg of proteins was loaded in each lane. BRCA1 and gelsolin expression was assayed in MCF-7 cell line
stimulated with EGF at 3, 6 and 12h (A), in HCC1937 cell line stimulated with EGF at 3, 6 and 12h (B) and in
MCF-7- BRCA1 interfered cell line. In each cell panel, left panel is representative data of western blot
analysis; right panel is showing densitometric analysis for BRCA1 and gelsolin protein levels. Analysis was
performed using three independent experiments. Data are mean ± SEM (N = 3). *p< 0.05. In each cell panel
ɣ-tubulin blot shows equal amount of protein loading.

doi:10.1371/journal.pone.0129762.g006
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Role of ATF1 in repression of gelsolin expression
It has recently been shown that ATF1 binds to gelsolin promoter and negatively controls its ac-
tivity [36]. gelsolin transcription is decreased by ATF1 binding to a 27-bp sequence located ap-
proximately 135 bp upstream of the transcription start site. Here, to determine whether the
ATF-binding activity on gelsolin promoter was affected by the simultaneous presence of a
BRCA1 gene mutation, a chip assay was performed in MCF-7 and HCC1937 cell lines.

To quantify the effects, we carried out a qPCR on the DNA immunoprecipitated by ATF1
antibodies, using a pairs of primers specific for the respective binding sites to the gelsolin pro-
moter, as described in the materials and methods section.

Since the reduction of gelsolin levels correlates with the mutation or loss of BRCA1, we hy-
pothesize that BRCA1 regulates the recruitment of ATF1 to the gelsolin promoter. We believe
that physical interaction between BRCA1 and ATF1, hinders the binding of the transcription
factor to gelsolin promoter; on the other hand, when BRCA1 is absent or mutated, ATF1 is al-
lowed to bind the promoter and to inhibit gelsolin expression. Chip results support this hy-
pothesis, as shown in Fig 8, where the binding of ATF1 to gelsolin promoter is much higher in
HCC1937 cell line than in MCF7.

Discussion
Proteomic-based approaches are increasingly applied to cancer biomarkers discovery. Protein
profiles of biological samples determined in a high-throughput fashion allow to identifying
proteins that are differentially regulated in cancers and might possibly be novel biomarkers.

Fig 8. Chip Assay. The binding activity of ATF1 to the gelsolin promoter was evaluated by ChIP analysis.
Chromatin was isolated and immunoprecipitated with a specific antibody for ATF1. The binding activity was
evaluated by qPCR in MCF7 and HCC1937 human breast cancer cells lines.

doi:10.1371/journal.pone.0129762.g008

Fig 7. Immunoblotting to demonstrate the association between BRCA1 and ATF1.MCF-7 (panel A) and
HCC1937 (panel B) cells were lysed and subjected to immunoprecipitation with the appropriate antibody as
described in “Materials and Methods.” The immunoprecipitates were separated by SDS-polyacrylamide gel
electrophoresis and transferred to a nitrocellulose membrane. Total cells extract was used as positive control
(input). The immunoblot was probed with rabbit anti-ATF1 antisera at 1 mg/ml (C-20 Santa Cruz.) and
developed by enhanced chemiluminescence.(C) BRCA1 levels in MCF-7 and HCC1937 human breast
cancer cells lines.

doi:10.1371/journal.pone.0129762.g007
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The blood contains a treasure of biomarkers (many of which are still undiscovered or unchar-
acterized) that could reflect the ongoing physiologic state of all tissues. Unfortunately, the dy-
namic range of plasma proteins spans over 10 orders of magnitude, far greater than the
measurement capability of current technologies: consequently, potential biomarkers could be
entirely masked by the overwhelming abundance of relatively few proteins [37]. In this paper,
we show that plasma sample complexity can be effectively reduced with a simultaneous in-
crease in protein identification using a multistep method, confirming that this strategy repre-
sents a powerful tool for the identification of specific biomarkers in inherited breast cancer.

Breast cancer has become one of the most intensively studied human malignancies in the
post-genomic era; several hundred papers over the last few years have investigated various clin-
ical and biological aspects of human BC using high-throughput molecular profiling techniques.

Given the highly heterogeneous nature of this disease and the lack of robust conventional
markers for disease prediction, prognosis, and response to treatment, the enrollment of sub-
jects with a high homogeneous genetic background represents a solid starting point.

BRCA1-derived breast cancers have been shown to leave a characteristic imprinting on the
panel of genes expressed by the tumors [38]. Moreover, the occurrence of a BRCA1-like gene
expression profile in sporadic BC due to methylation-mediated silencing, highlights the need
for the use of subjects with analogous gene expression profiling [39].

Here, proteomic analysis disclosed that gelsolin was down-expressed in plasma samples of
patients with hereditary BC, and that its levels were associated with the BRCA1 mutation sta-
tus, suggesting that this important tumor suppressor gene might promote BC cell proliferation,
invasion and migration, also thorough the down-regulation of gelsolin.

The reason for focusing on this specific protein derives from the fact that loss of gelsolin is
one of the most frequently occurring molecular defects in BC and it negatively correlates with
tumor progression [40–46].

To determine whether the expression levels of gelsolin were associated with the BRCA1 mu-
tation status, we initially examined gelsolin expression in sporadic and BRCA1-mutated BC
cell lines; these experiments clearly demonstrated that BRCA1 is indeed directly involved in
gelsolin modulation, since no significant changes were detected in sporadic BC cell lines. In the
attempt to dissect the molecular mechanisms underlying this phenomenon, we explored the
possibility that the transcription factor ATF-1 might be an important player. Dong and coll.
[36] have shown that ATF-1 is a strong negative modulator of gelsolin at transcriptional level,
through its binding to a 27-bp cis-element mediating sequence located upstream the gelsolin
transcription start site. Alongside with it, a robust body of evidence indicates that BRCA1 can
physically and functionally interact with ATF-1 [35], enhancing its transcriptional activity. On
this basis, we performed functional experiments, confirming that the DNA-binding activity of
ATF1 was selectively higher in the BRCA1-mutated cancer cells compared to the sporadic ones
and it correlated inversely with the expression of gelsolin, independently on the protein levels
of the cAMP response element-binding protein/activating transcription factor.

Therefore, we propose a model in which the tumor suppressor BRCA1 negatively modulates
gelsolin expression by physically recruiting ATF-1 on its promoter. The presence of a muta-
tion, which results in an impairment/loss of BRCA1 function, loosens the binding of ATF-1 to
the gelsolin promoter, producing a significant increase in its intracellular levels.

Advances in proteomics are contributing to a better understanding of pathophysiology of
neoplasia, cancer diagnosis, and anticancer drug discovery. Constant refinement of techniques
and methods to determine the abundance and status of proteins hold great promise for the fu-
ture studies of cancer and the development of innovative cancer therapies.

The plasma-proteomics-based approach proposed in the present study, may provide an an-
swer to this dilemma, i.e. who is going to get cancer and when. Obviously all the findings and
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conclusions need to be substantiated in a larger cohort, but we are confident that this strategy
will trigger more comprehensive studies aimed at improving the potential of early diagnosis
of cancer.
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