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Abstract

Ferulic acid (FA) is the ubiquitous phytochemical phenolic derivative of cinnamic acid. Ex-
perimental studies in diabetic models demonstrate that FA possesses multiple mechanisms
of action associated with anti-hyperglycemic activity. The mechanism by which FA prevents
diabetes-associated vascular damages remains unknown. The aim of study was to investi-
gate the protective effects of FA on protein glycation, lipid peroxidation, membrane ion
pump activity, and phosphatidylserine exposure in high glucose-exposed human erythro-
cytes. Our results demonstrated that FA (10-100 uM) significantly reduced the levels of gly-
cated hemoglobin (HbA1c) whereas 0.1-100 uM concentrations inhibited lipid peroxidation
in erythrocytes exposed to 45 mM glucose. This was associated with increased glucose
consumption. High glucose treatment also caused a significant reduction in Na*/K*-ATPase
activity in the erythrocyte plasma membrane which could be reversed by FA. Furthermore,
we found that FA (0.1-100 uM) prevented high glucose-induced phosphatidylserine expo-
sure. These findings provide insights into a novel mechanism of FA for the prevention of
vascular dysfunction associated with diabetes.

Introduction

Chronic hyperglycemia is a major factor in the onset and progress of diabetic complications.
Several mechanisms linking hyperglycemia to diabetic complications include the formation of
advanced glycation end-products (AGEs), polyol activation, and increased reactive oxygen spe-
cies (ROS) [1]. Excessive production of ROS leads to oxidative damage and structural/function-
al alternations to DNA, proteins, and membrane lipids. Human erythrocytes are important

for oxygen transport and elimination of carbon dioxide. Likewise, they are highly susceptible
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to protein and lipid oxidation that can alter the membrane structure and function (e.g.
fluidity, permeability, and enzyme activity) [2]. As an example, dysfunction of membrane ion
pumps such as Na*/K*-ATPase pump [3] and lipid peroxidation [4] are directly linked to dia-
betic vascular complications. Other studies suggest that phytochemical compounds can pre-
vent high glucose-induced erythrocyte membrane damage due to their antioxidant activity
[5,6].

Ferulic acid (4-hydroxy-3-methoxycinnamic acid), a cinnamic acid derivative, belongs to a
large family of biologically active substances in vegetables [7], fruits [8], and medicinal herbs
[9]. Previous studies show that ferulic acid acts as a free radical scavenger such as hydroxyl and
peroxyl radicals [10] and an inhibitor of lipid peroxidation [11,12]. Improvement of hypergly-
cemia in diabetic rats was shown during ferulic acid treatment [13]. In addition, the compound
decreases oxidative stress and inflammation in diabetic nephropathy [14]. A number of studies
suggest that the anti-hyperglycemic effect of ferulic acid occurs by multiple mechanisms
[15,16]. One such mechanism involves inhibition of o-glucosidase and stimulation of insulin
secretion [15,16]. Most strikingly, ferulic acid acts as a potent inhibitor of glucose-, fructose-,
and ribose-induced protein glycation and oxidative damage in bovine serum albumin (BSA)
[17]. Despite the available information, there are no studies examining the effect of ferulic acid
on protein glycation in human erythrocytes. The objective of this study was to test whether fe-
rulic acid can reduce protein glycation, lipid peroxidation, and phosphatidylserine exposure
and increase Na*/K"-ATPase activity in erythrocytes under high glucose condition. The find-
ings may provide insights into the mechanism by which ferulic acid prevents vascular and
other diabetic related damages.

Materials and Methods
Chemicals and reagents

Ferulic acid, butylated hydroxytoluene (BHT), 2-thiobarbituric acid (TBA), malondialdehyde
tetrabutylammonium salt, adenosine 5'-triphosphate disodium salt hydrate (ATP-Na,), am-
monium molybdate, and ascorbic acid were purchased from Sigma-Aldrich Co. (St. Louis,
USA). Dimethyl sulfoxide (DMSO) and Trichloroacetic acid (TCA) were obtained from Merck
(Darmstadt, Germany). Glucoese oxidase reagent and HbA ¢ liquidirect reagent were pur-
chased from HUMAN (Wiesbaden, Germany). Bio-Rad protein assay was obtained from Bio-
Rad (Hercules, USA). FITC annexin V/dead cell apoptosis kit was purchased from Molecular
Probes (Eugene, USA). All other chemicals and solvents were of analytical grade.

Preparation of human erythrocytes

Whole blood samples were collected from 6 healthy volunteers ages 18-25 non-obese, non-
smoker, non-alcohol consumer, and free of any medicines, drugs, or nutritional supplements.
Ethylenediaminetetraacetic acid (EDTA) was used as anti-coagulant and blood samples were
centrifuged at 1,000 g at 4°C for 10 min. Then, the plasma and buffy coat layers were discarded.
The erythrocyte layers were washed three times with cold 150 mM NaCl and centrifuged at
1,000 g at 4°C for 10 min. The supernatants were discarded after each centrifugation. The
erythrocyte layers were re-suspended in phosphate-buffered saline (PBS, pH 7.4, containing 1
mM NaH,PO,, 16 mM Na,HPO,, and 140 mM NacCl). The Ethics Review Committee for Re-
search Involving Human Research Subjects, Health Science Group, Chulalongkorn University
approved the protocol (Protocol number 055.1/55) and consent form. All subjects read and
signed a written informed consent before their enrollment into the study.
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In vitro treatment of erythrocytes with glucose

Erythrocytes were treated with glucose according to a previous method with minor modifica-
tions [18]. The reaction mixtures contained 10% hematocrit erythrocytes and 5 or 45 mM glu-
cose in PBS (pH 7.4) and were incubated at 37°C for 24 h in a shaking incubator. Ferulic acid
at 0.1, 1, 10, and 100 pM in 0.1% DMSO were added into the reaction mixtures containing glu-
cose. The final concentration of 0.1% DMSO had no effect in the experiments.

After incubation, the percentages of hemolysis in the reaction mixtures were measured ac-
cording to a previous method with minor modifications [19]. Briefly, the reaction mixtures
were centrifuged at 1,000 g at 4°C for 10 min. The supernatants were measured at 540 nm. The
percentage hemolysis was calculated by comparison to 100% hemolysis control (prepared by
the incubation of 10% hematocrit erythrocytes with deionized water instead of PBS) using the
equation below. The percentages of hemolysis were < 2% in each reaction mixture.

Abs.

10 i1 the reaction mixtures
Abs,

% Hemolysis = 100

s10mm 11 100% hemolysis control *

Before biochemical analysis, the reaction mixtures were washed three times with cold
150 mM NaCl and centrifuged at 1,000 g at 4°C for 10 min to remove the remaining glucose
and ferulic acid. The supernatants were discarded after each centrifugation. Then, the erythro-
cyte layers were re-suspended in PBS (pH 7.4). During this process, there is some erythrocyte
loss in the samples. To normalize the amount of erythrocytes, the levels of hemoglobin (Hb)
was determined with Drabkin’s reagent according to a previous method with minor modifica-
tions [20]. The erythrocyte samples were adjusted to the same amount of Hb before biochemical
analysis.

Measurement of protein glycation (glycated hemoglobin or HbA ;)

The levels of glycated hemoglobin or HbA ., an Amadori product of protein glycation in he-
moglobin was used as a marker and determined with HbA . liquidirect reagent according to
manufacturer’s protocol. The erythrocyte samples were lysed with hemolysis reagent and incu-
bated with latex reagent at 37°C for 5 min. The absorbance was measured at 610 nm. The levels
of HbA, . were calculated from a standard curve using HbA . and expressed as %HbA, .

Measurement of glucose utilization

The levels of glucose utilization were measured according to a previous method with minor
modifications [21]. The concentrations of glucose were measured before and after the 24 h in-
cubation period by glucose oxidase reagent according to manufacturer’s protocol. The absor-
bance was measured at 505 nm. The levels of glucose utilization were calculated by subtracting
glucose levels at 24 h from glucose levels at 0 h using the equation below. The result was ex-
pressed as mmol/L.

Glucose utilization (mmol /L) = Glucose levelsat Oh — Glucose levels at 24h

Measurement of lipid peroxidation

The levels of malondialdehyde (MDA) were used as a marker for lipid peroxidation using thio-
barbituric acid reactive substances (TBARS) according to a previous method with minor modi-
fications [18]. The erythrocyte samples were mixed with PBS (pH 7.4) and BHT (0.88% w/v in
ethanol). Then, TCA (30% w/v) was added into the reaction mixtures and kept on ice for 2 h
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and centrifuged at 2,000 g at 4°C for 15 min. The supernatants were incubated with TBA (1%
w/v in 0.05 mM NaOH) and heated in a boiling water for 15 min. After cooling, the levels of
TBARS were measured at 532 nm and calculated from a standard curve using malondialdehyde
tetrabutylammonium salt. The results were expressed as nmol/mg Hb.

Measurement of Na*/K*-ATPase activity

The erythrocyte membranes were prepared according to a previous method with minor modi-
fication [22]. Erythrocyte samples were lysed with Tris-HCI (15 mM, pH 7.4) and centrifuged
at 12,000 g at 4°C for 30 min. The supernatants were discarded after the centrifugation. The
erythrocyte membranes were washed with Tris-HCI (15 mM, pH 7.4) until the color of the
membrane pellet was pale. Thereafter, deionized water was added to re-suspend the mem-
branes. The concentration of protein was measured by Bio-Rad protein assay according to
manufacturer’s protocol.

The Na*/K*-ATPase activity was done according to a previous method with minor modifi-
cations [23]. The erythrocyte membranes were incubated with reaction buffer A containing 4
mM MgCl,, 3 mM ATP-Na,, and 50 mM Tris-HCI, pH 7.4, and buffer B containing 120 mM
NaCl, 20 mM KCl, 4 mM MgCl,, 3 mM ATP-Na,, and 50 mM Tris-HCl, pH 7.4 at 37°C for 1
h. After the incubation, the levels of phosphate (Pi) released from ATP-Na, were measured ac-
cording to a previous method with minor modifications [24]. The reaction mixture was incu-
bated with ammonium molybdate (2.5% w/v) at room temperature for 10 min. Then, ascorbic
acid (2% w/v) was added and kept at room temperature for 20 min for color development. The
absorbance was measured at 725 nm. The levels of Pi release were calculated from a standard
curve using KH,PO,. Na*/K*-ATPase activity was calculated using the equation below. The re-
sults were expressed as nmole Pi/mg protein/hour.

Na' /K" — ATPase activity = Pjin the reaction buffer B — Pjin the reaction buffer A

Measurement of phosphatidylserine exposure

The percentages of phosphatidylserine exposure on the erythrocyte membranes were measured
by FITC annexin V/dead cell apoptosis kit according to manufacturer’s protocol. The erythro-
cyte samples were suspended in annexin-binding buffer and incubated with FITC annexin V at
room temperature for 15 min. After incubation, annexin-binding buffer was added and ana-
lyzed by flow cytometer at an excitation wavelength of 494 nm and emission wavelength of 518
nm. Annexin V-positive cells were identified as apoptotic cells. The results were expressed as %
phosphatidylserine exposure.

Statistical analysis

The results were expressed as mean+tstandard error of mean (SEM) (n = 6). The statistical sig-
nificance was evaluated using one-way ANOVA. Tukey’s HSD test was used to determine sig-
nificant differences between means. P<0.05 was considered to be statistically significant.

Results

Effects of ferulic acid on protein glycation (glycated hemoglobin or
HbA;¢)

The concentration-dependent effects of glucose on Amadori product formation in erythrocytes
are shown in Fig 1. After 24 h of incubation, glucose (15-45 mM) increased HbA, . levels
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Fig 1. The concentration-dependent effects of 5-45 mM glucose on protein glycation (glycated hemoglobin or HbA,.) in erythrocytes at 37°C for
24 h. The results were expressed as mean+SEM (n = 6). *p<0.05 when compared to 5 mM glucose (G5) treatment.

doi:10.1371/journal.pone.0129495.g001

ranging from 5.62-6.52%. Erythrocytes treated with high glucose (45 mM) significantly in-
creased the levels of HbA . compared to 5 mM glucose. Therefore, we selected the 45 mM con-
centration for further experiments.

The effects of ferulic acid on Amadori product in erythrocytes treated with high glucose are
shown in Fig 2. The results demonstrated that the levels of HbA,. significantly increased about
1.26-fold with 45 mM glucose compared to erythrocytes treated with 5 mM glucose. This in-
crease was significantly inhibited by addition of ferulic acid (10 and 100 uM) about 14.84% and
15.14%, respectively. There were no differences in the levels of HbA, from erythrocytes treated
with 45 mM glucose and ferulic acid at concentrations of 0.1 and 1 pM.

Effects of ferulic acid on glucose utilization

In Fig 3, the effects of ferulic acid on glucose utilization in erythrocytes treated with glucose
during 24 h are shown. A significant enhancement in glucose utilization was observed with 45
mM glucose compared to 5 mM glucose. Ferulic acid (0.1-100 uM) with 45 mM glucose caused
a gradual increase in glucose utilization by 16.25%, 25.06%, 32.02%, and 36.47%, respectively.
It was very interesting that ferulic acid at 10 and 100 uM concentrations significantly increased
glucose utilization.

Effects of ferulic acid on lipid peroxidation

The effects of ferulic acid on lipid peroxidation in erythrocytes treated with glucose are shown
in Fig 4. The levels of lipid peroxidation with 45 mM glucose were 1.45-fold higher than with 5
mM glucose. The addition of ferulic acid (0.1-100 uM) with 45 mM glucose significantly
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Fig 2. The effects of ferulic acid (0.1-100 uM) on protein glycation (glycated hemoglobin or HbA,.) in erythrocytes treated with 45 mM glucose. The
results are expressed as mean+SEM (n = 6). *p<0.05 compared to 5 mM glucose (G5) and **p<0.05 compared to 45 mM glucose (G45) treatments.

doi:10.1371/journal.pone.0129495.9002

decreased lipid peroxidation (11.51%-23.50%) compared to erythrocytes treated with 45 mM
glucose alone.

Effects of ferulic acid on Na*/K*-ATPase activity

The effects of ferulic acid on Na*/K*-ATPase activity in erythrocyte treated with glucose are
shown in Table 1. A significant reduction in Na*/K*-ATPase activity was observed with 45 mM
glucose (28.33%) compared to 5 mM glucose. The addition of 10 and 100 uM ferulic acid re-
versed some of the inhibitory effect of high glucose on Na"/K"-ATPase activity (14.13% and
22.81%, respectively).

Effects of ferulic acid on phosphatidylserine exposure

The effects of ferulic acid on phosphatidylserine exposure in erythrocytes treated with glucose
are shown in Fig 5A and 5B. A significant increase in the percentages of phosphatidylserine ex-
posure was observed with 45 mM glucose (3.87-fold) compared to 5 mM glucose. Ferulic acid
(0.1, 1, 10, and 100 uM) in erythrocytes treated with 45 mM glucose decreased phosphatidyl-
serine exposure by 68.62%, 70.77%, 74.92%, and 80.91%, respectively, compared to 45 mM
glucose alone.
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Fig 3. The effects of ferulic acid (0.1-100 pM) on glucose utilization in erythrocytes treated with 45 mM glucose. The results are expressed as mean
+SEM (n = 6). *p<0.05 compared to 5 mM glucose (G5) and **p<0.05 compared to 45 mM glucose (G45) treatments.

doi:10.1371/journal.pone.0129495.9003

Discussion

The long-term effect of chronic hyperglycemia contributes to the development of pathogenesis
associated with diabetes. In erythrocytes, exposure to high glucose results in increased ROS
from auto-oxidation leading to protein glycation [18]. Normally, erythrocytes uptake glucose
from the extracellular fluid through glucose transporter-1 (GLUT-1), which undergoes glycoly-
sis to produce ATP and pyruvate [25]. In the absence of mitochondria and oxidative metabo-
lism, pyruvate is reduced to lactic acid via anaerobic glycolysis [26]. It is known that glucose
utilization by erythrocytes can be increased during hyperglycemia [18]. Elevated extracellular
glucose induces glucose toxicity and oxidative stress through auto-oxidation and formation of
protein glycation [5,18]. It also increases glucose utilization and HbA ¢ levels [18]. In the pres-
ent study, high glucose concentration was used to demonstrate its ability to induce protein gly-
cation in a short time period, similar to other in vitro studies [18,21]. Interestingly, ferulic acid
increased glucose utilization, thereby decreasing intracellular glucose and inhibiting HbA . for-
mation under high glucose condition. The precise mechanism by which ferulic acid increases
glucose utilization remains unknown. Chang et al. reported that cinnamic acid derivatives
might play an important role in the stimulation of glucose uptake to improve its utilization in
C2C12 cells [27]. The current findings suggest that the increased glucose utilization by ferulic
acid might be involved in the activation of glucose uptake in human erythrocytes. In the same
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Fig 4. The effects of ferulic acid (0.1-100 pM) on lipid peroxidation in erythrocytes treated with 45 mM glucose. The results are expressed as mean
+SEM (n = 6). *p<0.05 compared to 5 mM glucose (G5) and **p<0.05 compared to 45 mM glucose (G45) treatments.).
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cell type, reactive oxygen species (ROS) are produced during high glucose exposure through
auto-oxidation and protein glycation [28,29]. ROS causes oxidative degradation of biological
molecules especially lipid membrane resulting in cell damage [21]. Lipid peroxidation is widely
used as a marker for membrane oxidative damage in other cells [5,18,28,29]. Similar findings
are observed in erythrocytes treated with high glucose [5,18,28,29]. An increase in erythrocyte

Table 1. The effects of ferulic acid (0.1-100 pM) on Na*/K*-ATPase activity in erythrocytes treated
with 45 mM glucose.

Treatment Na*/K*-ATPase activity (nmol Pi/mg protein/h)
G5 *305.27+5.65

G45 218.4845.77*

G45 + FA0.1 227.40+6.37

G45 + FA1 235.60+£18.20

G45 + FA10 247.89+4.69%**

G45 + FA100 267.55+4.37%*

The results are expressed as mean+SEM (n = 6). *p<0.05 compared to 5 mM glucose (G5) and **p<0.05
compared to 45 mM glucose (G45) treatments.

doi:10.1371/journal.pone.0129495.1001
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Fig 5. The effects of ferulic acid (0.1—100 pM) on phosphatidylserine exposure (A) and their percentages (B) in erythrocytes treated with 45 mM
glucose. The results are expressed as mean+SEM (n = 6). *p<0.05 compared to 5 mM glucose (G5) and **p<0.05 compared to 45 mM glucose

(G45) treatments.
doi:10.1371/journal.pone.0129495.9005

membrane lipid peroxidation is observed in diabetic patients [30]. Considerable interest has
been given to antioxidants due to their ability to prevent protein glycation and membrane lipid
peroxidation and based on our findings, ferulic acid has similar properties.

Na*/K"-ATPase pump is an integral membrane protein that plays a major role in the regu-
lation of Na* and K" gradients between extracellular and intracellular space by promoting Na™
efflux and K" influx [31]. Therefore, inhibition of Na"/K"-ATPase pump can affect a number
of cellular processes and function [32]. There is evidence indicating that fructose- and methyl-
glyoxal-induced glycation causes the impairment of Na*/K"-ATPase activity [33]. Down-regu-
lation of Na*/K*-ATPase pump is observed in streptozotocin-induced diabetic rats [34-37].
Type 1 and 2 diabetic patients often have reduced Na*/K*-ATPase activity [38,39]. This condi-
tion is also seen in diabetic neuropathy [40]. Our findings that erythrocytes treated with high
glucose have reduced Na*/K"-ATPase activity is consistent with previous studies [5,18,28].
Phosphatidylserine is one of four major phospholipids located in the plasma membranes of
mammalian cells. It comprises 8-15% of the total phospholipid content [41]. Normally, phos-
phatidylserine is present in the inner layer of the plasma membrane and facilitates protein
binding at the endofacial surface [40]. In addition, it forms an important cofactor for Na™/K"-
ATPase pump [40]. Hyperglycemia-induced oxidative stress, cell damage, and apoptosis cause
the exposure of phosphatidylserine into the outer layer of the erythrocyte membrane [41]. Fur-
thermore, erythrocytes from diabetic patients have membrane phospholipid asymmetry with
increased surface exposure of phosphatidylserine [42]. This is suggested to facilitate erythro-
cyte adhesion to the vascular wall [43] and further contributing to thrombosis and
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microcirculation impairment [44-46]. In our study, erythrocytes treated with high glucose ex-
hibited phosphatidylserine exposure that was consistent with previous findings [47,48]. These
results indicate that ferulic acid improves hyperglycemia-induced impairment of Na™/K"-
ATPase activity and decreases the levels of phosphatidylserine exposure in erythrocytes.

In conclusion, we demonstrated that ferulic acid is capable of improving the effects of hy-
perglycemia on protein glycation and lipid oxidation in erythrocytes. Ferulic acid also in-
creased glucose consumption and Na*/K"-ATPase activity while reducing phosphatidylserine
exposure. These results provide a better understanding of the mechanism by which ferulic acid
may help prevent cellular dysfunction and vascular complications associated to diabetes.
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