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Abstract

Due to poor correlation between steady state mRNA levels and protein product, purely tran-
scriptomic profiling methods may miss genes posttranscriptionally regulated by RNA bind-
ing proteins (RBPs) and microRNAs (miRNAs). RNA immunoprecipitation (RIP) methods
developed to identify in vivo targets of RBPs have greatly elucidated those mRNAs which
may be regulated via transcript stability and translation. The RBP HuR (ELAVL1) and family
members are major stabilizers of mMRNA. Many labs have identified HuR mRNA targets;
however, many of these analyses have been performed in cell lines and oftentimes are not
independent biological replicates. Little is known about how HuR target mMRNAs behave in
conditional knock-out models. In the present work, we performed HuR RIP-Seq and RNA-
Seq to investigate HuR direct and indirect targets using a novel conditional knock-out model
of HuR genetic ablation during CD4+ T activation and Th2 differentiation. Using indepen-
dent biological replicates, we generated a high coverage RIP-Seq data set (>160 million
reads) that was analyzed using bioinformatics methods specifically designed to find direct
mRNA targets in RIP-Seq data. Simultaneously, another set of independent biological repli-
cates were sequenced by RNA-Seq (>425 million reads) to identify indirect HuR targets.
These direct and indirect targets were combined to determine canonical pathways in CD4+
T cell activation and differentiation for which HuR plays an important role. We show that
HuR may regulate genes in multiple canonical pathways involved in T cell activation espe-
cially the CD28 family signaling pathway. These data provide insights into potential HUR-
regulated genes during T cell activation and immune mechanisms.
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Introduction

Due to poor correlation between steady state mRNA levels and protein products, traditional
genome profiling techniques may be limiting. Eukaryotic mRNAs are regulated posttranscrip-
tionally by RNA-binding proteins (RBPs) and microRNAs (miRNAs) at the levels of transcript
stability and translation. To better understand the complex milieu of posttranscriptional gene
regulation, investigators have developed various methods to identify mechanisms of gene regu-
lation. RNA-immunoprecipitation applied to gene chips (RIP-Chip) or, more recently, to
RNA-Seq (next generation deep sequencing) are two such methods that have revealed net-
works of posttranscriptionally regulated genes. These methods can be used to explore both
known and novel transcripts.

The elav family of RBPs and HuR (elavll) in particular play important roles in stabilization
and translational recruitment of labile mRNA transcripts to heavy polysomes in order to facili-
tate protein product expression. Since HuR is a stabilizer RBP, many labs, including our own,
have taken advantage of this fact and performed HuR RIP-Chip (or Seq) and RNA-Seq to iden-
tify mRNAs which may be coordinately regulated by HuR in a variety of biological systems [1-
3],[4]. However, the vast majority of these analyses are not truly independent biological sam-
ples and they were mostly performed in transformed cell lines. Not as much is known about
HuR regulation of mRNA target genes in primary cells in vivo.

An active area of HuR investigation is in immune system regulation, especially during CD4"
T cell activation and differentiation. When our group first cloned murine HuR (HuA), we dem-
onstrated that T cell activation results in 14-fold increases in the total cellular HuR levels [5].
Other groups have shown that following T cell activation, HuR rapidly translocates to the cyto-
plasm [6]. Thus, we and others have hypothesized that HuR may facilitate T cell activation as
well as naive CD4" T cell differentiation programs.

Naive CD4" T cells can differentiate into different subsets, including Th1, Th2, Th17,
Tth and Treg, with unique signature transcription factors and different patterns of cytokine
gene expression. HuR was previously described as a regulator of transcription factors and
cytokines promoting CD4" Th2 differentiation such as GATA-3 and IL-4 [7, 8]. Th2 cyto-
kines, such as IL-4, IL-5 and IL-13 play major roles in allergic airway inflammation. How-
ever, other HuR target transcripts essential for Th2 differentiation, besides those identified
previously, may have been overlooked. In order to address this, we took advantage of HuR
RIP-Chip techniques to determine direct HuR target transcripts in Th2 differentiating cells.
Additionally, RNA-Seq was performed in HuR knock-out (KO) vs. wild type control CD4"
cells under Th2 polarization to identify target transcripts which were altered in the absence
of HuR. To our knowledge, this is the first time these techniques have been used with
independent biological replicates from primary murine CD4" T cells undergoing Th2
differentiation.

Finally, we combined the data obtained from HuR RIP-Seq and RNA-Seq in order to deter-
mine HuR direct and indirect target transcripts under Th2 polarizing conditions. Our analysis
(>400 million reads) reveals both known HuR regulated transcripts as well as new, putative
HuR-associated targets under Th2 conditions which are crucial for Th2 differentiation and
cytokine production. Such data when corroborated with translational expression can delineate
previously overlooked genes which are required for T cell activation and inflammation in dis-
eases such as asthma.
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Material and Methods

Mice

OX40 Cre HuR™ mice were generated as previously described [7]. In HuR"" mice, a portion
of the promoter region, exon 1 and exon 2 of HuR gene were flanked with the loxP sites which
allow HuR ablation to occur upon cre recombinase excision. These mice were then crossed to
0X40-cre mice in which cre recombinase enzyme is expressed under the control of OX40 pro-
moter in activated T cells to generate OX40-cre HuR™™ KO mice. All mice used were on the
C57BL/6 background and housed in the pathogen free facilities. All animal experiments and
procedures were conducted in accordance with the guidelines set forth by the University of
Missouri Animal Care and Use Committee (IACUC). The University of Missouri IACUC
approved all the experiments in this manuscript.

Murine T cell polarization in vitro

Naive splenocytes were isolated from 6-8-wk-old C57BL/6 OX40-Cre HuR™ knockout mice
or C57BL/6 HuR"" control mice. CD4* T cells were isolated using CD4 (L3T4) MicroBeads
(Miltenyi Biotec) following the manufacturer’s protocol. Cells were activated with anti-CD3
anti-CD28 (5 ug/ml each) for 5 days in T cell media (DMEM, 10% FCS, 50ug/ml gentamicin,
1mM Na Pyruvate, 2mM L-Glutamine and 0.05mM beta-mercaptoethanol (2-BME). For Th2
polarizing condition 100 U/ml rIL-4, 50 U/ml rIL-2, and 10 pg/ml anti-IFN-y Ab were added
in the media upon activation. Anti-CD3, anti-CD28, anti-IL-4, and anti- IFN-y antibodies
were purchased from eBioscience (San Diego, CA). Cytokines were all purchased from Pepro-
tech (Rocky Hill, NJ). Tissue culture reagents were all purchased from Life Technologies.

RNA isolation and sequencing

CD4" Th2 polarized cells were harvested from the in vitro culture on day 5 post-activation.
Approximately, 1x10” cells were lysed and re-suspended in 1 ml of Trizol reagent (Life Tech-
nologies). Total RNA was then isolated according to the company protocol. For RNA-sequenc-
ing, 5ug of RNA from seven OX40-cre HuR"? mice and seven HuR™"
make the libraries (TruSeq). RNA-sequencing was performed using an Illumina HiSeq 2000
sequencer at the DNA Core facility of the University of Missouri. These libraries were
sequenced in two different runs (one 6-plex and one 8-plex) of one lane each using 100 bp

controls were used to

single-end reads.

RNA-immunoprecipitation (RIP)

HuR and IgG1 RNA-immunoprecipitations were performed according to published protocol
[1, 9]. Briefly, CD4* Th2 polarized cells from HuR™" wild-type controls on day 5 of in vitro
polarization were lysed in polysomal lysis buffer (PLB) supplemented with RNaseOUT, DTT
and complete protease inhibitor. HuR (clone 3A2) or IgG1 isotype control antibodies were
pre-coated onto protein A Sapharose beads (PAS) overnight at 4°C. On the next day, antibody
coated beads were washed with NT-2 buffer (50mM Tris-Hcl pH7.4, 150mM NaCl,, ImM
MgCl, and 0.05%NP-40) at least 5 times. Equal amount of protein lysates in PLB buffer were
then incubated with HuR or IgG1 antibody coated beads for 4 hours at 4°C. Beads were then
washed with NT-2 buffer 7 times. After the last wash, the beads were then incubated with 20
units of RNase-free DNase I (15 min, 30°C) and washed once with NT-2 buffer. The ribonu-
cleoprotein complexes were dissociated from the beads by incubating in 100 ul NT-2 buffer
containing 0.1% SDS and 0.5 mg/ml Proteinase K (30 min, 55°C). The beads were then spun
down and supernatants were collected. RNA extraction from the supernatant was performed
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with acid-phenol and precipitated using absolute ethanol. Total RNA was then processed for
RNA-sequencing (RNA-Seq). From each biological replicate (n = 3), two libraries (HuR IP and
IgGl1 control) were prepared and sequenced on an Illumina HiSeq 2000 with 100 bp single end
reads. Each library was sequenced using a full lane on the sequencer.

Statistical analyses and bioinformatics

RNA-Seq data and RIP-Seq data were analyzed separately to determine the indirect and direct
HuR targets, respectively. After identifying those targets, the lists were merged and used for
further analysis to identify enriched canonical pathways and to build novel networks related to
HuR in CD4" T cells.

RNA-Sequencing

The primary analysis of the pre-processed RNA-Seq data was conducted using R/Bioconduc-
tor, with other free, open-source programs used for the pre-processing itself. The preprocessing
steps consisted of: 1) quality assessment of FASTQ files using FastQC (http://www.
bioinformatics.bbsrc.ac.uk/projects/fastqc), 2) trimming of adapters from each library using
Cutadapt, 3) aligning libraries to the mm10 genome (http://hgdownload-test.cse.ucsc.edu/
goldenPath/mm10/bigZips/) using a seed-and-vote method, and 4) forming a read-count
matrix at the gene level by read summarization via featureCounts in Rsubread.

Non-specific filtering of genes prior to statistical testing was carried out to increase the
power of detecting differentially expressed genes [10], based on the requirement that a gene
have an expression level greater than 1 count per million reads mapped (CPM) for at least 7
libraries across all samples (HuR KO and wild-type control). Library normalization to adjust
for differences in library size was then made using the TMM method [11] in edgeR [12]. A flex-
ible mean-variance modeling and transformation process known as voom [13], was used in
conjunction with a linear modeling approach [14], a combination known as Limma Voom,
which was recently shown to perform among the best of available techniques in an comprehen-
sive comparison of differential gene expression methods for RNA-Seq data [15]. Using this
framework, normalized expression levels were compared between the KO/CTL, resulting in
estimated fold changes and associated p-values. Adjustment to the p-values was made to
account for multiple testing using the false discovery rate (FDR) method of Benjamini and
Hochberg; these are reported as q-values.

RIP-Sequencing

Pre-processing and read summarization of RIP-Seq data was carried out as described for the
RNA-Seq data. For each animal (n = 3), a HuR and IgG1 sample was processed separately
using the RIPSeeker [16] algorithm, which is a de novo method for detecting peaks (indicating
protein—-RNA interactions) based on hidden Markov models (HMM). This is carried out in a
multistage process whereby RIPSeeker first partitions the genome into non-overlapping bins,
whose sizes are optimally determined per chromosome (optimal bin size selected was between
200-300 bp for our data), and each bin counts any reads that fall into it. Clearly, multiple (and
often adjacent) bins may together correspond to a single RNA transcript that binds to HuR, so
that the bins must be treated as dependent observations. This is dealt with via the HMM
approach, which also takes advantage of the background signal information provided by the
IgG1 sample, and is used to make a prediction of the state of the bin (RIP or background). To
assess the significance of the prediction for a bin (i.e., that specific genomic region), both the
RIP library and control library are assigned a RIPScore at each bin location. Adjacent regions
with the same prediction are merged and their RIPscores are averaged across bins. Thus, by
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application of the central limit theorem, the difference between the average RIPscores (RIP and
control) has been shown to have a Gaussian distribution, which can be used to derive a p-
value. Finally, those p-values are adjusted for multiple testing using FDR. Data (HuR and IgG1
control) from each animal were analyzed individually by RIPSeeker to produce a list of anno-
tated RIP regions (aka peaks) and associated q-values. Taking cues from the quality control
protocol used for ChIP-Seq data in the ENCODE project, the peak lists were compared
between animals, and excluded if the peak list of any sample overlapped by less than 50% with
the other samples.

Combined analysis of RNA-Seq and RIP-Seq results for canonical
pathways and novel networks

The set of genes identified by RNA-Seq analysis (indirect targets) and by RIP-Seq analysis
(direct targets) were merged and used for further analysis to identify enriched canonical path-
ways and to build novel networks related to HuR in CD4" T cells. Canonical pathways were
assessed and novel networks were generated through the use of Ingenuity Pathways Analysis
(Ingenuity Systems, www.ingenuity.com), henceforth IPA, as previously described [17]. The
complete lists of identified genes were uploaded into IPA along with the Entrez Gene identifier
(ID), fold change, and g-value. In the event of duplicate genes prior to uploading into IPA,
RIP-Seq (direct target) information for the gene was used as opposed to RNA-Seq (indirect tar-
get). Within IPA, in the event of commonly mapped IDs to the Ingenuity Knowledge Base
(IKB), the maximum fold change (i.e., RIP-Seq values took precedence over RNA-Seq values
when both significant) was used to represent the single results for that Gene ID. For canonical
pathway analysis, Fisher’s exact test was used to determine which pathways are enriched for
our reported direct or indirect HuR targets. For novel networks, a detailed description of the
network generating algorithm is provided by Calvano et al. [18]. Graphical representations of
the pathways were generated using IPA’s Path Designer, which illustrates the relationships
between molecules (i.e., nodes), and the biological relationship between two nodes is repre-
sented as an edge (i.e., connecting line). All edges are supported by at least 1 reference stored in
the IKB which was derived either from the literature, from a textbook or from canonical
information.

RT-gPCR

RNA isolation from CD4" Th2 polarized cells on day 5 post-activation was performed using
Trizol extraction following the manufacture’s protocol. Reverse transcription (RT) was per-
formed using 0.5-1 ug of RNA with Superscript III reverse transcriptase (Invitrogen). Quanti-
tative PCR was done in triplicate using Platinum SYBR green Universal (Invitrogen). The data
were analyzed using comparative CT method with Gapdh as an endogenous control. Data
were present in arbitrary relative quantitative ratio (RQ). Student’s t-test was used to calculate
p-value based on delta-delta CT of the targets.

Murine primers for qPCR were listed below (forward/reverse):

Gapdh: 5'-TCAACAGCAACTCCCACTCT TCCA-3'/ 5’ACCCTGTTGCTGTAGCCGTATTCA-3
I12: 5 -CCCAAGCAGGCCACAGAATTGAAA-3'/
5'-AGTCAAATCCAGAACATGCCG CAG-3/

Camk2: 5'-TTGGCAGCAGACCCTAATG-3'/
5'-CTCCAAGCTGAGTGGACAAA-3'

Camk4: 5'-TCTCACACCCGAACATCATAAA-3'/
5'-CTGTAGTATCCCTTCTCCACAATC-3’

PLOS ONE | DOI:10.1371/journal.pone.0129321 July 10,2015 5/20


http://www.ingenuity.com

'@2§[’L‘Jﬁi|ONE

Direct and Indirect HUR Targets in Activated CD4* T Cells

Results

Our RNA-Seq experiments obtained approximately 425 million total raw reads (mean of 30
million), while the RIP-Seq experiments resulted in approximately 160 million total raw reads
(mean of 26 million). Fig 1 provides a broad overview of the results found by RNA-Seq and
RIP-Seq, in terms of the number of genes indicated as being significant by each method and
how they are related. We searched BioGRID, a public database (http://thebiogrid.org/, accessed
6/24/2014) that aggregates and archives published genetic and protein interaction data from
model organisms and humans [19-21], in order to compare our identified direct and indirect
HuR (ELAVL1) targets with those experimentally determined in the literature. We down-
loaded data files containing approximately 2000 interactions involving HuR in human, mouse,
and rat. Nearly all data came from humans; therefore, we only used BioGRID genes with
mouse orthologs to construct Fig 1. We also limited our RNA-Seq and RIP-Seq findings to
regions with official gene symbols because gene symbol is the identifier level at which the Bio-
GRID data is reported.

BioGrid, RNA-Seq and HuR RIP-Seq revealed 1514, 2068 and 271 transcripts involving in
Th2 differentiation respectively. Under Th2 polarizing conditions, 271 transcripts were shown
to be direct HuR target transcripts by HuR RIP-seq. The RNA expression level of 30 genes
shown to be direct HuR targets were altered in the absence of HuR. Of all the transcripts ana-
lyzed by these 3 methods, only seven have previously been shown to be known interacting tar-
gets by BioGrid. Thus, using these 3 analyses in combination, we discovered not only the
potential target transcripts with which HuR may physically interact, but we also revealed the
transcripts that may require HuR for their expression.

BioGrid [n=1565] RNA-Seq [n=2068]

1825

23

215

RIP-Seq [n=271]

Fig 1. Venn diagram of RNA-Seq, RIP-Seq, and BioGRID reported ELAVL1 target genes. Results from
the RNA-Seq and RIP-Seq experiments were compared to genes experimentally verified in the literature to
interact with ELAVL1, as curated in the BioGRID database. Results from BioGRID were limited to genes with
mouse orthologs to make the results more compatible with our experiments.

doi:10.1371/journal.pone.0129321.g001
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HuR indirect targets in CD4" Th2 differentiation identified by RNA-Seq

2080 genes (2068 with designated gene symbol in NCBI Gene) were found based on a nominal
p-value cutoff of .05 (with corresponding q < .30), with a median p-value of .1275 (q = .15).
The full listing of these genes is given in S1 Table. A broad entry criterion was selected because
the ultimate goal was to use the identified differentially expressed genes as input for a com-
bined network analysis, using both RNA-Seq and RIP-Seq results. The top 50 differentially
expressed genes (with an assigned gene symbol) discovered via RNA-Seq are given in Table 1,
sorted by the absolute magnitude of the fold change. Here, fold change is defined as knock-out
(KO) divided by wild-type control (CTL).

Most of the genes in Table 1 are highly significant (median q = .045) with a large fold-
change (median magnitude of the fold change = 2.15). We also determined efficiency of HuR
ablation in activated HuR KO CD4" T cells by Western analysis. As shown in S1D Fig, HuR
levels in HuR KO CD4" T cells are indeed abolished. Additionally, we also verified RNA-Seq
data by determining mRNA steady state levels of three potential HuR target genes (CAMK2,
CAMK4 and IL-2) by RT-qPCR. Consistent with the RNA-Seq data, IL-2 mRNA was increased
in KO T cells by two-fold, whereas CAMK2 and CAMK4 levels were decreased 50% and 15%,
respectively RT-qPCR (S1A-S1C Fig).

Many genes that are involved in CD4" T cell activation and Th2 differentiation were identi-
fied as genes whose expression is altered in the absence of HuR as shown in Table 1. Only a few
of those transcripts have been previously verified as HuR targets in other transformed cell lines
such as Pled3 and Trp53corl [22, 23].

Many of those known HuR regulated transcripts are not common with transcripts found in
CDA4" T cells, even if those transcripts are highly expressed in both transformed cell lines and
CD4" T cells. This may indicate that HuR function may be cell type specific and HuR targets in
transformed cell lines may be different from primary cells. The RNA-Seq data also showed
novel HuR target transcripts encoding for cytokines, cytokine receptors and transcription fac-
tors required for CD4" T cell functions such as IL-2, [L-10 and IL-1R1.

Direct in vivo HuR targets identified by RIP-Seq in CD4* Th2
differentiation

Three independent experiments were conducted and analyzed separately to determine the
number of significant binding events (hits or peaks). Those regions were annotated based on
which gene the region overlapped (or the gene with nearest start site). Experiment 1 identified
149 binding events that mapped to 81 genes, experiment 2 found 381 that mapped to 193
genes, and experiment 3 found 348 that mapped to 172 genes. Experiment 1 did not meet the
minimum agreement with the other two experiments, so those results were excluded from fur-
ther analysis. The regions from the remaining two experiments were aggregated at the gene
level for a total of 271 unique genes with at least one significant binding event overlapping
them (S2 Table). The top 100 significantly different annotated regions from among 271 identi-
fied via RIP-Seq are given in Table 2, along with the total number of significant ‘hits’ (binding
events) at that region among two independent RIP experiments.

The regions are arranged by gene type, and then sorted by fold change. Because each hit has
an associated p-value, q-value, and fold change (HuR/IgG), we conservatively reported the
minimum fold change within a gene, so that all hits within a gene have a fold change as least as
large as the one reported. Similarly, we conservatively report the maximum p-value and q-
value, so that all hits within a gene have a value at least as small as the one reported. All regions
given in Table 2 have a minimum g-value <1E-99 from testing for HuR binding to RNA, so
we have suppressed reporting the p-value and g-value for Table 2, but the values are given in
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Table 1. Top 50 RNA-Seq significantly different genes sorted by magnitude of fold change (KO/CTL). The official symbol of the top 50 (significant)
genes found via RNA-Seq are given, along with fold change (KO/CTL), raw p-value for differential expression, and q (false discovery rate value based on
method of Benjamini-Hochberg).

Gene ID Symbol Name p q Fold
100862004 Erdr1 erythroid differentiation regulator 1 <0.01 <0.01 17.96
57738 Slc15a2 solute carrier family 15 (H+/peptide transporter), member 2 0.03 0.24 8.07
72469 Plcd3 phospholipase C, delta 3 <0.01 <0.01 0.15
338521 Fa2h fatty acid 2-hydroxylase 0.01 0.14 3.29
246228 Vwa von Willebrand factor A domain containing 1 <0.01 <0.01 3.17
622402 Akric12 aldo-keto reductase family 1, member C12 <0.01 0.04 2.92
246779 127 interleukin 27 0.04 0.26 2.83
226654 Tstd1 thiosulfate sulfurtransferase (rhodanese)-like domain containing 1 <0.01 <0.01 2.78
74761 Mxra8 matrix-remodelling associated 8 <0.01 <0.01 2.77
105349 Akric18 aldo-keto reductase family 1, member C18 0.02 0.19 2.63
16590 Kit kit oncogene <0.01 <0.01 0.38
67405 Nts neurotensin 0.02 0.19 2.59
16187 113 interleukin 3 0.02 0.17 2.55
100503024 Gm19512 predicted gene, 19512 <0.01 <0.01 2.53
78809 4930562C15Rik RIKEN cDNA 4930562C15 gene <0.01 0.01 2.52
100504267 Trp53cori tumor protein p53 pathway corepressor 1 <0.01 <0.01 0.41
16153 1110 interleukin 10 0.01 0.13 2.40
20259 Scin scinderin <0.01 0.02 2.29
93695 Gpnmb glycoprotein (transmembrane) nmb <0.01 0.07 2.29
207375 Fam120c family with sequence similarity 120, member C <0.01 <0.01 2.29
77772 Dcst1 DC-STAMP domain containing 1 <0.01 0.06 2.27
13497 Drp2 dystrophin related protein 2 <0.01 <0.01 0.44
14419 Gal galanin 0.03 0.24 2.26
106504 Stk38 serine/threonine kinase 38 <0.01 <0.01 2.23
16909 Lmo2 LIM domain only 2 0.01 0.10 2.16
20344 Selp selectin, platelet 0.01 0.11 2.14
78309 Cul9 cullin 9 <0.01 <0.01 0.47
26549 Itgb1bp2 integrin beta 1 binding protein 2 <0.01 0.02 0.47
12484 Cd24a CD24a antigen 0.03 0.23 2.13
19224 Ptgs1 prostaglandin-endoperoxide synthase 1 0.01 0.09 2.11
17067 Ly6c1 lymphocyte antigen 6 complex, locus C1 0.03 0.24 2.10
14586 Gfra2 glial cell line derived neurotrophic factor family receptor alpha 2 <0.01 0.05 2.09
15930 Ido1 indoleamine 2,3-dioxygenase 1 0.01 0.12 2.06
98256 Kmo kynurenine 3-monooxygenase (kynurenine 3-hydroxylase) <0.01 0.08 2.05
329002 Zfp236 zinc finger protein 236 <0.01 <0.01 0.49
71213 Caget cancer antigen 1 <0.01 <0.01 0.50
83382 Siglece sialic acid binding Ig-like lectin E 0.01 0.11 0.50
12323 Camk2b calcium/calmodulin-dependent protein kinase I, beta <0.01 <0.01 0.50
383075 Enthd1 ENTH domain containing 1 <0.01 <0.01 0.50
20375 Sfpit SFFV proviral integration 1 0.03 0.22 1.97
74055 Plce1 phospholipase C, epsilon 1 <0.01 0.04 0.51
64011 Nrgn Neurogranin 0.01 0.10 1.96
16177 11r1 interleukin 1 receptor, type | 0.02 0.19 1.96
66457 2810002D19Rik RIKEN cDNA 2810002D19 gene <0.01 <0.01 0.51
75828 Hormad2 HORMA domain containing 2 <0.01 0.06 1.95
(Continued)
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Table 1. (Continued)

Gene ID Symbol

16183 112

239102 Zthx2

69479 1700029J07Rik
210356 Nckap5

18131 Notch3

doi:10.1371/journal.pone.0129321.t001

Name P q Fold

interleukin 2 0.01 0.10 1.93
zinc finger homeobox 2 <0.01 0.04 0.52
RIKEN cDNA 1700029J07 gene <0.01 <0.01 0.52
NCK-associated protein 5 0.03 0.22 1.91
notch 3 <0.01 0.01 0.52

S2 Table. Location of binding overlaps the annotated region unless otherwise noted, in which
case the reported gene is the nearest annotated gene; we have indicated those in Table 2 and
S2 Table.

Various transcripts of protein coding genes, pseudogenes, lincRNA genes, miRNA genes,
snoRNA genes and unclassified genes were found to physically interact with HuR by HuR
RIP-Seq. The top significant HuR associated transcripts and the number of HuR hits are dis-
played in Table 2. Many of those transcripts are novel HuR target genes which have been
shown to play pivotal roles in CD4" T cell activation and Th2 differentiation. We validated
HuR RIP-Seq data by performing HuR RIP followed by RT-qPCR in some of potential HuR
transcripts in Th2 polarized CD4™ T cells. IL-2, CAMK2 and CAMK4 transcript enrichment in
RIP using HuR antibody were analyzed as compared to RIP using IgG1 antibody. In agreement
with the HuR RIP-Seq data, IL-2 and CAMK4 were found to be direct HuR target transcripts
while CAMK2 did not seem to be an appreciable direct HuR target transcript (S2A Fig).

Combined network analysis of RNA-Seq and RIP-Seq regions

Table 3 lists alphabetically the seven genes found in the intersection of Fig 1, and combines
information reported in Tables 1 and 2 and S2 Table. In two instances, the hits do not perfectly
overlap the annotated gene, so the reported gene is the nearest annotated gene; we have indi-
cated those in Table 3.

Based on the union of the RNA-Seq and RIP-Seq lists, we used IPA software to identify the
top 50 enriched canonical pathways (Table 4). We reported the significance and indicated the
magnitude of the enrichment as a percent of the genes in our list for a given canonical pathway
divided by the size of the canonical pathway. Fig 2 gives details for the top identified canonical
pathway (iCOS-iCOSL Signaling in T Helper Cells) overlaid with relevant data (Table 5). Sig-
nificant pathway nodes are shaded according to the size of the fold change (red >1; green <1),
with white nodes indicating undetected genes and gray indicating genes that were detected, but
not significant. Nodes with multicolor gradients contain genes with significant fold changes in
different directions; complete relevant data for every node is given in Table 5, Fig 3 and Table 6
present similar information for another highly significant canonical pathway, CD28 Signaling
in T Helper Cells.

Multiple pathways involved in CD4" T cell activation and Th2 differentiation are displayed
in Tables 3 to 6 and Figs 2 and 3. Two major CD28 family co-stimulatory pathways, iCOS-
iCOSL (Inducible Co-stimulator)/AILIM (Activation-inducible lymphocyte immunomedia-
tory molecule) and CD28, in T helper cells are the most effected by HuR ablation. iCOS and
CD28 are both co-stimulatory molecules which are highly up-regulated upon the engagement
of T cell receptor (TCR). iCOS is induced upon T cell activation but not in naive CD4" T cells
while CD28 is constitutively expressed even before TCR engagement [24, 25]. iCOS has been
shown to be essential for Th2 differentiation and for follicular helper T cell (Tfh) development
while CD28 signal is required for IL-2 production in activated CD4" T cells [26-28]. This data
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Table 2. Top 100 significant RIP-Seq regions arranged by gene type. The top 100 significantly different annotated regions from among 271 identified via
RIP-Seq are given along with the total number of significant ‘hits’ (binding events) at that region among two independent RIP experiments. Fold denotes the
minimum fold change observed across all of the hits, where fold change is expressed as (HuR/IgG). All regions given in this table have a minimum g-value
(false discovery rate value based on method of Benjamini-Hochberg) <1E-99 from testing for HuR binding to RNA. The regions are arranged by gene type,

and then sorted by fold change. Location of binding overlaps the annotated region unless otherwise noted.

Symbol Feature Type Hits Fold > Symbol Feature Type Hits Fold >
Adipor2* protein coding 2 714 Odf2 protein coding 5 149
Nfe2I3* protein coding 2 510 Tep11l1* protein coding 2 146
Ttc7b* protein coding 5 500 Gm1043* protein coding 1 145
Atxn1 protein coding 1 496 Mrgprd* protein coding 5 138
Mapk14* protein coding 3 477 Fgf23* protein coding 3 137
Cdk6 protein coding 1 473 Fam133b* protein coding 1 133
Olfr1445* protein coding 3 464 Cpne6* protein coding 6 116
Clrn1* protein coding 2 443 Widc8 protein coding 3 92
9130011E15Rik protein coding 3 397 Hrasls5* protein coding 3 86
Abcc2* protein coding 2 390 Gm15155 protein coding 4 84
Wnt16* protein coding 3 368 Adam29* protein coding 6 82
Nrn1* protein coding 2 363 Mex3b* protein coding 3 80
Atp2b4* protein coding 3 357 Kctd21* protein coding 2 78
Kenh5* protein coding 2 352 Prr3 protein coding 3 76
Cldn25* protein coding 1 346 Tfdp1 protein coding 4 70
9630033F20Rik protein coding 1 316 Gm5072* protein coding 3 66
Glb1* protein coding 2 314 Fam107b protein coding 5 62
Exoc2 protein coding 2 309 Hck* protein coding 2 57
Adam12 protein coding 1 300 Tmx1* protein coding 2 52
Fam199x protein coding 2 285 Cd47 protein coding 5 51
Slc8a3 protein coding 3 281 Disp1* protein coding 3 42
Nup210I protein coding 3 276 Zc3h7a protein coding 2 31
Adh7* protein coding 1 273 Dtnbp1* protein coding 2 25
Ccin* protein coding 2 269 Ctdspl2 protein coding 2 20
Foxr1* protein coding 1 267 Gm11383* pseudogene 1 1377
Kenb1 protein coding 5 267 RP23-331E4.1* pseudogene 4 281
Zfhx3* protein coding 2 251 Gm13567* pseudogene 1 234
Mettl13* protein coding 2 244 Gm13260* pseudogene 1 113
Dock9* protein coding 1 242 Gm13400* pseudogene 3 77
Tepi1l2* protein coding 3 238 Rps2-ps6* pseudogene 4 13
Mbnl1* protein coding 6 235 Gm14152 lincRNA gene 2 353
Kent2* protein coding 3 213 Gm12596* lincRNA gene 3 316
Espl1 protein coding 6 202 Gm13391* lincRNA gene 3 296
Dag1* protein coding 2 193 E530001K10Rik lincRNA gene 1 205
Dram2 protein coding 3 191 AC169129.1 lincRNA gene 3 48
Ndufa4l2* protein coding 3 191 Gm26333* miRNA gene 2 361
Pola1i protein coding 4 187 Gm25947* miRNA gene 3 253
Camk1* protein coding 1 185 Mir1956* miRNA gene 2 109
Srxn1* protein coding 3 171 Gm25972* miRNA gene 3 85
Tbl1xr1* protein coding 4 170 Gm24179* snoRNA gene 4 350
Fam174a* protein coding 4 169 Gm23404* snoRNA gene 8 125
Ebf2 protein coding 4 168 Gm24539* snoRNA gene 3 27
Elavi1 protein coding 6 159 Gm22983* snRNA gene 2 403
Sycp1 protein coding 7 158 Gm25130* snRNA gene 2 78
(Continued)
PLOS ONE | DOI:10.1371/journal.pone.0129321 July 10,2015 10/20



el e
@ : PLOS ‘ ONE Direct and Indirect HUR Targets in Activated CD4* T Cells

Table 2. (Continued)

Symbol Feature Type Hits Fold > Symbol Feature Type Hits Fold >
Gm8914* protein coding 2 157 Gm22628* snRNA gene 2 22
Tram1* protein coding 6 157 4930505M18Rik* unclassified gene 1 1652
Shoc2 protein coding 8 155 AA387200* unclassified gene 2 142
Cdh13* protein coding 4 154 Gm14720 unclassified gene 3 106
Pold3* protein coding 2 153 Gm13256* unclassified gene 5 48
Golgat* protein coding 2 151 C330013F16Rik unclassified ncRNA 2 361

*Denotes the nearest annotated gene to the discovered binding site, rather than an overlapping annotated gene.

doi:10.1371/journal.pone.0129321.1002

emphasize the possibility that HuR may play a role in regulating CD28 co-stimulatory receptor
family signaling pathways which control T cell function and differentiation.

In order to verify several potential HuR target transcripts that have been illustrated previ-
ously to be involved in the iCOS-iCOSL pathway, we have quantitated CAMK2, CAMK4 and
IL-2 levels in our system. CAMK2 and CAMK4 have been shown previously to inhibit IL-2
transcription [29]. Interestingly, our data show potential direct and indirect HuR regulation of
CAMK?2 and CAMK4 on IL-2 expression. Down regulation of CAMK2 and CAMK4 observed
in Th2 differentiated HuR KO CD4" T cells may result in up-regulation of IL-2 expression.
Although the mRNA levels of CAMK2 were significantly lower in the HuR KO Th2 polarized
CD4" T cells as compared to the control, the protein levels were not significantly different
(SIA-S1D Fig). This may be due to the inability of Western blotting to detect subtle changes in
protein expression. Also, there are 4 isoforms of CAMK?2 (a, B, 3 and v). Two isoforms of
CAMK?2 (B and ’e splice variants) have been shown to suppress IL-2 expression [29]. The anti-
body used in this experiment detects all CAMK?2 isoforms, making it difficult to detect subtle
alterations in individual isoform expression. Moreover, only expression of the CAMK2b iso-
form was altered in the absence of HuR and was a HuR target. These results emphasize the fact
that HuR regulation of target mRNA transcripts is complex. Additionally, HuR regulation at
the translation levels has to be considered in interpretation of mRNA results. Therefore, further

Table 3. Genes found in both RNA-Seq and RIP-Seq, sorted alphabetically. The seven protein-coding genes identified as significant based on RIP-Seq
and RNA-Seq are given. For RIP-Seq, the total number of significant ‘hits’ (binding events) per gene are reported, counted across two independent RIP
experiments. Fold denotes the minimum fold change observed across all of the hits, where fold change is expressed as (HuR/IgG), and q denotes the maxi-
mum g-value (false discovery rate value based on method of Benjamini-Hochberg) from testing for HUR binding to RNA. Location of binding overlaps the
annotated gene unless otherwise noted. For RNA-Seq, fold denotes change (HuR KO/CTL).

RIP-Seq RNA-Seq

Gene ID Symbol Name Fold > q Hits AveExpr q Fold

12326 Camk4 calcium/calmodulin-dependent protein kinase IV 637 <1E-68 2 7.40 .060 0.845
16423 Cd47 CD47 antigen (Rh-related antigen, integrin-associated signal transducer) 51 <1E-99 5 8.71 .077 1.181
15568 Elavi ELAV (embryonic lethal, abnormal vision)-like 1 (Hu antigen R) 159 <1E-99 6 7.25 .002 1.316
67698 Fam174a* family with sequence similarity 174, member A 169 <1E-99 4 4.70 A1 1411
18286 Odf2 outer dense fiber of sperm tails 2 149 <1E-99 5 7.46 .041 0.864
320554  Tcpiilt* t-complex 11 like 1 146 <1E-99 2 0.49 .073 1.632
106205  Zc3h7a zinc finger CCCH type containing 7 A 31 <1E-99 2 7.59 .002 1.308

*Denotes the nearest annotated gene to the discovered binding site, rather than an overlapping annotated gene.

doi:10.1371/journal.pone.0129321.1003
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Table 4. Top 50 canonical pathways for union of RIP-Seq and RNA-Seq analyses sorted by p-value.
Size indicates the number of molecules that comprise a pathway and DE indicates the number of significant
genes identified by either RIP-Seq or RNA-Seq, where % represents DE/size. p is based on Fisher's Exact
Test and indicates pathways that are enriched for genes from RIP-Seq or RNA-Seq.

Ingenuity Canonical Pathways P DE Size %
iCOS-iCOSL Signaling in T Helper Cells 4.07E-07 28 126 22
Type | Diabetes Mellitus Signaling 7.94E-07 27 121 22
Mitochondrial Dysfunction 9.33E-06 34 201 17
PI3K Signaling in B Lymphocytes 417E-05 27 143 19
Cell Cycle: G1/S Checkpoint Regulation 8.13E-05 16 68 24
Thrombin Signaling 1.48E-04 34 211 16
CD28 Signaling in T Helper Cells 1.58E-04 24 136 18
Antioxidant Action of Vitamin C 2.34E-04 21 110 19
Production of Nitric Oxide and Reactive Oxygen Species in Macrophages  2.40E-04 32 212 15
Role of NFAT in Cardiac Hypertrophy 3.24E-04 32 209 15
T Helper Cell Differentiation 3.72E-04 16 72 22
Dendritic Cell Maturation 5.25E-04 30 211 14
Calcium-induced T Lymphocyte Apoptosis 5.89E-04 15 71 21
Huntington's Disease Signaling 6.17E-04 36 252 14
Role of BRCA1 in DNA Damage Response 6.76E-04 14 71 20
iNOS Signaling 6.76E-04 12 53 23
Small Cell Lung Cancer Signaling 7.08E-04 16 94 17
Glucocorticoid Receptor Signaling 8.51E-04 40 299 13
Death Receptor Signaling 1.55E-03 13 68 19
Cardiac Hypertrophy Signaling 1.62E-03 35 248 14
p70S6K Signaling 1.74E-03 22 132 17
Amyloid Processing 1.78E-03 12 61 20
RANK Signaling in Osteoclasts 1.86E-03 17 97 18
Apoptosis Signaling 1.86E-03 17 100 17
PKC® Signaling in T Lymphocytes 2.14E-03 21 144 15
Role of PKR in Interferon Induction and Antiviral Response 2.24E-03 10 49 20
NRF2-mediated Oxidative Stress Response 2.75E-03 28 194 14
Integrin Signaling 2.75E-03 30 208 14
Glioma Signaling 3.09E-03 18 113 16
Thioredoxin Pathway 3.31E-03 4 8 50
Activation of IRF by Cytosolic Pattern Recognition Receptors 3.39E-03 13 74 18
Chronic Myeloid Leukemia Signaling 3.80E-03 17 106 16
Role of NFAT in Regulation of the Immune Response 4.27E-03 27 200 14
Cyclins and Cell Cycle Regulation 4.47E-03 15 96 16
Synaptic Long Term Potentiation 4.68E-03 21 130 16
LPS-stimulated MAPK Signaling 4.79E-03 14 83 17
4-1BB Signaling in T Lymphocytes 4.90E-03 8 36 22
Regulation of IL-2 Expression in Activated and Anergic T Lymphocytes 5.01E-03 15 89 17
IL-17A Signaling in Airway Cells 5.13E-03 13 76 17
NGF Signaling 5.25E-03 19 122 16
RAR Activation 5.37E-03 27 191 14
Induction of Apoptosis by HIV1 5.37E-03 12 67 18
Phospholipase C Signaling 5.62E-03 34 266 13
DNA Double-Strand Break Repair by Homologous Recombination 5.75E-03 5 18 28
B Cell Receptor Signaling 5.89E-03 25 175 14
(Continued)
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Table 4. (Continued)

Ingenuity Canonical Pathways

p DE Size %

Sphingosine-1-phosphate Signaling
Gaq Signaling

HER-2 Signaling in Breast Cancer
Sperm Motility

TWEAK Signaling

5.89E-03 19 123 15
6.03E-03 24 171 14
6.92E-03 14 82 17
7.41E-03 21 143 15
741E-03 8 39 21

doi:10.1371/journal.pone.0129321.t004
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Table 5. Details of the hits in the top canonical pathway (iCOS-iCOSL Signaling in T Helper Cells). Official symbols of the significant genes found via
RNA-Seq (RIP-Seq) that are in the pathway (Fig 2) is given along with name of its corresponding node in the pathway. Fold is given as KO/CTL (RNA-Seq) or
IP/CTL (RIP-Seq), and q is the false discovery rate value based on method of Benjamini-Hochberg. Genes were identified by both RNA-Seq and RIP-Seq.
Numbers in parentheses and italicized denote data obtained from RIP-Seq.

Symbol

AKT1
ATM
Calm1
CAMK4T

Camk2b
CD40
CD80
CD3D
CD3G
HLA-DMA*
HLA-DMB
HLA-DOA
HLA-DOB
IKBKE
IKBKG
IL2

IL2RG
ITK

ITPR1
ITPR3
NFKB2
NFKBIE
PIK3C2A
PLCGH1
PLEKHA4

PPP3CA
PTEN*
TRAT1

Member of
Node

AKT

ATM

CALM
CALM

CAMKII
CD40
CD80\CD86
CD3
CD3
MHC Il
MHC Il
MHC Il
MHC Il
IKK
IKK
IL-2
IL-2R
ITK
IP3R
IP3R
NFkB
kB
PI3K
PLCy1
TAPP

Calcineurin
PTEN
TRIM

*found only by RIP-Seq
Tfound by both RNA-Seq and RIP-Seq

doi:10.1371/journal.pone.0129321.t005

Entrez Gene Name

v-akt murine thymoma viral oncogene homolog 1
ataxia telangiectasia mutated

calmodulin 1

calcium/calmodulin-dependent protein kinase 1V

calcium/calmodulin-dependent protein kinase I, beta

CD40 molecule, TNF receptor superfamily member 5

CD80 molecule

CD3d molecule, delta (CD3-TCR complex)

CD3g molecule, gamma (CD3-TCR complex)

major histocompatibility complex, class Il, DM alpha

major histocompatibility complex, class |l, DM beta

major histocompatibility complex, class I, DO alpha

major histocompatibility complex, class I, DO beta

inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase epsilon
inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase gamma
interleukin 2

interleukin 2 receptor, gamma

IL2-inducible T-cell kinase

inositol 1,4,5-trisphosphate receptor, type 1

inositol 1,4,5-trisphosphate receptor, type 3

nuclear factor of kappa light polypeptide gene enhancer in B-cells 2 (p49/p100)
nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, epsilon
phosphatidylinositol-4-phosphate 3-kinase, catalytic subunit type 2 alpha
phospholipase C, gamma 1

pleckstrin homology domain containing, family A (phosphoinositide binding specific)
member 4

protein phosphatase 3, catalytic subunit, alpha isozyme
phosphatase and tensin homolog
T cell receptor associated transmembrane adaptor 1

RNA (RIP)
Fold
0.887
0.905
1.132
0.85 (637)

0.500
1.765
0.861
1.184
1.178
(2196)
1.215
1.194
0.622
0.868
0.935
1.933
1.167
0.912
0.806
0.881
1.096
1.089
0.627
0.891
0.706

1.264
(228)
0.589

RNA (RIP) q

0.140
0.189
0.153

0.06 (<1E-

99)

0.004
0.100
0.159
0.108
0.026

(<1E-99)

0.249
0.263
<1E-3
0.244
0.282
0.103
0.036
0.244
0.221

0.258
0.285
0.111

0.017
0.220
0.214

0.049

(<1E-99)

0.038

experiments are needed to confirm the posttranscriptional regulation of these potential HuR

regulated genes.

Discussion

It has long been appreciated that there is a poor correlation between steady state mRNA levels
and protein products [30, 31]. This observation strongly implied the importance of posttran-
scriptional gene regulation by RBPs and miRNAs. Keene and colleagues proposed the posttran-
scriptional operon hypothesis and developed techniques to identify in vivo mRNA targets of
different RBPs [32-35]. These techniques have been used by many labs to delineate the uni-
verse of mRNA transcripts which co-exist in ribonucleoparticles (RNPs) with ribosomes, RBPs
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doi:10.1371/journal.pone.0129321.9003

and miRNAs [1, 36-38]. The further development of PAR-CLIP by Tuschl and his group
allowed for fine mapping of direct residues which RBPs used to interact with their targets [3,
39, 40]. Taken together, these approaches have greatly aided the field in better delineation of
posttranscriptionally regulated gene networks. Furthermore, these methods identified mRNAs
which may have been previously over-looked using traditional profiling methods since their
steady-state mRNA levels did not appreciably change.

As suggested by Phil Sharp and colleagues, RBPs and miRNA interact to affect cellular gene
expression programs to help cells survive environmental stresses [41]. However, it has become
increasingly clear that the cell employs these same mechanisms to posttranscriptionally control
gene expression during differentiation and development in many tissues. More recent works
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Table 6. Details of the hits of canonical pathway CD28 Signaling in T Helper Cells. Official symbols of the significant genes found via RNA-Seq (RIP--
Seq) that are in the pathway (Fig 3) is given along with the name of its corresponding node in the pathway. Fold is given as KO/CTL (RNA-Seq) or IP/CTL
(RIP-Seq), and q is the false discovery rate value based on method of Benjamini-Hochberg. Genes were identified by both RNA-Seq and RIP-Seq. Numbers
in parentheses and italicized denote data obtained from RIP-Seq.

Symbol

AKT1
ARPC4
ATM
Calm1
CAMK4T
CD80
CD3D
CD3G
HLA-DMA*
HLA-DMB
HLA-DOA
HLA-DOB
IKBKE
IKBKG
IL2

ITK
ITPR1
ITPR3
MAPK9
NFKB2
NFKBIE
PIK3C2A
PLCG1
PPP3CA

Member of Node

AKT
ARP2/3
ATM
CALM
CALM
CD80/CD86
CD3
CD3
MHC I
MHC I
MHC Il
MHC Il
IKK
IKK
IL-2
ITK
IP3R
IP3R
JNK
NFkB
IkB
PI3K
PLCy1
Calcineurin

doi:10.1371/journal.pone.0129321.t006

Entrez Gene Name RNA (RIP) Fold RNA (RIP) q
v-akt murine thymoma viral oncogene homolog 1 0.887 0.140
actin related protein 2/3 complex, subunit 4, 20kDa 1.108 0.088
ataxia telangiectasia mutated 0.905 0.189
calmodulin 1 1.132 0.153
calcium/calmodulin-dependent protein kinase IV 0.85 (637) 0.06 (<71E-99)
CD80 molecule 0.861 0.159
CD3d molecule, delta (CD3-TCR complex) 1.184 0.108
CD3g molecule, gamma (CD3-TCR complex) 1.178 0.026
major histocompatibility complex, class Il, DM alpha (2196) (<1E-99)
major histocompatibility complex, class Il, DM beta 1.215 0.249
major histocompatibility complex, class I, DO alpha 1.194 0.263
major histocompatibility complex, class I, DO beta 0.622 <1E-3
inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase epsilon 0.868 0.244
inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase gamma 0.935 0.282
interleukin 2 1.933 0.103
IL2-inducible T-cell kinase 0.912 0.244
inositol 1,4,5-trisphosphate receptor, type 1 0.806 0.221
inositol 1,4,5-trisphosphate receptor, type 3 0.881 0.258
mitogen-activated protein kinase 9 0.864 0.010
nuclear factor of kappa light polypeptide gene enhancer in B-cells 2 (p49/p100) 1.096 0.285
nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, epsilon  1.089 0.111
phosphatidylinositol-4-phosphate 3-kinase, catalytic subunit type 2 alpha 0.627 0.017
phospholipase C, gamma 1 0.891 0.220
protein phosphatase 3, catalytic subunit, alpha isozyme 1.264 0.049

have identified the existence non-coding RNAs (such as lincRNAs and others) and have
strongly suggested important roles for these evolutionally conserved genes in biology.

Many early analyses of RNP structure using RIP techniques were performed with HuR and

family members since they are stabilizer RBPs, making it much easier to recover low copy

number mRNA targets [1, 5]. However, these approaches have been expanded to include other
RNA binding proteins [42, 43]. Data from different groups indicate that HuR interacts with
miRNAs in a cell specific context to either positively or negatively regulate target gene expres-
sion [44, 45]. Many of the previous works were limiting in that transformed cancer cell lines
were used. Few studies were performed in primary cells or using tissues from animal models.
However, to identify physiologically relevant immune regulation, it was imperative to expand
utility of these techniques to in vivo animal models using primary cells. Another advantage of
HuR genetic ablation approaches is that one can generate very low levels of HuR to achieve
essentially a null allele in tissues, which can be difficult with conventional siRNA approaches.

It had been previously demonstrated that HuR plays crucial roles in cancer and immune
cells, especially during T cell activation and development. We used a novel conditional HuR
KO which ablates HuR following T cell activation since earlier ablation may interfere with T
cell development and potentially alter gene expression profiles [7]. We focused upon CD4* T
cell differentiation since our earlier work as well as from other groups, has demonstrated the
significance of HuR in T cell cytokine expression [7, 8, 46, 47].
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We analyzed data using Ingenuity Pathway Analysis (IPA) to identify top canonical path-
ways in which multiple genes were affected to probe HuR function in Th2 differentiated CD4"
T cells. To our knowledge, this is first report studying direct and indirect HuR immune targets
from primary CD4" T cells using high coverage next generation sequencing. Our results iden-
tify many direct and indirect HuR gene targets which may play important roles in T cell activa-
tion and Th2 differentiation. We have verified not only various HuR targets common among
other cell types but have also discovered novel HuR target transcripts specific for Th2 cell dif-
ferentiation. Our data show that HuR may be involved in multiple T cell activation pathways
especially in CD28 family co-stimulatory molecule signaling pathways. However, we note care
in interpreting the data, since RNP formation has both kinetic and spatial components so that
timing of HuR ablation may alter target milieu. It would be prudent to confirm any putative
HuR mRNA targets identified by RIP-Seq and RNA-Seq at the level of translation. Indeed, a
recent publication has used an RNA-Seq heavy polysome screen to identify translationally
active HuR targets [48].HuR may function differently in distinct cell types since the mRNA
and miRNAs expression milieu varies. In future studies, it will be important to vary timing of
HuR ablation and determine the effects, if any, upon direct and indirect mRNA targets.

In summary, our data combined with studies from other labs can help delineate posttran-
scriptional networks by which RBPs, miRNAs and lincRNAs can coordinately affect cellular
gene expression at different points. Such information can directly aid in our understanding of
many pro-inflammatory disease processes such as asthma and autoimmunity.

Supporting Information

S1 Fig. a-c: Data representative of three HuR target transcripts altered in the absence of
HuR. IL-2 (a), CAMK2 (b) and CAMK4 (c) mRNA levels in Th2 polarized cells on day 5 post-
activation. mRNA from Th2 polarized cells from OX40-cre HuR™ (KO) or control mice were iso-
lated and analyzed for IL-2, CAMK2 and CAMK4 levels by RT-qPCR. The data were normalized
to non-HuR target control GAPDH mRNA. n = 3, *p<0.05, **p<0.001. (D): Western blot analysis
shows levels of HuR, CAMK?2 and B-actin (loading control) proteins in unactivated KO (lanel),
unactivated control (lane2), Th2 polarized KO (lane3) and Th2 polarized control cells (lane4).
(TIF)

S2 Fig. a: CAMK4 and IL-2 are HuR target transcripts in Th2 polarized cells. HuR
RNA-Immunoprecipitation (HuR-RIP) assay for detection of CAMK2, CAMK4 and IL-2
mRNA enrichment in Th2 polarized extracts immunoprecipitated with HuR or IgGl1 isotype
antibodies followed by RT-qPCR. n = 2, **p<0.01.

(TIF)

S1 Table. Full list of genes which are indirect HuR targets in CD4" Th2 differentiation
identified by RNA-Seq.
(XLSX)

S2 Table. Full list of genes which are direct in vivo HuR targets identified by RIP-Seq in
CD4" Th2 differentiation.
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