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Abstract
The possible applicability of the new template CoMFA methodology to the prediction of un-

known biological affinities was explored. For twelve selected targets, all ChEMBL binding

affinities were used as training and/or prediction sets, making these 3D-QSARmodels the

most structurally diverse and among the largest ever. For six of the targets, X-ray crystallo-

graphic structures provided the aligned templates required as input (BACE, cdk1, chk2,

carbonic anhydrase-II, factor Xa, PTP1B). For all targets including the other six (hERG,

cyp3A4 binding, endocrine receptor, COX2, D2, and GABAa), six modeling protocols ap-

plied to only three familiar ligands provided six alternate sets of aligned templates. The sta-

tistical qualities of the six or seven models thus resulting for each individual target were

remarkably similar. Also, perhaps unexpectedly, the standard deviations of the errors of

cross-validation predictions accompanying model derivations were indistinguishable from

the standard deviations of the errors of truly prospective predictions. These standard devia-

tions of prediction ranged from 0.70 to 1.14 log units and averaged 0.89 (8x in concentration

units) over the twelve targets, representing an average reduction of almost 50% in uncer-

tainty, compared to the null hypothesis of “predicting” an unknown affinity to be the average

of known affinities. These errors of prediction are similar to those from Tanimoto coefficients

of fragment occurrence frequencies, the predominant approach to side effect prediction,

which template CoMFA can augment by identifying additional active structural classes, by

improving Tanimoto-only predictions, by yielding quantitative predictions of potency, and by

providing interpretable guidance for avoiding or enhancing any specific target response.

Introduction
An improved method for predicting the interactions of any small organic molecule (ligand)
with any possible biological target should provide great value in the discovery, regulation, and
practical application of new substances, including but not limited to pharmaceuticals [1, 2].
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Two general approaches can be distinguished, physical and statistical, each with strengths and
limitations. The physical approach of directly simulating molecular interactions promises theo-
retical certainty and general applicability, but in practice evidently struggles within the im-
mense physical and biological state space that these simulations should explore[3], for its
predictions are too computationally demanding for extensive application and in quality often
not distinguishable from random [4]. The statistical strategy seeks correlations between ob-
served biological interactions and other ligand descriptors [5], most often as similarities de-
rived from the occurrence frequencies of structural fragments [6]. These relationships are
easily obtained and often usefully accurate[1, 2, 7], but do not directly invoke causation and so
have uncertain structural and biological scopes of applicability, and provide little structural
guidance.

Therefore approaches that might blend the strengths and blunt the limitations of these two
strategies are attractive. One such approach is 3D-QSAR [8, 9], which focuses statistical corre-
lations on those ligand physical properties that can be causatively related to biological interac-
tions. More exactly, with most biological interactions being non-covalent, it can only be
differences among ligands’ non-covalent fields that cause the observed differences in their bio-
logical effects. In practice, such field differences are usually expressed as the intensities of elec-
trostatic and van der Waals potential fields exerted by each ligand at the intersections of a fixed
Cartesian lattice. Partial least squares (PLS) then yields a statistical model, whose coefficients,
being defined spatially, can be contoured to provide an informative visual representation. Ap-
plications of 3D-QSAR (in particular CoMFA [10]) to molecular discovery are the subjects of
many thousands of publications.

However 3D-QSAR has been challenging to practice. Its results critically depend on “align-
ment”, which includes how each ligand of interest is positioned within the lattice along with
the conformational uncertainty of most ligands. When possible, ligands are usually superim-
posed in their target-bound geometries, as obtained from crystallography or inferred from
docking calculations. Or, if no target structure is available, “ligand-based” alignment ap-
proaches can be tried, either by overlaying characteristic molecular substructures, or by identi-
fying a common geometry among such important molecular features as hydrogen-bonding
atoms and ring centroids. However the relative disposition of ligand side chains remains unde-
termined and the combined modeling of multiple diverse ligand series is especially problemat-
ic. Whatever the alignment approach, its results are often inspected individually, and perhaps
further adjusted manually, in hopes of obtaining a statistically more impressive model provid-
ing more accurate predictions of biological affinity. All this pre- and post-processing is tedious
and potentially subjective, limiting the sizes and scopes of the datasets to which 3D-QSAR has
usually been applied.

A search for refinements that would overcome these alignment challenges has long been the
author’s major activity [11, 12], with template CoMFA as its latest outcome [13]. Template
CoMFA has just two inputs, one or more “aligned templates”, structures whose relative 3D ge-
ometries have somehow already been defined, and a training set of biodata observations, bio-
logical activities of structures described only by their “2D” connectivities. Template CoMFA
generates a 3D alignment for any “candidate” structure, either one within a training set or one
whose activity is to be predicted, starting with its Concord structure, by comparing its connec-
tivity with that of each of the input templates, starting from every pairing of suitable “anchor
bonds”, and seeking a “best match” of an anchor-bond connected atom chain within this can-
didate to an anchor-bond connected atom chain within one of the templates. Then, the anchor
bond selected within the candidate is superimposed onto the anchor bond selected within the
selected template, and the relative coordinates of the “matching” atoms from the “best match-
ing” template are copied to their corresponding atoms within the candidate. Finally the non-
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corresponding atoms remaining within the candidate are positioned using a canonical “topo-
mer” protocol[14].

Template CoMFA alignment is very fast and by default entirely automatic and objective. In
essence its aligned template inputs embody user-specified rules, because their uniform applica-
tion first to training set structures and then to the structures being predicted is rigidly enforced.
While template CoMFA was developed with structurally local models and lead optimization in
mind, these advantageous properties suggested its possible further application to the much
larger and more structurally diverse data sets involved in off-target prediction. Initial trials con-
firmed: that, with crystallographic templates, biodata from multiple diverse structural series
could be pooled to yield a single 3D-QSAR model for a target of interest [13]; that this useful
result was obtained for all of 114 biological targets tried [15]; and that template CoMFAmodels
of three targets were of comparable statistical quality and arguably superior interpretability to
models whose training set alignments were defined by X-ray crystallography [16].

Here are reported further investigations of template CoMFA’s broader applicability, ad-
dressing such specific concerns as:

• Can template CoMFA models be obtained from training sets whose structures mostly lack
any obvious homologies whatsoever?

• Can stable and robust template CoMFA models be obtained from input templates whose
alignment is purely ligand-based, and therefore far more uncertain and subjective, than X-
ray-aligned input templates?

• How dependent are template CoMFA models and their predictions on the number or variety
of their input templates?

• How dependent are the models and their predictions on the sizes of their training sets?

• How accurate are template CoMFA predictions? How do its predictions compare with those
from the established approach based on substructure frequencies and counts, particularly for
the binary active/inactive decisions that characterize off-target prediction or virtual
screening?

Positive findings from these investigations suggest that template CoMFA may constitute a
useful advance in predicting the occurrence and strength of interactions between arbitrary li-
gands and arbitrary targets.

Materials and Methods
To evaluate an off-target prediction methodology that specifically considers affinity as well as
occurrence, large and diverse training sets that include curated affinity measurements are also
necessary. The exemplary ChEMBL data base was used herein [17]. Yet the inherent limitations
of such literature compilations also need mention. Their sources are strongly biased toward
highly active ligands, even though most structures actually have very little affinity for most tar-
gets. And variability among laboratories in the design and execution of nominally equivalent
assays can produce substantial discrepancies in the affinities reported for the same structure.

A high-level schematic of the template CoMFA workflow used in all of this work appears in
Fig 1. As shown there, a template CoMFA program uses the 3D information provided in a set
of aligned templates provided by the user to convert sets of 2D structures into 3D structures.
The 3D structures designated for training are used to construct a CoMFA model, and finally
predictions are obtained by applying that CoMFA model to the template CoMFA aligned
2D structures. The details of its individual processes can be found in previous publications
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[13, 12, 14]. Evidently, and as already emphasized, by design this workflow is inflexible; thus re-
sults for a given training set can be affected only by varying the initial choices of templates.
Therefore, these studies varied primarily in which of seven protocols was used to generate tem-
plates. For convenient reference, these protocols are labeled A through G. Also the “standard”
protocol B was applied to two other partitionings of the ChEMBL data into training and pre-
diction sets. The rationale for each of these protocols is presented in the Results and Discussion
sections.

The twelve targets, listed in Table 1, were chosen while considering functional and structural
diversity, current interest, and the availability of ample biodata. For each target, all of its IC50
and Ki “Target Associated Biodata” were downloaded from ChEMBL. Because of the above-
mentioned variation in the affinity values (CHEMBL_VALUEs) that different assay procedures
(ASSAY_CHEMBLIDs) often reported for the same compound, all such duplicate measure-
ments were tabulated by pairs, sorted by reported affinity difference, and inspected. Any bio-
data observation, anywhere in a biodata table, whose ASSAY_TYPE was repeatedly associated

Fig 1. The Template CoMFAWorkflow.

doi:10.1371/journal.pone.0129307.g001

Table 1. Properties of the biological data sets.

Target
Name

# .pdb
tmpls

# ChBL
vals

# ChBL
vals useda

#
skelsb

SD, ChBL
vals used

SD, TC
pred, prtcl
B

SD, LOO
Xval, prtcl
B

s, MW
MR

SD, NN
pred

r2, TC pred
vs NN pred

ChEMBL
Tgt ID

bace 13 4590 4070 519 1.23 0.87 0.87 1.21 0.88 0.289 4822

cdk2 20 2234 545 185 1.05 0.90 0.87 1.03 0.84 0.187 301

chk1 43 4340 1932 452 1.30 0.97 1.01 1.20 1.02 0.224 4630

CA-II 65 8623 5981 127 1.12 0.83 0.83 1.05 0.84 0.129 206

COX2 0 8919 3744 297 1.20 0.98 0.97 1.19 1.01 0.248 230

CYP3A4 0 7198 3224 957 0.94 0.79 0.79 0.91 0.85 0.313 340

D2A 0 8860 5750 307 1.09 0.82 0.87 1.06 0.92 0.214 217

ER 0 3246 1869 434 1.43 0.94 0.98 1.32 0.94 0.244 4296

facXa 12 6273 5471 1012 1.58 1.14 1.13 1.54 1.04 0.231 244

GABAa 0 3449 1691 7 1.33 0.99 1.00 1.28 0.97 0.256 1907607

hERG 0 7690 4871 1268 0.95 0.82 0.82 0.95 0.80 0.208 240

ptp1b 36 4682 2709 577 0.99 0.67 0.70 0.88 0.62 0.179 335

See text for details.
aSee Materials and Methods section for discussion
bSuch a "reduced skeleton" is obtained for a structure by (1) removing hydrogens; (2) converting all remaining atom and bond types to "Any"; (3) iteratively

deleting terminal atoms until no more exist (leaving only the connected rings)

doi:10.1371/journal.pone.0129307.t001
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with affinity differences greater than 2.0 in this sorted table was dropped. (Note, for example,
that without this filtration to remove all values from discordant sources/assays, no model what-
soever could be obtained for carbonic anhydrase II.) Counts of biodata observations down-
loaded, and then after removal of observations either lacking a CHEMBL_VALUE or filtered
out as described appear in the second and third columns of Table 1.

Each of these twelve sets was divided evenly into training and prediction sets, in a uniform
yet random fashion, simply by putting the odd-numbered structures into the training set and
the even-numbered into the prediction set.

Templates for these targets had two sources. One was all of the .pdb entries for the target
that were referenced by the www.bindingdb.org URL [18], using a procedure described else-
where [13] to overlay the .pdb structures and extract a template ligand from each. Whenever
available for a target (as shown in the first column in Table 1), these templates enabled protocol
A. For the other protocols, the template source was three known ligands, chosen for structural
diversity and/or therapeutic prominence, from among the .pdb structures when available, or
else from literature sources, Wikipedia in particular. The same triplet of ligand structures was
used in every protocol (except of course A). However the protocols differed in how those three
3D structures were mutually aligned. For protocols B, C, and F, individual template conforma-
tions were generated with standard Sybyl-X [19] modeling tools, minimizing the Concord
structure with the MMFF force field. These three template conformations were superimposed
by two means, for protocol B and C as, respectively, the highest-scoring and 100th ranked hy-
potheses produced by Surflex-Sim [20, 21] with all defaults, and for protocol F simply by man-
ually translating the displayed protocol B structures, so that all heavy atoms in different
structures were separated by at least three Angstroms. For protocol D, these input template
alignments were the structures as generated and “posed” by Concord [22] directly. Fig 2
shows the template alignments that were generated for the hERG target by the B, C, D, and
F protocols.

For protocols E and G, the template CoMFA alignment step was omitted; instead the
3D-QSAR model for E was “derived” from only the Concord-generated and “posed” training
set structures, while, for protocol G, the 3D structures of the Concord-only training sets of pro-
tocol E were further randomized, by setting all the adjustable torsional angles to random

Fig 2. Input template alignment alternatives for the hERG target. The three structures in each image are
loratadine (green), perhexilene (yellow), and astemizole (red). Each one-letter label refers to the protocol that
generated the alignment. The protocol F image also includes the best-matching 3D structure, among the
training set, which the template CoMFA program generated for each of these three templates.

doi:10.1371/journal.pone.0129307.g002
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values, then posing the result by positioning of three randomly selected heavy atoms, succes-
sively at the origin, along the X axis, and in the X-Y plane, and finished by a centering at
the origin.

For comparison of the binary active/inactive performance of template CoMFA with that of
the usual fingerprint methods, datasets with a more realistic proportion of inactive structures
than ChEMBL provides were needed. The only public source of presumably inactive structures
is the ZINC compilation. For each target, training and prediction sets were constructed by
combining a random sample from ZINC with a random sample for that target from ChEMBL,
in a 10:1 proportion for total counts of 2200 structures. This 10:1/ZINC:ChEMBL/inactive:ac-
tive proportion was applied also to each template set by combining 30 structures randomly
chosen from ZINC with the protocol B triplet, the ZINC structures being individually posed
with the protocol B Surflex-Sim hypothesis by the Surflex-Sim align operation and assigned
“CHEMBL_VALs” of 2.5 (weaker than millimolar affinity). The resulting template, training,
and prediction sets were processed as previously described.

To directly compare the performance of a “Tanimoto/fingerprint”methodology with that of
template CoMFA, the Tanimoto-predicted affinity of each prediction-set structure was taken
to be the CHEMBL_VAL of its most Tanimoto-similar training-set structure. The fingerprints
were Unity-2D.

Here are a few methods details. The default CoMFA process generates a “region” (lattice of
coordinates where field values are sampled) to enclose a parallelepiped 2 Angstrom beyond the
x, y, and z extents of any training set structure. However, whenever necessary to overcome
memory allocation failures (as these training sets are probably the largest to which CoMFA has
ever been applied), in particular for the F and BallTrng protocols, some regions were trimmed
manually. It may also be noted that neutral protomers were used for all structures throughout
this work, that tests of statistical significance were performed by Excel utilities, and that all
other programs and scripts were extensions of SYBYL-X 2.1, written by the author, and for
evaluation, completely and freely available via download, in its current alpha state packaged as
SYBYL-X 2.2 [19].

Results
Table 1 introduces the twelve biological targets. The X-ray template counts in the first column,
the counts of downloaded structures, and the counts of structures actually used, have already
been mentioned. A very rough indication of structural diversity, the counts of distinctive “re-
duced skeletons”, appears in the fourth column. Here, a “reduced skeleton” of a structure is ob-
tained by removing all hydrogens, making identical the types of the other atoms and the bonds,
and iteratively deleting terminal atoms until no more remain, leaving only generic ring systems
and their connecting chains. (Thus structures lacking any ring have no reduced skeleton.)
There are large differences among these reduced skeleton counts; apparently only a few ring
systems have been explored for the GABAa target, while drug discovery challenges are surely
the motivation for the over one thousand reduced skeleton varieties reported for hERG and
facXa.

The standard deviations of these ChEMBL_VALUEs, appearing in the fifth column, are the
starting base lines for this work, the results from the following null hypothesis: in the absence
of additional information, the least uncertain prediction of the affinity for an unknown struc-
ture would be the average of known affinities, and the error of prediction would be the standard
deviation of those affinities, the values shown in the fifth column. The criterion of success for
any prediction methodology is the degree by which this uncertainty is reduced. As already
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mentioned, ChEMBL compilations lack inactive structures, so the SD of measured affinities
among a truly representative selection of structures would be much larger.

With improved predictions of affinity being the goal for these studies, the key results are the
bolded values in the next two columns, the uncertainties of template CoMFA model predic-
tions using protocol B alignments of the input templates. The sixth column reports the stan-
dard deviations in the prediction errors of a random half of the CHEMBL_VALUEs, using a
template CoMFA model trained on the other half. The seventh column provides an error esti-
mate for an important application scenario, that of using a model trained on all known values
to predict a single unknown, as the standard error of predictions during leave-one-out cross-
validation. As discussed below, for all these models this estimate was found to be equivalent to
the standard deviation of errors in truly prospective predictions.

Comparisons of these bolded values with those “null hypothesis” values in the fifth column in-
dicate that the fundamental goal of these studies was achieved. For every target studied, the proto-
col B template CoMFAmodels indeed reduced the uncertainty of CHEMBL_VALUE predictions,
compared to the null hypothesis. The average of these twenty-four uncertainty reductions in
CHEMB_VALUEs (log affinity units), the differences of values in the fifth column from the values
in the sixth or seventh columns, is .286 (+/-.112) (p> 99.9%, according to a one-sided T-test)

Visual representations of the same results for each of the twelve targets are provided as “ac-
tual vs predicted” plots in Fig 3. Please note that, because most of their thousands of data points
are buried in the centers of these plots, these images may convey an impression of a lower aver-
age degree of fit than actually exists.

The variability of the training data, the measured biological responses, puts two lower
bounds on the SDEP values that should be achievable by these models. One is the standard de-
viation of biological affinities obtained from within-laboratory repeat measurements for the
same compound, usually assumed to be 0.3. However, the ChEMBL compilations include
many cross-laboratory measurements for the same compound, which, as an additional source
of variability, increase the lower bounds of the potentially model-achievable SDEP. As a rough
estimate of this lower bound, the CHEMBL_VALUEs in the above-mentioned tabulations of
paired duplicate measurement were regressed against one another, and the resulting s values
averaged, yielding 0.70 (+/- .25) as the best (least uncertain) SDEP that any CHEMBL_VA-
LUE-derived predictive model should be capable of yielding.

Biological affinity is often found to correlate with molecular weight, a possibility which if ig-
nored can misdirect lead optimization programs [23] and trivialize lengthy docking calcula-
tions [24]. Therefore, as a negative control, the eighth column of Table 1 reports the SDEP

Fig 3. “Predicted vs. Actual” plots of the CHEMBL_VALUEs (log affinities) for the twelve targets.

doi:10.1371/journal.pone.0129307.g003
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values from the correlation of the predicted CHEMBL_VALUEs with molecular weight. Com-
parison of these SDEPs with those in the fifth column does suggest slight molecular weight cor-
relations for perhaps three of the twelve targets. However, comparisons with the sixth or
seventh column indicate the 3D-QSAR, shape-specific, components of these template CoMFA
correlations to be far more significant (p>99.9% according to a one-sided T-test).

A more meaningful comparison of template CoMFA is with the dominant methodology for
off-target prediction, the degree of structural similarity as expressed by the Tanimoto coeffi-
cient of structural fragment occurrences [25, 26]. For this comparison, as described within Ma-
terials and Methods, each unknown CHEMBL_VALUE was “predicted” to be that of its most
Tanimoto-similar structure (or “nearest neighbor”) having a known CHEMBL_VALUE. The
SDEPs from applying this process to each of the twelve targets, appearing in the ninth column
of Table 1, are hardly distinguishable from the template CoMFA SDEPs in column six or seven
shows, with an average “superiority” of the template CoMFA SDEPs being a statistically mean-
ingless .005 log units.

However, despite this resemblance in overall statistical quality, because the methodological
foundations of the methods differ, the two methods often make different predictions for indi-
vidual structures. An attempt to quantify this observation appears in the tenth column of
Table 1. These values are the r2 values from the correlation of the SDEPs from template
CoMFA with those from this expression of Tanimoto fingerprint coefficients. The average of
these values is .227 (+/-.048), which can be compared with the average of .664 (+/- .110) for the
r2 values from the twelve protocol B models, suggesting that differences between the affinity
predictions of the two methods are substantive and numerous.

The rightmost column of Table 1 reports the degree of similarity between the best and the
100th best Surflex-Sim alignments (protocols B and C), as the RMS of distances between corre-
sponding heavy atoms, after a rigid-body fit of the two alignments. Though of course highly
variable, and also upward biased, for example by ignoring alternative topological mappings
from symmetry, the average difference of 4.6 Angstrom in these twelve RMS values surely indi-
cates that statistical similarities between the models from the B and C protocols are not simply
a matter of conformational similarity in their underlying alignments.

Table 2 provides supporting statistical metrics for one of the—template CoMFA models de-
rived by applying the seven protocols to the CHEMBL_VALUEs for the facXa target.

Table 2. BACE (Beta-secretase 1): Template CoMFAmodel properties.

Input Data Protocol Code* Model Derivation Metrics SE of Model Predictions

q2 SDEP # cp r2 s

A 0.493 0.87 12 0.738 0.63 0.88

B 0.522 0.98 9 0.780 0.66 0.87

BallTrng 0.603 0.78 17 0.747 0.62 NA

BhalfTrng 0.358 0.99 7 0.720 0.65 0.75

C 0.511 0.86 12 0.744 0.62 0.88

D 0.245 1.07 4 0.426 0.93 1.26

E 0.232 1.08 4 0.469 0.90 1.15

F 0.764 0.93 12 0.880 0.66 0.87

G 0.248 1.08 4 0.428 0.93 1.13

*A = Xray templates; B = three Surflex SIM best scoring templates (standard protocol); Balltrng = B trained on all structures; B = halfTrng = B trained on

quarter of structures; C = as B for 100th best Surflex-SIM alignment; D = Concord templates; E = no templates (Concord only); F = as B, separated

templates; G = as E, Concord then randomized.

doi:10.1371/journal.pone.0129307.t002
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Some of the tabulated metrics may be unfamiliar. As is almost universal for 3D-QSAR with
its extremely numerous field-based descriptors, template CoMFA models are derived by partial
least squares (PLS) [27]. The effectiveness of PLS in generating robust linear models from
many times more descriptor columns than data point rows, an impossible task for multiple lin-
ear squares regression (MLS), results from its treatment of those descriptors as an internally in-
variant block rather than a collection of independently manipulated columns. This descriptor
block is iteratively rotated, scaled, and pruned to maximize its cumulative coincidence with the
dependent variables (here the CHEMBL_VALUEs). The result of each iteration is accumulated
into the PLS model, whose improvement after each iteration is assessed by cross-validation,
usually leave-one-out, generating an SDEP and a “cross-validated r2” (conventionally abbrevi-
ated as q2). Each iteration thereby adds another “component” to the PLS model; iteration ends
when the SDEP stops declining and/or the q2 value stops increasing. The final PLS model is
functionally equivalent to a best-fit MLS model, accompanied by r2 and s metrics and, in analo-
gy to the number of MLS coefficients, the final number of PLS components. The final q2 and
SDEP values are also recorded, as indicators of the PLS model’s likely predictive performance.
The first five columns in Table 2 provides these q2, SDEP, component counts (labelled as
“#cp”), r2, and s values from application of each alignment protocol to the facXa target.

The sixth and rightmost column in Table 2 reports the prospective predictive performances
of the facXa template CoMFA models, as the SE of the differences between the predicted and
actual CHEMBL_VALUEs. It is noteworthy that, contrary to the usual QSAR experience [28],
the SDEPs from cross-validation (second column in the table) are excellent predictors of these
SEs from actual predictions, with the average value for the 108 models being -0.004 (+/-0.089).
However the unusual size and structural diversity of these training and prediction sets helps to
account for the agreement between them. This agreement provides, firstly, very strong evidence
for a remarkable soundness of these models, and of their behaviors, some highly counter-intui-
tive, and, secondly, a further justification, again only for these presumably uniquely large and
diverse data sets, of the proposition that the cross-validation SDEP is a robust estimator of the
errors for that important application scenario, prediction of a single unknown using a model
trained on all known values (seventh column of Table 1).

Before presenting some comparisons among the model qualities of the seven different tem-
plate protocols, it must be emphasized that these comparisons are similar, again remarkably so,
across all twelve targets. To help convey this crucial finding, Fig 4 provides bar charts that rep-
resent the q2 values for the models from all combinations of protocols and targets. Details of all
these models, presented as for the facXa model in Table 2, may be found within the Supporting
Information.

Most molecular modelers would use either protocol A or B to generate the aligned 3D
template structures required to perform template CoMFA. Protocol A, the direct use of the crys-
tallographic coordinates from every target-bound ligand, would probably be the first choice.
However, when such coordinates are not available, here for half of the targets, protocol B be-
comes the most likely alternative. In protocol B, the template alignments are constructed by seek-
ing a mutually maximal “shape similarity”, applying one of several programs that varyingly
include such specific “shape” aspects as superposition of key atoms, external ligand field intensi-
ties and/or extrema, and collective occupancy volume. Different programs will evidently generate
different template alignments, which for template CoMFA application will produce different
models and different predictions. Which alignments and models should be preferred, and why?

This concern, the effect on template CoMFA of this unavoidable uncertainty among the un-
derlying template alignments, was a starting point for these studies. Target-bound ligand struc-
tures were available for six targets. The alignment of target-bound ligands, protocol A, might
or might not somehow be “optimal”, but certainly represents a fixed standard for comparisons.

Off Target Predictions from ChEMBL with Template CoMFA
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Starting with the same set of possible templates, how different from their protocol A-based
template CoMFA model would protocol B-based models be? The program available to the au-
thor for combinatorially seeking optimal alignments was Surflex-SIM [20, 21], whose elegant
representations of shape similarity do involve lengthy refinement. Therefore in these studies,
the template sets for all protocols except A were limited to three ligands. This did seem far too
little 3D information to successfully align such a large variety of training set structures. But,
completely unexpectedly, not only were three templates sufficient, but also, for every target, the
results reported here are all from the first trio of templates tried.

The first two lines of Table 2 introduce another counter-intuitive result from these studies.
For every one of these six targets, there is little difference between the statistical properties of
the protocol A and protocol B template CoMFA models. There is negligible support for the ex-
pectation that crystallographically-based alignments should usually be more effective than
these shape similarity-based alignments. While the first A-B column of Table 3, which provides
summarized comparisons of q2 across all targets, does report an average q2 superiority of .001
for the crystallographic template protocol A, such a small difference is neither statistically nor
practically significant. (As a further precaution, progressive Y scrambling [29] was applied to
the HERG target, obtaining a smooth and almost horizontal plot of the q2/SDEP ratio vs num-
ber of components, confirming the highly robust character to be expected for any model de-
rived from such a large and well-conditioned training set.)

Table 3. Comparisons of q2 values (from leave-one-out crossvalidation) for template CoMFAmodels, as produced by applying protocols A-G to
the input data, averaged over the twelve biological targets.

A B C D E F G

Average of q2 0.346 0.392 0.408 0.360 0.190 0.406 0.098

Standard dev of q2 0.207 0.102 0.104 0.130 0.098 0.108 0.087

Protocol Comparison A-B A-F B-C B-D B-E B-F D-E E-G

Average q2 Difference 0.001 -0.025 -0.017 0.031 0.201 -0.014 0.164 0.094

Standard dev of q2 diffs 0.037 0.042 0.036 0.090 0.062 0.034 0.089 0.068

Z.test of q2 difference 0.478 0.926 0.947 0.113 0.000 0.924 0.000 0.000

doi:10.1371/journal.pone.0129307.t003

Fig 4. Bar chart representation of the q2 values for the models from all combinations of template protocols and targets. Yellow bars are from Xray
templates (protocol A), green from Surflex-SIM alignments (B and C), cyan from the “irrational” Concord (D) or spatially dispersed (F)alignments, and red
from omissions of template CoMFA (E and G).

doi:10.1371/journal.pone.0129307.g004
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Fig 5 further provides, for the BACE target, a visual confirmation of the large differences be-
tween the crystallographically determined and protocol B-generated template alignments.

This finding raised the hopeful thought that the concern which had motivated these studies,
the uncertainty of predictions starting from template alignments derived from shape similarity,
might not be such a major challenge. So protocol C, Surflex-SIM’s 100th best superimpositions of
the same three ligands, was applied. Despite the substantial RMS differences between the best
and 100th best alignments, reported as previously mentioned in the rightmost column of Table 1,
the corresponding template CoMFAmodels actually favor slightly the 100th best alignment, by
an amount just short of statistical significance (column B-C in Table 3). This lack of sensitivity
by template CoMFA to the unavoidable uncertainty in the alignments of its input templates,
though highly counter-intuitive, would be of great practical benefit. What are its limits?

To try to distinguish the relative roles of template CoMFA and Surflex-SIM in producing
this unexpected consistency in model statistics, several additional protocols were tried. First,
with protocol D, the effect of Surflex-SIM in aligning the three templates was removed, by sim-
ply using as the template alignment the shapes and poses that Concord produced from their
2D structures. The resulting B-D comparison in Table 3 shows that the Surflex-SIM alignments
of the templates of their input Concord “alignments” do slightly improve the models, by an av-
erage q2 of .031 (+/-.090). Of course the training set structures, the ones from which these
CoMFA models are actually derived, are still aligned by template CoMFA to these Concord-
generated templates. So next, in protocol E, template CoMFA alignment was also omitted, by
deriving each CoMFA model from a training set whose structures were “aligned” only in ther
initial Concord poses. The resulting B-E decline in q2 of .201 (+/-.062; p>99.9%) confirms the
decisive importance of template CoMFA alignments in yielding these robust models. Finally,
two extremely unrealistic alignment protocols were tried, as detailed in Materials and Methods.
For protocol F, the displayed templates from protocol B were manually separated completely
from one another, while, for protocol G, every training set structure from protocol D was de-
formed in random fashion, both conformationally and positionally, and CoMFA was directly
applied to these structures. As reported in Table 3, the F protocol separation of the templates
actually produced the best average q2 of any protocol, and by a statistically significant amount
(p>98.7%) if the A-F and B-F comparisons are pooled, while as expected the G randomization
protocol produced the lowest average q2. Nevertheless the G protocol’s average q2 value is sig-
nificantly greater than 0.0 (p>99.9%), probably because of underlying correlations between af-
finity and such other, non-shape-specific, descriptors as molecular weight.

Fig 5. Comparison of input template alignments for the BACE target. The left panel depicts 13 ligands
extracted from crystallographic structures of BACE. The right panel shows three of those ligands as optimally
realigned by the Surflex-SIM program.

doi:10.1371/journal.pone.0129307.g005
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A visual impression of the templates that the B, C, D, and F protocols produce for carbonic
anhydrase II appears in Fig 6.

A second key dimension of input for a template CoMFA model, the number of structures
in the training set, was also explored. Neither varying the means of randomly dividing the
ChEMBL_VALUEs into equally sized training and prediction sets, nor exchanging the roles of
training and prediction sets, had any effect on the statistics of the template CoMFA models
(data not shown). But, as shown for example in the italicized BhalfTrng and BallTrng lines of
Table 2, halving the size of the training set (for the 50% larger prediction set) weakened a mod-
el’s performance by 10%, according to a comparison of the average SDEP increase of .093 log
units (+/-.121; p>99.5% according to a Z test) with the average SDEP of 0.89 for these models.
Conversely, training these models on all rather than half the CHEMBL_VALUEs improved
their performances by 10%, compared to the average SDEP decrease of .089 log units (+/-.041;
p>99.9% according to a Z test).

Comparison of these template CoMFA results with those that those produced by the famil-
iar Tanimoto 2D fingerprint methodology is the subject of Table 4.

For this purpose, as described above, to better represent the preponderance of inactive struc-
tures in typical applications, the training and prediction sets became 10:1 inactive:active pro-
portions, with the inactive 2000 members of each randomly drawn from ZINC and assigned
“CHEMBL_VAL”s of 2.5 and the active 200 members random drawings from the ChEMBL
compilations for that target. Also, the continuous binding affinity values that are predicted by
template CoMFA were converted into a three-way active/inactive/uncertain classification
scheme by assigning “activity” to all structures having a CHEMBL_VAL greater than 4.5, “in-
activity” to those with a CHEMBL_VAL lower than 3.5, and “uncertainty” to the remaining
structures. The counts of those “uncertain” structures are given for each target in the first col-
umn of Table 4, from among the total of 200 from ChEMBL.

Fig 6. Input template alignment alternatives for the carbonic anhydrase II target. The three structures in
each image are the ligands extracted from .pdb files 1BN3 (green), iBNM (yellow), and 1BNN (red). Each
one-letter label refers to the protocol that generated the alignment. The protocol F image also includes the
best-matching 3D structure, from within the training set, that the template CoMFA program generated for
each of these three templates.

doi:10.1371/journal.pone.0129307.g006
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The results important for methodology comparison are in the two blocks of four columns
(second through the ninth) in Table 4. Each block reports the critical elements from the contin-
gency table for active/inactive predictions, the left block for template CoMFA and the right
block for the Tanimoto method. Within each block, the four columns report, the first pair for
“inactive” and the second for “active” classified structures, the count of predictions attempted
and the fraction of those predictions that were correct. (The discrepancies between the perhaps
expected prediction counts of 2000 and 200 and those actually reported have several causes.
No prediction was made for structures whose ChEMBL_VAL is between 3.5 and 4.5, and
ChEMBL_VALs less than 3.5 of course classify a structure as “inactive”, to be included with the
2000 ZINC structures. And predictions sometimes failed, particularly from template CoMFA
when Concord did not produce the valence geometry needed as a starting point.) The final
comparisons occupy the rightmost pair of columns. The first comparison shows that for “inac-
tive” structures, for every target, the Tanimoto classification of the ~2000 structures is better
than that from template CoMFA, with an average superiority of .0214 (+/-.0048; p>>99.9%).
The second comparison, for the many fewer “active” structures, reports an inconclusive com-
parison, the overall trend perhaps instead slightly favoring the template CoMFA classification,
but by an average of .0134 (+/- .1331), not of any remotely statistical or practical significance.

However, it is surely of more practical interest to investigate how productively these two
methodologies might combine, rather than compete. The results of such studies are presented
in Table 5.

One of two obvious possibilities is that template CoMFA, as a fundamentally different
methodology, will identify “active” structures that the Tanimoto methods overlook. The first
two columns of Table 5 confirm this possibility. The first of these is the count of such addition-
al “true active” structures among these ~200 predictions, as provided by template CoMFA, for
each of these targets. The second converts this count into an incremental percentage of the
count of true actives identified by the Tanimoto method. The average incremental percentage
is 15%. To provide an impression of the structural diversity of such structures, the ten addition-
al D2A binders re depicted in Fig 7.

Table 4. Comparison of Correct Prediction Rates, between Template CoMFA and Nearest Neighbor Tanimoto 2D Fingerprint.

ChBL >3.5 <4.5 Template CoMFA (TC) NN, Tanimoto Fgpt Diff, TRUE Pred,
(TC—NN)

Inactive Active Inactive Active

Target n TRUE n TRUE n TRUE n TRUE F Neg F Pos

bace 10 1923 0.982 144 0.951 1992 0.997 201 0.950 -0.015 0.001

cdk2 8 1900 0.973 101 0.861 1983 0.991 199 0.839 -0.018 0.022

chk1 9 1845 0.965 131 0.763 1993 0.988 196 0.842 -0.023 -0.078

CAII 6 1825 0.965 104 0.702 1973 0.990 219 0.781 -0.025 -0.079

COX2 9 1920 0.969 109 0.862 1988 0.991 200 0.850 -0.022 0.012

cyp3A4 5 2041 0.954 35 0.971 2000 0.976 177 0.729 -0.022 0.243

D2A 7 1861 0.960 105 0.771 1977 0.984 223 0.744 -0.025 0.027

ER 12 1880 0.969 102 0.873 1990 0.993 204 0.775 -0.025 0.098

facXa 12 1838 0.978 143 0.769 1993 0.988 196 0.842 -0.011 -0.073

GABAa 11 1700 0.971 165 0.606 1988 0.992 209 0.880 -0.021 -0.274

hERG 7 2028 0.949 34 0.912 2026 0.971 166 0.777 -0.022 0.135

ptp1b 10 2030 0.962 60 0.967 1989 0.990 174 0.839 -0.029 0.128

Average 1899 0.966 103 0.834 1991 0.988 197 0.821 -0.021 0.013

doi:10.1371/journal.pone.0129307.t004
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The other possibility is that the error rates in distinguishing active from inactive structures
will be lower for predictions that template CoMFA and a Tanimoto method agree on, expected
again because of the fundamental independence of these methodologies. So for only those
(though of course still numerous) active structures, the previous tabulation of counts and suc-
cess rates for inactive and active predictions is repeated in the next four columns of Table 5.
The last two columns of Table 5 provide the critical results, the drop in these error rates when
template CoMFA predictions agree with the Tanimoto predictions, for false negatives and false
positives respectively. More exactly, these values are the differences between the values in the
bolded columns in Tables 4 and 5. Evidently the error rates whenever template CoMFA predic-
tions confirm those from Tanimoto NN are consistently lower, the average improvements

Table 5. Results fromOR'ing or AND'ing the predictions of Template CoMFAwith Tanimoto NN
predictions.

OR'd hit
increase

AND'd Correct Prediction Increase

Inactive Active TC&NN—NN

Target n+ n>% n TRUE n TRUE F Neg F Pos

bace 3 30 1877 0.998 134 1.000 0.000 0.050

cdk2 4 13 1824 0.995 85 0.929 0.004 0.090

chk1 9 29 1770 0.989 93 0.978 0.000 0.137

CAII 4 8 1732 0.992 72 0.958 0.002 0.178

COX2 1 3 1845 0.991 94 0.989 0.000 0.139

cyp3A4 3 6 1921 0.978 31 1.000 0.002 0.271

D2A 10 18 1759 0.990 74 0.959 0.006 0.215

ER 4 15 1802 0.986 84 0.988 -0.008 0.214

facXa 7 23 1772 0.999 104 0.990 0.010 0.149

GABAa 1 4 1646 0.993 103 0.951 0.000 0.071

hERG 24 65 1926 0.993 45 1.000 0.022 0.223

ptp1b 6 21 1950 0.997 72 0.986 0.006 0.147

Average 6 20 1819 0.992 83 0.978 0.004 0.157

doi:10.1371/journal.pone.0129307.t005

Fig 7. Structures with high binding affinity to the D2A target. These identified as D2A “actives” by the
template CoMFAmethod (3) reported as D2A “inactives” by the Tanimoto 2D fingerprint nearest
neighbor method.

doi:10.1371/journal.pone.0129307.g007
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being .0038 (+/-.0072; p>95.0% according to a Z-test) for the “inactive” class and .1569 (+/-
.0665; p>>99.9%) for the “active” class.

Discussion
The introductory questions that these studies addressed provide the framework for discussing
the findings.

Can template CoMFAmodels be obtained from training sets whose
structures mostly lack any obvious homologies whatsoever?
Twelve satisfactory models, each including all the appropriate data available from ChEMBL for
training or prediction, were obtained for every one of twelve biologically diverse targets. If only
because of the dependence of these models’ existence on template CoMFA’s automatic align-
ments, these are likely much the largest and most structurally heterogeneous 3D-QSAR models
ever published. For any experienced practitioner of existing 3D-QSAR methodologies, starting
with the author, this key finding strains credibility.

A caveat needs repetition. The structural scope of any method for predicting biological ef-
fects is limited by the diversity and balance of their training sets. The ChEMBL compilations
are strongly biased to include active rather than inactive structures. Thus these particular mod-
els may be less effective in distinguishing a few active structures among a large population of
inactives. Nevertheless, wherever high-throughput screening has provided more balanced
training sets, these results would seem strong justification for trying template CoMFA
on them.

Can stable and robust template CoMFAmodels be obtained from input
templates whose alignment is purely ligand-based, and therefore
inherently more uncertain and subjective, than X-ray-aligned input
templates?
Simple inspection of a static target-bound ligand structure, while not overlooking the thermal-
ly-necessitated dynamic character of the actual biological environment and the selectively
modulated functional behavior required for that target [30], suggests the huge challenges that
any prediction of biological activity seeks to overcome. Crystallographic structures do at least
provide, as assurance, well-defined templates as starting points. The only alternative, aligning
ligands in isolation by maximizing their overall physicochemical similarity, by a truly objective
and unbiased means such as Surflex-SIM in these studies, usually generates hundreds of rea-
sonable starting points. Nevertheless, simply using, as the only “3D input”, the templates, three
arbitrarily selected ligands in their highest scoring Surflex-SIM alignment, produced these sta-
tistically satisfactory template CoMFA models in these twelve of twelve trials. Moreover, for
the six targets having X-ray structures, the differences in statistical quality between X-ray and
ligand-only template CoMFA models were completely negligible. Such unexpected findings are
also encouraging evidence for a wide scope of applicability for template CoMFA.

How dependent are ligand-derived template CoMFA models and their
predictions on the number or variety of those input templates?
The contents of Tables 2 and 3 show this dependency to be very low and again astonishingly
so, although some rather small differences between protocols do achieve statistical significance
because of their remarkable consistency. Models based on the100th best Surflex-SIM template
hypotheses actually are a bit better than the best hypotheses (protocol B vs. protocol C), though
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to a small and not quite statistically significant degree (B-C in Table 3). Even using as templates
the Concord structures, in whatever superposition happened to be produced (protocol D), did
not weaken the models to a statistically significant degree. Of course, it is the template CoMFA
alignments of the training sets to the templates that enabled and distinguished these studies,
and so as expected the model statistics deteriorate significantly when this procedure is omitted
(protocol E), and even more so when the Concord-generated structures from protocol E are in-
tentionally randomized (protocol G). Finally, completely separating the templates from one an-
other provided the best model statistics (protocol F).

So the best model statistics result from the templates-separated protocol, one that most con-
spicuously lacks any obvious physicochemical justification–yet another finding that is troub-
lingly counter-intuitive, and sometimes contrary to much of our collective decades of QSAR
experience. Yet the remarkable number, consistency, size, structural scope, and, in particular,
the predictive performances of these template CoMFA models surely demand serious atten-
tion. And there does exist a single rationale which all of these current results support. However
this unorthodox viewpoint, whose slow emergence paralleled the author’s development of
alignment methodologies, has been difficult to adequately explain [31, 32] [13]. So here is
another attempt.

This viewpoint can be summarized as: “For the purposes of generating predictive 3D-QSAR
models, alignments that limit underlying field variations to those directly caused by explicit struc-
tural variations, and which therefore maximize the ratio of signal to noise within those field vari-
ations, are at least as effective as alignments which are guided only by physicochemical realism”.
As an example, consider the 3D-QSAR modeling of the affinities to an X-ray established target
by a combinatorial library, composed of structures that are identical except for a particular side
chain. In this situation, many modelers, desiring to maximize physiochemical realism, would
dock each structure in the library into the known target structure to generate its individual
alignment. During docking, all atoms, including those which are structurally invariant, will
move, to locations which will differ as the side chains are exchanged. Even small variations in
the location of any atom can have immense effects on field intensities at its nearby lattice
points, particularly steric, which of course then affect the resulting 3D-QSAR model. And very
likely most of these variations in the locations of invariant atoms have no systematic depen-
dence on the side chain variations that are the actual cause of the affinity variations that the
model is intended to explain. Any such non-systematic dependencies produce noise within the
field variables, opposing any signal, from which a 3D-QSAR model is to be derived. Noise in
the input data is particularly detrimental to model-building when partial least squares is the
model generator [32].

So this unorthodox viewpoint instead prescribes, “Wherever, within a training or prediction
set, the structures are identical (or very similar), do not allow the alignment protocol to alter
the locations of individual atoms.” This restriction limits the variation among the field variables
to those lattice points that are spatially adjacent to atoms whose synthetic alterations must be
the only actual causes of the changes in biological response that a 3D-QSAR model is intended
to explain.

But, how can this viewpoint explain any of the current results, which involve training and
prediction sets that are as different in their composition from combinatorial libraries as can be
imagined? An answer can begin with two observations. First, the particular candidate-to-tem-
plate atom chain match that template CoMFA chooses while generating a candidate alignment
is the one which maximizes the count of matching atoms, those whose coordinates template
CoMFA then simply copies and hence are certainly invariant. Second, the topomer canonicali-
zation, which positions the atoms in unmatched candidate side chains, was developed with the
goal of placing similar side chain atoms in similar positions relative to the side chain root. Thus
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the critical role of template CoMFA alignment in the protocols that yield the better CoMFA
models is understandable. However, the effectiveness of template CoMFA in those roles is a
pleasant surprise. With only three templates that each of these diverse candidates can be
matched to, many of the atom chain matches and resulting candidate alignments that template
CoMFA produces do seem preposterous to physicochemical intuition. Yet, this consistency in
obtaining models from these template CoMFA alignments, irrespective of targets, template
alignment protocols, and training set compositions, rather conclusively establishes the rele-
vance of these candidate alignments, at least on average.

The irrelevance of the template inputs themselves, that is, the so far universal ability to ob-
tain a satisfactory model for a given target with a few arbitrarily chosen and arbitrarily aligned
3D structures as templates, is another big surprise. From a practical perspective, by removing
any requirement for some complicated and uncertain template selection methodology, this sur-
prise is a welcome one. However, with template selection thus becoming a degree of freedom,
the credibility and interpretability of a model will surely benefit if target-bound ligand struc-
tures, experimental or docked, are used as the template inputs for template CoMFA whenever
a target structure is available.

Another benefit of this template-independence may be in further stabilizing the robust
platform that template CoMFA’s objectivity already offers for further 3D-QSAR method devel-
opment (such as the current work represents). There are many parameters hidden within tem-
plate CoMFA, currently having fixed and arbitrary (though fortunately productive) values,
whose systematic exploration should be made much more productive by this template-
independence.

However, the dependence of the affinity prediction for an individual structure on the tem-
plate alignments used to build the model, as contrasted with this stability of overall model sta-
tistics, still requires investigation.

How dependent are the models and their predictions on the size of their
training sets?
These findings are straightforward as well as consistent, as reported for example in the
B-BallTrng and B-BhalfTrng rows in Table 2. Doubling the size of the training sets reduced their
uncertainty of affinity prediction by an average of .08 (+/.05) log units; halving their size in-
creased their uncertainty of affinity prediction by an average of .10 (+-.11) log units.

How accurate are template CoMFA predictions?
For the all-ChEMBL models (BallTrng), the LOO q2 averaged over these twelve targets is .476
(+/-.096) and the associated SDEP is 0.89(+/-.12). Although the accuracy of any particular pre-
diction obviously depends on the target, the training set, and the frequency of discontinuous or
so-called “magic methyl” behavior, this objective means to reduce the uncertainty of an affinity
prediction by almost 50% (i.e., the .476 LOO q2) compared to “the average of all affinities so far
measured” would seem helpful in many drug discovery contexts.

Can the uncertainties of template CoMFA predictions be further reduced? Until now, the
overwhelming barrier to 3D-QSAR improvements, the unavoidable subjectivity of training
set alignment hypotheses, had discouraged the author from pursuing ideas that could only
yield relatively marginal improvements. In the context of template CoMFA, these possibilities
include manipulation of auxiliary similarity indices, consensus scoring while varying the tem-
plate hypothesis, and modifying template alignments to minimize conflicting field effects at
critical lattice points (probably the cause of protocol F’s superior model statistics).
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However, access to more commensurate training data than can be provided by ChEMBL
and other such compendia may be necessary. As mission-critical to the performance of these
studies as the ChEMBL data base has been, the heterogeneities of its sources put a relatively
high floor on how far its training sets can reduce the uncertainties of prediction. The above-
suggested lower bound estimate of that floor, the variance in the affinities reported by ChEMBL
for the same structure, is 0.70 (+/-.25), not so far below the current SDEP for affinities of 0.89
using template CoMFA. An indication that this inherent floor actually might approach the
0.89 value even more closely is a very strong correlation (r2 = 0.84) between the SDEP’s result-
ing from the two methodologically independent approaches, template CoMFA and Tanimoto
coefficients (seventh and ninth columns of Table 1).

How accurate are template CoMFA predictions? How do its predictions
compare with those from the established approaches based on
substructure frequencies and counts?
First, it should again be cautioned that, for all ChEMBL’s unique and critical virtues, the biases
of its content make it poorly suitable for the primary application of substructural approaches,
distinguishing a few structures active at some target of interest from a much larger number of
inactive ones. More appropriate data sets would comprise measured affinities for a large num-
ber of structures, such as “high-throughput screening” can yield, but few if any of these are
publicly available. Therefore to address these questions, data sets having more relevant SAR
distributions had to be somewhat artificially constructed, in a way that may somehow distort
the results. For example, the prediction success rates in Table 4 seem much better than those
reported, for example, in publications of success in virtual screening.

Nevertheless, taken at face value, the results in Table 4 are straightforward. In particular,
when compared as competing stand-alone methodologies, for these data sets the Tanimoto
method is indisputably the more selective, reducing the frequency of false positives (i.e., inac-
tives misreported as actives) to half that frequency from template CoMFA. However, in sensi-
tivity (avoiding false negatives, or actives reported as inactives) the performances of the two
methods cannot be distinguished; a slight superiority of template CoMFA is neither statistically
nor practically significant. This similarity in sensitivities is consistent also with the ninth col-
umn in Table 1, reporting very similar accuracies of affinity prediction from template CoMFA
and Tanimoto/fingerprints for the “active” ChEMBL structures.

However, as a practical matter, relative performance has little relevance to the potential
value of template CoMFA for drug discovery. What seems of more interest is whether inclusion
of this emerging template CoMFA can improve on the established Tanimoto approaches. The
results in Table 5 suggest some benefit. If a project’s goal is to identify additional structures
having affinity to some desirable target affinity, particularly if the target structure is unknown,
or to better anticipate the profile of some structure of interest against a panel of biological tar-
gets, the third column of Table 5 reports that template CoMFA can identify substantially more
true positives than does this Tanimoto method alone, and the specific examples of such retriev-
als in Fig 7 indicate the potential importance of such additional retrievals. Or, considering the
expense and delay of any perhaps unnecessary assay, the reduction by a third in the frequency
false positives (from 1.2% to 0.8% according to column seven in Table 4 and column four in
Table 5, respectively) by combining template CoMFA with the template method seems useful.

Template CoMFA also seems to offer less quantifiable benefits. One is that affinity is the
endpoint for template CoMFA but at best only inferable from a fingerprint-based similarity ap-
proach. And degree of affinity is not only the actual and immediate determinant of any on- or
off-target physiological response, it can also merge with pharmacodynamic modeling to

Off Target Predictions from ChEMBL with Template CoMFA

PLOSONE | DOI:10.1371/journal.pone.0129307 June 12, 2015 18 / 22



provide dosage and other therapeutic guidances, in a way that structural similarity alone
cannot. Another benefit is the much greater interpretability of a template CoMFA model. As
suggested by Fig 8, the mechanistic and shape-specific nature of template CoMFA models, par-
ticularly in combination with other information such as target structure, can provide direction
to the search for improved medicines.

In summary, here are some concluding thoughts.
The unusual breadth and depth of these studies and the remarkable consistency of their

findings seem strong evidence that inclusion of template CoMFA can improve capabilities for
off-target side effect prediction.

Although not explicit in this account, template CoMFA also has ease of use and versatility
(having been developed with different applications in mind) that are superior to those of most
other computer-aided molecular design methodologies.

The many findings from this work that were unexpected, at least to the author, suggest that
some of the intuitive assumptions that guide the usual practices of computer-aided molecular
design might be critically reconsidered.

Supporting Information
S1 File. Statistical parameters for template CoMFAmodels from all combinations of tem-
plate protocols and targets. The text file provides tables analogous to Table 2 for all twelve tar-
gets, in csv format suitable for Excel.
(CSV)

S1 Text. Structures of BACE ligands. The zip file contains, in. sdf format, the aligned struc-
tures, from the A, B, C, D, and F protocols, of all templates and training sets for the BACE tar-
get. The content of each file is evident from its name.
(ZIP)

Fig 8. Additional representations of the protocol B template CoMFAmodel for carbonic anhydrase II.
The upper panel shows the conventional “stdev*coeff” representation of a CoMFAmodel: the green shapes
enclose spatial regions where affinity increases with steric bulk; the yellow shapes enclose regions where
decreased steric bulk improves affinity; the red shapes enclose regions where more positive electrostatic
potential improves affinity; the blue shapes enclose regions where more negative electrostatic potential
improves affinity. The lower panel also includes structures of carbonic anhydrase II (skeleton representation)
and the template CoMFA alignments of three highly active training set ligands (space-filling representations).

doi:10.1371/journal.pone.0129307.g008
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S2 Text. Structures of CAII ligands. The zip file contains, in. sdf format, the aligned struc-
tures, from the A, B, C, D, and F protocols, of all templates and training sets for the carbonic
anhydrase II target. The content of each file is evident from its name.
(ZIP)

S3 Text. Structures of cdk2 ligands. The zip file contains, in. sdf format, the aligned struc-
tures, from the A, B, C, D, and F protocols, of all templates and training sets for the cdk2 target.
The content of each file is evident from its name.
(ZIP)

S4 Text. Structures of chk1 ligands. The zip file contains, in. sdf format, the aligned struc-
tures, from the A, B, C, D, and F protocols, of all templates and training sets for the chk1 target.
The content of each file is evident from its name.
(ZIP)

S5 Text. Structures of COX2 ligands. The zip file contains, in. sdf format, the aligned struc-
tures, from the A, B, C, D, and F protocols, of all templates and training sets for the COX2 tar-
get. The content of each file is evident from its name.
(ZIP)

S6 Text. Structures of CYP 3A4 ligands. The zip file contains, in. sdf format, the aligned
structures, from the A, B, C, D, and F protocols, of all templates and training sets for the cyp
3A4 target. The content of each file is evident from its name.
(ZIP)

S7 Text. Structures of D2A ligands. The zip file contains, in. sdf format, the aligned struc-
tures, from the A, B, C, D, and F protocols, of all templates and training sets for the D2A target.
The content of each file is evident from its name.
(ZIP)

S8 Text. Structures of ER ligands. The zip file contains, in. sdf format, the aligned structures,
from the A, B, C, D, and F protocols, of all templates and training sets for the endocrine recep-
tor target. The content of each file is evident from its name.
(ZIP)

S9 Text. Structures of facXa ligands. The zip file contains, in. sdf format, the aligned struc-
tures, from the A, B, C, D, and F protocols, of all templates and training sets for the factor Xa
target. The content of each file is evident from its name.
(ZIP)

S10 Text. Structures of GABAa ligands. The zip file contains, in. sdf format, the aligned struc-
tures, from the A, B, C, D, and F protocols, of all templates and training sets for the GABAa tar-
get. The content of each file is evident from its name.
(ZIP)

S11 Text. Structures of hERG ligands. The zip file contains, in. sdf format, the aligned struc-
tures, from the A, B, C, D, and F protocols, of all templates and training sets for the hERG tar-
get. The content of each file is evident from its name.
(ZIP)

S12 Text. Structures of ptp1b ligands. The zip file contains, in. sdf format, the aligned struc-
tures, from the A, B, C, D, and F protocols, of all templates and training sets for the ptp1b tar-
get. The content of each file is evident from its name.
(ZIP)
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S13 Text. All input structures used for comparisons with Tanimoto. The zip file contains,
for each target, the template, training set, and prediction set, as “2D” structures, in. sdf format.
(ZIP)
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