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Abstract
The heat shock protein 90 (Hsp90) inhibitor geldanamycin (GA) has been shown to alter

endosomal sorting, diverting cargo destined for the recycling pathway into the lysosomal

pathway. Here we investigated whether GA also affects the sorting of cargo into the retro-

grade pathway from endosomes to the Golgi apparatus. As a model cargo we used the bac-

terial toxin Shiga toxin, which exploits the retrograde pathway as an entry route to the

cytosol. Indeed, GA treatment of HEp-2 cells strongly increased the Shiga toxin transport to

the Golgi apparatus. The enhanced Golgi transport was not due to increased endocytic up-

take of the toxin or perturbed recycling, suggesting that GA selectively enhances endoso-

mal sorting into the retrograde pathway. Moreover, GA activated p38 and both inhibitors of

p38 or its substrate MK2 partially counteracted the GA-induced increase in Shiga toxin

transport. Thus, our data suggest that GA-induced p38 and MK2 activation participate in the

increased Shiga toxin transport to the Golgi apparatus.

Introduction
The benzoquinoid ansamycin antibiotic geldanamycin (GA) produced by Streptomyces hygro-
scopicus is a potent inhibitor of Hsp90 proteins, and has been extensively studied due to its
anti-tumor activity [1,2]. Hsp90 proteins are ubiquitously and abundantly expressed molecular
chaperones whose main function is to stabilize proteins and assist in protein folding. The cyto-
solic Hsp90 has been best characterized, but other compartment-specific Hsp90 proteins also
exist [2–4]. More than 200 client proteins of Hsp90 have so far been identified, many of which
are oncoproteins [3,4]. Hsp90 is also upregulated in many cancer types and inhibition of
Hsp90 affects multiple oncogenic pathways simultaneously, making Hsp90 an attractive target
for cancer treatment [2,5]. GA binds to the ATP binding pocket of Hsp90, thereby interrupting
its chaperone cycle, leading to degradation of many of the client proteins [1,2].

Upon GA treatment, the Hsp90 client protein ErbB2 is internalized and sorted into the lyso-
somal pathway for degradation [6,7]. The lysosomal targeting was recently suggested to be
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caused by GA-induced morphological changes of endosomal compartments [7]. Importantly,
GA treatment induced missorting of the transferrin receptor, which is a commonly used mark-
er for the recycling pathway, to multivesicular bodies [7]. Thus, GA seems to have some impact
on the normal endosomal sorting process. In endosomes, cargo is not only sorted into the lyso-
somal and recycling pathways; it can also be selected for retrograde transport to the Golgi ap-
paratus. The retrograde pathway is important for the retrieval of Golgi- and ER-resident
receptors involved in secretion, as well as for the bulk retrieval of membrane lipids to maintain
organelle integrity. Several protein toxins, such as Shiga toxin, ricin, cholera toxin and pertussis
exotoxin, exploit the retrograde pathway to reach their intracellular target and to avoid lyso-
somal degradation ([8–10] and references therein).

In this study, we have investigated whether GA affects the sorting of cargo into the retrograde
pathway using Shiga toxin as a model protein. Shiga toxins are bacterial protein toxins produced
by Shigella dysenteriae and enterohemorrhagic Escherichia coli (reviewed in [9]). Shiga toxin con-
sists of a toxic A-moiety connected to a non-toxic B-pentamer which is responsible for binding to
the toxin receptor globotriaosylceramide (Gb3) on the cell surface. After internalization, the toxin
is transported from endosomes via the trans-Golgi network (TGN) and Golgi apparatus to the
ER, from where the enzymatically active part is translocated to the cytosol and inhibits protein
synthesis. We here show that GA treatment strongly enhances the transport of Shiga toxin to the
Golgi without a concomitant increase in endocytic uptake of the toxin or perturbed recycling, sug-
gesting a specific effect on the endosome-to-Golgi transport step. Moreover, GA was found to ac-
tivate p38, and inhibitors of p38 or its substrate MK2 counteracted the GA-induced increase in
Shiga toxin transport to the Golgi apparatus, indicating that upon GA treatment, activation of the
p38 pathway contributes positively to retrograde transport.

Results

GA enhances retrograde transport of Shiga toxin to the Golgi apparatus
As GA has previously been shown to alter endosomal sorting and endosome morphology, we
wanted to investigate if this drug also affects the sorting of cargo into the retrograde transport
pathway. To this end, we used Shiga toxin as a model protein, and to measure toxin transport
to the TGN, we take advantage of the sulfation process that is mediated by TGN-localized sul-
fotransferases [11]. By using modified protein toxins containing sulfation sites, we can detect
toxins that have reached the TGN, by measuring the association of radioactive sulfate with
these toxins. We found that GA treatment more than doubled the sulfation of the modified B-
subunit of Shiga toxin, Shiga B-sulf2, in HEp-2 cells (Fig 1A), indicating increased transport to
the TGN. GA treatment did not alter the sulfation process per se, as total protein sulfation was
unaffected (Fig 1A). To corroborate that the GA-induced increase in Shiga toxin transport is
mediated by Hsp90 inhibition, we tested the structurally different Hsp90 inhibitor radicicol,
which also binds to the ATP-binding pocket of Hsp90. Treatment with radicicol gave a similar
increase in Shiga toxin sulfation (Fig 1A). Also, the second generation synthetic drug
NVP-AUY922 gave a significant, albeit smaller, increase in Shiga toxin sulfation (S1 Fig). To-
gether, this indicates that Hsp90, either directly or indirectly, is involved in the regulation of
Shiga toxin retrograde transport.

Although some components are known to be common regulators for trafficking in the ret-
rograde direction, it has been shown that certain cargo molecules also have distinct require-
ments for their retrograde transport (reviewed in [12,13]). To examine whether GA-treatment
alters retrograde transport in general or Shiga toxin transport in particular, we measured the
TGN transport of the plant toxin ricin. Ricin follows a similar pathway as Shiga toxin, although
it binds to different receptors and its transport is somewhat differently regulated [10,14–21].
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However, as for Shiga toxin, treatment with GA potently increased ricin sulfation (Fig 1B),
showing that the effect of GA is not limited to retrograde transport of Shiga toxin.

The GA-induced increase in Shiga toxin transport was verified by immunofluoresence con-
focal microscopy. Although Shiga toxin showed a variable overlap with the Golgi marker gian-
tin in both control and GA-treated cells (Fig 2A), in total, more toxin was present in giantin-
positive structures in GA-treated cells (Fig 2B), which is in agreement with the sulfation data.

To further investigate the ability of GA to regulate retrograde transport, we studied retrieval
of the cation-independent mannose 6-phosphate receptor (CI-M6PR), which carries newly
synthesized lysosomal enzymes from the Golgi apparatus to endosomes. After cargo release,
the CI-M6PR is transported back to the Golgi for additional rounds of cargo transport [12]. A
proportion of the CI-M6PR is transiently localized to the plasma membrane before being rap-
idly internalized, and this can be exploited to study its retrograde transport [22]. CI-M6PR
transport was investigated by immunofluorescence confocal microscopy using a HeLa cell line
stably expressing the CD8-M6PR fusion protein [23]. CD8-M6PR present at the cell surface
was labeled with an antibody against CD8 and chased into the cells for 0 or 15 min. Although
our data did not reach statistical significance, we see a tendency of increased CI-M6PR trans-
port to the Golgi apparatus in GA-treated cells (Fig 3).

GA does not increase the endocytic uptake of Shiga toxin
Inhibition of Hsp90 activity leads to internalization and subsequent degradation of several recep-
tors. To determine if the enhanced retrograde transport of Shiga toxin was caused by increased in-
ternalization, we measured the endocytic uptake of Shiga toxin upon GA treatment. The total
amount of cell-associated toxin was not altered by GA treatment, but there was a slight decrease
in the internalization of Shiga toxin (Fig 4). Clearly, the increased retrograde transport of Shiga
toxin is not due to increased internalization. GA had no effect on ricin endocytosis (S2 Fig).

Fig 1. Retrograde transport of Shiga toxin and ricin is increased upon Hsp90 inhibition. HEp-2 cells were treated with 10 μMGA or 1 μM radicicol
(Rad) for 30 min before 2 μg/ml Shiga B-sulf2 (A) or 4 μg/ml ricin sulf-1 (B) was added and the incubation continued for 1.5 h. The amount of sulfated toxin
and the total protein sulfation was determined as described in Materials and Methods. The toxin sulfation (black bars) and total protein sulfation (grey bars)
are expressed relative to control treatment (DMSO) and are plotted as mean values + SEM, n� 3. * p� 0.05, *** p� 0.005, paired Student’s t-test.

doi:10.1371/journal.pone.0129214.g001
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GA does not alter Shiga toxin recycling
GA treatment has been shown to increase degradation of the transferrin receptor by redirecting
its transport from the recycling pathway into the degradative pathway [7]. Thus, the increased
retrograde transport of Shiga toxin could possibly have been a consequence of perturbed recy-
cling. So far, Shiga toxin recycling has not been extensively studied and there is no established
method for its measurement. Determination of Shiga toxin recycling is complicated by the fact
that once bound, Shiga toxin is strongly associated with its receptor Gb3 [24] and is unlikely to
dissociate from Gb3 after recycling. To measure Shiga toxin recycling, we have modified the
method used to determine Shiga toxin endocytosis, which allows us to distinguish between cell
surface-bound and internalized toxin. The amount of internalized, cell-associated, and released
Shiga toxin was determined as described in detail in Materials and Methods. As shown in
Fig 5A, a large fraction of the internalized Shiga toxin is indeed recycled to the cell surface, but
only a small fraction is released to the medium. The total amount of cell-associated Shiga toxin
is slightly decreased in GA-treated cells, which is in agreement with the reduction in Shiga
toxin internalization shown above, however, the fraction of Shiga toxin being recycled is not al-
tered by GA treatment (Fig 5B). Similarly, neither ricin recycling nor degradation was affected
by GA treatment (S3 Fig). Thus, it seems like the increase in retrograde transport of these tox-
ins after GA treatment is not caused by a change of transport in other pathways.

GA activates p38 which contributes to increased retrograde transport
As Hsp90 inhibition by GA affects a vast number of proteins, GA or Hsp90 are not necessarily
directly involved in the alterations of endosomal sorting. GA has been reported to induce
autophosphorylation and activation of the mitogen activated protein kinase p38 by preventing
its association with the Hsp90-Cdc37 complex [25]. This is of particular interest with respect

Fig 2. GA enhances Shiga toxin localization to the Golgi. (A) HEp-2 cells were treated with 10 μMGA for 30 min before ~100 ng/ml Shiga toxin 1 mutant
was added and the incubation continued for 30 min. Subsequently, cells were fixed, permeabilized and stained with antibodies against Shiga toxin (magenta)
and giantin (green). DAPI is shown in blue. Scale bar 20 μm. (B) The amount of Shiga toxin 1 mutant that has reached the Golgi was quantified as the Shiga
toxin 1 mutant intensity in giantin-positive structures relative to the intensity of total cell-associated Shiga toxin 1 mutant in individual cells using Fiji software
and plotted as mean values + SEM. n = 4, with at least 65 cells quantified for each condition. * p�0.05, paired Student’s t-test.

doi:10.1371/journal.pone.0129214.g002
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Fig 3. GA enhances CI-M6PR localization to the Golgi. (A) HeLa cells stably expressing CD8-M6PR
fusion protein were treated with 10 μMGA for 30 min at 37°C before they were chilled and incubated with
10 μg/ml CD8 antibody at 4°C for 30 min. The CD8 antibody chase was performed for 0 or 15 min at 37°C.
Subsequently, cells were fixed, permeabilized and stained with antibodies against CD8 (magenta) and
giantin (green). DAPI is shown in blue. Scale bar 20 μm. (B) The amount of CI-M6PR that has reached the
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to toxin transport as it has previously been shown that p38 activity is important for retrograde
transport of Shiga toxin to the Golgi apparatus [18,26]. We were therefore interested to see
whether p38 activity would contribute to the GA-induced increase in Shiga toxin transport.
First, we wanted to confirm that GA activates p38 in HEp-2 cells. Indeed, GA treatment led to
a strong and persistent increase in p38 phosphorylation that lasted at least 60 min after addi-
tion of the drug (Fig 6A). Thus, p38 is highly activated at the time of Shiga toxin addition in
the transport assays.

The GA-induced p38 activation was counteracted by the p38 inhibitor SB203580 (Fig 6B),
and we therefore performed the sulfation assay in the presence of both GA and SB203580. The
combination of GA and SB203580 significantly reduced the GA-induced increase in Shiga
toxin sulfation (Fig 6C), suggesting that p38 activity is at least partially responsible for the in-
creased toxin transport. Similar results were obtained with the second generation inhibitor
NVP-AUY922 (S1 Fig).

p38 activates a number of substrates, but the mitogen-activated protein kinase-activated
protein kinase 2 (MAPKAPK-2 or MK2) is believed to be one of the most important kinases
activated by p38 due to its role in mediating cellular stress and inflammatory responses [27]
Under normal growth conditions, p38 constitutively forms a signaling complex with MK2, Akt
and Hsp27. Upon activation, p38 phosphorylates MK2, which subsequently phosphorylates
Hsp27, leading to the dissociation of Hsp27 from the complex [28–30]. The phosphorylation
state of Hsp27 appears to be important for its role in the regulation of the actin cytoskeleton

Golgi was quantified as the CI-M6PR intensity in giantin-positive structures relative to the intensity of total
cell-associated CI-M6PR in individual cells using Fiji software. The data was normalized to control samples
(DMSO) in individual experiments and plotted as mean values + SEM. n = 3, with at least 30–50 cells
quantified for each condition.

doi:10.1371/journal.pone.0129214.g003

Fig 4. Shiga toxin endocytosis is not increased by GA treatment.HEp-2 cells were preincubated with
10 μMGA for 30 min at 37°C and subsequently incubated with 40 ng/ml biotinylated Shiga toxin 1 mutant for
20 min. The amount of internalized or total cell-associated toxin was quantified as described in Materials and
Methods. Mean values + SEM of total cell-associated (black bars) and internalized (grey bars) Shiga toxin 1
mutant are presented as percentage of control (DMSO), n = 3. * p� 0.05 paired Student’s t-test.

doi:10.1371/journal.pone.0129214.g004
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[31]. We found that both Hsp27 and Akt were phosphorylated after GA treatment (Fig 7A). To
test whether the p38-MK2 pathway is important for retrograde transport, we performed the
sulfation experiment in the presence of GA and the MK2 inhibitor PF 3644022 (Fig 7B). As
Hsp27 has been reported to dissociate from the signaling complex also after Akt-mediated
phosphorylation [28], we included the Akt inhibitor VIII in our experiments. While MK2 inhi-
bition gave a strong reduction in the GA-induced phosphorylation of Hsp27, Akt inhibition
did not prevent Hsp27 activation (Fig 7A). Interestingly, the MK2 inhibitor gave a similar re-
duction in the GA-induced increase in Shiga toxin transport as p38 inhibition, whereas Akt in-
hibition did not alter the GA-induced effect (Fig 7B). Thus, it seems that GA-induced p38
phosphorylation leading to activation of MK2 is involved in retrograde transport of
Shiga toxin.

Discussion
In this study we have investigated the effect of the Hsp90 inhibitor GA on retrograde transport
to the Golgi apparatus. We show that GA treatment strongly enhances the transport of Shiga
toxin to the Golgi apparatus, as measured by the sulfation assay and immunofluorescence. The
increased Shiga toxin transport seems to be partially mediated by activation of the p38-MK2
pathway, as the GA-induced increase in Shiga toxin sulfation was partially counteracted by the
p38 inhibitor SB203580 as well as the MK2 inhibitor PF3644022.

It is well known that GA promotes degradation of the ErbB2 receptor, presumably by alter-
ing endosomal sorting into the degradative pathway [6,7]. A recent study on HeLa cells showed
that GA induced abnormally elongated endosomal structures with or without terminal multi-
vesicular body (MVB) domains [7]. Interestingly, these morphological changes of endosomal

Fig 5. GA treatment does not alter Shiga toxin recycling.HEp-2 cells were preincubated with 10 μMGA for 30 min at 37°C and subsequently incubated
with 40 ng/ml biotinylated Shiga toxin 1 mutant for 30 min. Signals from cell surface-associated Shiga toxin were removed and the toxin chased for another
30 min in the presence of inhibitor. The amount of internalized, total cell-associated toxin and toxin released to the medium was quantified as described in
Materials and Methods. (A) Mean values + SD of total cell-associated (black bars), internalized (light grey bars) and released (dark grey bars) Shiga toxin 1
mutant are presented as percentage of control (DMSO). (B) Shiga toxin recycling was calculated as described in Materials and Methods and is presented as
mean values + SD, n = 2.

doi:10.1371/journal.pone.0129214.g005
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compartments were suggested to also cause missorting of Hsp90-independent cargo, since GA
treatment rerouted transferrin from early endosomes/recycling endosomes to MVBs and lyso-
somes [7]. This notion, that GA alters transport at the endosomal level, is also supported by
our data obtained with HEp-2 cells. GA treatment strongly increased the Golgi transport of
both Shiga toxin and ricin without increasing the endocytic uptake of the toxins, and the retro-
grade retrieval of the CI-M6PR was slightly increased, suggesting that GA has a more general
effect on retrograde sorting processes. Importantly, the increased retrograde transport does not
seem to be caused by a GA-induced effect on other pathways, such as reduced recycling of tox-
ins to the plasma membrane or reduced degradation, which would lead to a net accumulation

Fig 6. GA activates p38 which contributes to retrograde transport.HEp-2 cells were serum-starved in
HEPES-buffered medium before incubation with (A) 10 μMGA for the indicated time points or with (B) 10 μM
of the indicated inhibitors for 30 min. The cells were lysed and proteins were separated by SDS-PAGE. Blots
were probed with the indicated antibodies. Hsp90 was used as a loading control. (C) Cells were preincubated
with 10 μMGA in combination with 10 μMSB 203580 (SB) for 30 min and subsequently incubated with Shiga
B-sulf2 for 1 h. The Shiga B sulfation (black bars) and total protein sulfation (grey bars) are expressed relative
to control treatment (DMSO) and are plotted as mean values + SEM, n = 4. * p� 0.05, paired Student’s t-test.

doi:10.1371/journal.pone.0129214.g006
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of toxin molecules in the early-recycling endosomes, and potentially, an increased transport
into the retrograde pathway. However, it should be emphasized that the retrograde pathway is
a specialized pathway requiring strict sorting for entry. This can be illustrated by the fact that
ricin labeled with colloidal gold or multivalently coupled to HRP or nanoparticles is unable to
enter the retrograde pathway, and the toxin is redirected to lysosomes [32,33]. Thus, since the
retrograde pathway does not seem to be a default transport pathway, it is not given that a per-
turbation in another pathway would lead to increased retrograde transport.

In contrast to our data showing a GA-mediated increase in toxin transport to the Golgi, it
was previously reported that Hsp90 inhibition in HeLa cells had no effect on the retrograde
transport of ricin to the cytosol, but rather increased toxicity by preventing inactivation of the
ricin A-chain present in the cytosol [34]. Moreover, GA was reported to block the retrotranslo-
cation of cholera toxin to the cytosol without affecting its retrograde transport [35]. Although
these data seem to be in disagreement with our findings, it should be emphasized that none of
these studies specifically measured toxin transport to the Golgi apparatus and that they were
performed in other cell lines. For ricin, the lag time before onset of toxicity was used as a mea-
sure of transport [34]. For cholera toxin, the amount of cholera toxin A1(CTA1) secreted into

Fig 7. MK2 activation contributes to the increased retrograde transport after GA treatment. (A) HEp-2 cells were starved in sulfate-free medium for 3 h
at 37°C, and during the last 30 min 2.5 μMAkt inhibitor VIII (Akt-i), 2.5 μMPF 3644022 (PF) or 10 μMGAwere added. The cells were lysed and proteins were
separated by SDS-PAGE. Blots were probed with the indicated antibodies, and Hsp90 was used as a loading control. (B) Cells were preincubated with 10 μM
GA in combination with 2.5 μMAkt inhibitor VIII (Akt-i), or 2.5 μMPF 3644022 (PF) for 30 min and subsequently incubated with Shiga B-sulf2 for 1 h. The
Shiga B sulfation (black bars) and total protein sulfation (grey bars) are expressed relative to control treatment (DMSO) and are plotted as mean values
+ SEM, n = 6. * p� 0.05, paired Student’s t-test.

doi:10.1371/journal.pone.0129214.g007
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the extracellular medium was used to estimate intracellular transport [35]. For CTA1 secretion
to occur, cholera toxin must first be transported to the ER, where CTA1 dissociates from the
holotoxin [35]. Although toxin trafficking to the ER or cytosol was not significantly altered by
GA treatment, this does not exclude an effect on retrograde sorting to the Golgi apparatus, as
transport from the Golgi apparatus to the ER or retrotranslocation across the ER membrane
may be rate-limiting transport steps.

Although GA has been suggested to alter endosomal sorting of Hsp90-dependent and-
independent cargo due to ultrastructural changes of endosomal compartments, the mechanism
behind the change of endosome morphology is still unclear [7]. Shiga toxin is transported ret-
rogradely bound to its receptor Gb3. This receptor does not traverse the membrane and is not
in contact with the cytosol. Thus, a direct interaction with Hsp90 is unlikely. We therefore
looked for potential Hsp90 client proteins that could regulate retrograde transport. p38 has
previously been shown to interact with the Hsp90-Cdc37 chaperone complex, and upon Hsp90
inhibition, p38 was released from the complex and activated by autophosphorylation [25]. In
agreement with this, we found that GA rapidly activates p38 in HEp-2 cells and the activation
persists well after the time-point when Shiga toxin is added. Earlier studies have shown that
chemical inhibition or RNAi-mediated downregulation of p38 impairs retrograde transport of
Shiga toxin [18], and in agreement with these data, inhibition of p38 after GA treatment gave a
partial reduction in Shiga toxin sulfation, indicating a role for p38 in the increased retrograde
transport after Hsp90 inhibition. This is also supported by the finding that the NVP-AUY922--
mediated increase in Shiga toxin transport is completely negated by p38 inhibition.

It is currently unclear how p38 activity might alter retrograde transport, and in an attempt to
elucidate this, we investigated the role of the p38 substrate MK2. Together with p38, Akt and
Hsp27, MK2 constitute a signaling complex important for controlling stress-induced apoptosis and
actin remodeling [28]. Interestingly, inhibition of MK2 upon GA treatment gave a similar effect on
Shiga toxin sulfation as p38 inhibition, suggesting that p38 mediates its effect via activation of
MK2. In contrast, Akt inhibition upon GA treatment did not prevent Hsp27 phosphorylation, nor
did it alter the GA-induced increase in retrograde transport. Akt is a client protein of Hsp90 which
is degraded upon Hsp90 inhibition [36], but it is first transiently phosphorylated in a Src-depen-
dent manner [37]. Thus, Akt activation by GA does not necessarily rely on p38, and based on our
data using the Akt inhibitor, Akt activity does not seem to be crucial for Hsp27 phosphorylation
after GA treatment. The GA-mediated activation of Hsp27 and Akt is summarized in Fig 8. In the
signaling complex, Hsp27 is normally present as an oligomer [28]. Upon activation, phosphorylat-
ed monomeric Hsp27 is released from the complex, which is associated with actin reorganization.
In unstressed cells, non-phosphorylated Hsp27monomers bind to the plus-end of F-actin and act
as actin-capping proteins, preventing actin polymerization. Non-phosphorylated oligomers and
phosphorylated monomers of Hsp27 have reduced affinity for the plus-end of F-actin, and phos-
phorylated Hsp27 monomers are instead thought to bind to the sides of F-actin, thus stabilizing the
microfilaments [31,38]. Interesting in this context, is the previous finding that the actin-stabilizing
drug Jasplakinolide increases transport of Shiga toxin to the Golgi apparatus [15].

The binding of phosphorylated Hsp27 to the sides of F-actin was suggested to be a long-
term effect of Hsp27 activation after heat shock, however, a 1h treatment with arsenite was
shown to be sufficient to protect cells against the actin depolymerizing drug cytochalasin D in
an Hsp27-dependent manner [31,40]. It is not known whether a short-term incubation with
GA would lead to Hsp27-mediated actin stabilization, and to further complicate the picture,
Hsp27 is not the only actin-regulating protein that is affected by GA. Treatment with GA or its
derivative 17-AAG was shown to stimulate actin stress fiber formation in a Rho- and ROCK
dependent manner, and although Rho was activated after 30 min of GA treatment, the effect
on actin stress fibers was not visible until after 2 h of treatment [41].
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It should be noted that p38 activation also regulates the membrane association of Rab5, one
of the key regulators of early endocytic traffic, and its effectors EEA1 and rabenosyn-5 [42,43].
This may be relevant for retrograde transport as depletion of rabenosyn-5 was found to disrupt
Shiga toxin transport to the Golgi [44]. However, since inhibition of MK2 or p38 counteracts
the GA-induced increase in Shiga toxin transport to the same extent, it is more likely that the
contribution of p38 activation is mediated via the p38-MK2 pathway.

Although p38 contributes to the increased retrograde transport of Shiga toxin after GA
treatment, inhibition of p38 does not completely counteract the GA-mediated effect, suggesting
that Hsp90 inhibition alters more than one process important for retrograde transport. This is
supported by the finding that p38 inhibition fails to reduce the increased Golgi transport of
ricin after GA treatment (S4 Fig). However, it should be noted that in contrast to retrograde
transport of Shiga toxin, ricin transport does not seem to be p38 dependent [18]. Moreover,
radicicol did not induce p38 phosphorylation (S5 Fig), further supporting the existence of addi-
tional mechanisms. Although geldanamycin and radicicol would be expected to have similar
effects, combination of the two drugs were shown to have a synergistic inhibitory effect on glu-
cocorticoid receptor-dependent transcription and hormone binding [45]. The synergy was not
related to the ATPase activity of Hsp90, but was suggested to be caused by subtle differences in
drug binding to the ATPase binding pocket of Hsp90 [46].

Hsp90 has been suggested to have different cellular functions under normal growth condi-
tions and during environmental stress. In a genome-wide chemical-genetic screen in yeast, de-
letion strains of components in the gene ontology (GO) categories vesicle-mediated transport

Fig 8. GA-induced activation of Hsp27 and Akt. Inhibition of Hsp90 by GA releases p38 from the
Hsp90-Cdc37 complex, allowing it to autophosphorylate. Activated p38 phosphorylates MK2, which
subsequently phosphorylates Hsp27. GA also leads to the dissociation of Src from Hsp90, resulting in
transient activation. Src then phosphorylates Cbl, which recruits and activates phosphatidylinositol 3-kinase
(PI-3K). Activation of PI-3K eventually leads to the activation of Akt. Akt can also be activated by MK2 and
activated Akt has been shown to activate Hsp27. The illustration is based on references [25,28–30,37,39]

doi:10.1371/journal.pone.0129214.g008
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and the Golgi apparatus were hypersensitive to Hsp90 inhibition under normal growth condi-
tions, whereas components of the cell cycle, meiosis and cytokinesis were more profoundly af-
fected at elevated temperatures [47]. Under normal growth conditions, several multi-subunit
complexes, including the conserved oligomeric Golgi (COG) complex, the endosomal sorting
complex required for transport (ESCRT) I, II, and III, and the retromer complex, were among
the most prominent Hsp90 targets. Interestingly, RNAi-mediated knockdown of COG com-
plex- and retromer subunits has previously been shown to impair retrograde transport of Shiga
toxin [48–52]. To our knowledge, it has not been studied whether short-term Hsp90 inhibition
by GA would affect the COG and retromer complexes and whether this may be important for
retrograde transport. However, short-term Hsp90 inhibition did not seem to change the distri-
bution of the retromer component sorting nexin 1 (SNX1) (S6 Fig).

In conclusion, we have demonstrated that the Hsp90 inhibitor GA enhances retrograde
transport of Shiga toxin and ricin, and also to some extent retrograde retrieval of CI-M6PR.
GA-induced activation of p38 and MK2 seems to contribute to the increased transport of Shiga
toxin, but additional mechanisms are likely to exist.

Materials and Methods

Reagents and antibodies
H2

35SO4 was from Hartman Analytics. The plasmids expressing the non-toxic Shiga toxin 1
mutant and Shiga B-sulf2 were kind gifts from Dr. A.D. O’Brien (Uniformed Services Universi-
ty of the Health Sciences, Bethesda, Maryland, USA), and Dr. B. Goud (Institut Curie, Paris,
France), respectively. Shiga toxin 1 mutant was produced and purified as described in [21] and
Shiga B-sulf2 was prepared as described below. A modified ricin A chain containing a tyrosine
sulfation site was produced, purified and reconstituted with ricin B to form ricin-sulf1 as previ-
ously described [53]. Ricin holotoxin was from Sigma-Aldrich. The cell line stably expressing
the CD8-M6PR fusion protein was a kind gift from Dr. M.N.J. Seaman (Cambridge Institute
for Medical Research, Cambridge, UK). Geldanamycin, radicicol and SB203580 were from
Sigma-Aldrich. The mesylate salt of NVP-AUY922 was provided by Novartis. Akt inhibitor
VIII was from Calbiochem and PF 3644022 was from Tocris Bioscience. The following anti-
bodies were used: Monoclonal mouse anti-Shiga toxin STX1-3C10 and STX1-13C4 (Toxin
Technology), polyclonal rabbit anti-lectin (Ricinus Communis, R1254, Sigma-Aldrich), poly-
clonal rabbit anti-giantin (PRB-114C, BioLegend/Covance Antibody Products), monoclonal
mouse anti-CD8 (Sigma-Aldrich), monoclonal mouse anti-Hsp90 (610419), monoclonal
mouse anti-SNX1 (611482), monoclonal mouse anti-p38 (612168, BD Transduction Laborato-
ries), polyclonal rabbit anti-EEA1 (2411S), polyclonal rabbit anti-phospho-p38 (9211), mono-
clonal rabbit anti-phospho-Akt (4058), polyclonal rabbit anti-Akt (9272), polyclonal rabbit
anti-phospho-Hsp27 (2401), monoclonal mouse anti-Hsp27 (2402, Cell Signaling), polyclonal
Alexa-568 secondary antibody (A10037, Molecular probes), and polyclonal HRP-, Alexa-488-
and Cy3-conjugated secondary antibodies from Jackson Immunoresearch (115-035-003, 111-
035-144, 711-545-152, 115-165-146, 715-165-151). Other chemicals used were from Sigma-
Aldrich unless otherwise stated.

Cell lines
HEp-2 (human epidermoid laryngeal carcinoma) cells (ATCC: CCL-23) and HeLa (human
cervical adenocarcinoma) cells stably expressing the CD8-M6PR fusion protein (from Dr. M.
N.J. Seaman, [23]) were grown at 5% CO2 in Dulbecco’s Modified Eagle Medium (DMEM;
Invitrogen) with 10% v/v fetal calf serum (FCS; PAA Laboratories) supplemented with 100 U/
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ml penicillin and 100 U/ml streptomycin (Invitrogen). Cells were seeded one day prior
to experiments.

Preparation of Shiga B-sulf2
Amodified version of the Shiga toxin B-subunit containing C-terminal tandem sulfation sites
(Shiga B-sulf2) was produced in Escherichia coli BL21 (DE3) cells. LB medium supplemented
with ampicillin (100 μg/ml) was inoculated 1:100 with an overnight culture and incubated for
approximately 16 h at 30°C. Protein expression was induced by changing the culture tempera-
ture to 42°C for 3h. Cells were harvested by centrifugation. The cell pellet was resuspended in
25% sucrose, 1 mMNa2EDTA, and 20 mM Tris-HCl, pH 8.0; and gently shaken at 25°C for 20
min. Cells were spun down, resuspended in ice-cold distilled water and incubated on ice for 10
min. After centrifugation, ammonium sulfate was added to the supernatant at a concentration
of 60% saturation and the solution was incubated at 25°C for 1 h. Proteins were sedimented by
centrifugation at 13,000 g for 15 min. The protein pellet was resuspended in a buffer containing
1 M ammonium sulfate and 50 mM sodium phosphate, pH 8. The sample was centrifuged at
13,000 g for 10 min and the supernatant was filtered through a 0.45 μM filter. Proteins were
separated on a HiTrap Butyl HP column (GE Healthcare) using 50 mM sodium phosphate
(pH 8.0) as mobile phase and a segmented gradient of ammonium sulfate from 1–0.45 M in 2
column volumes (CV), 0.45 M for 5 CV, 0.45–0.40 M in 2 CV, 0.40 M for 2 CV, and 40–0 M in
2 CV. Fractions containing Shiga B-sulf2 were pooled, the buffer was changed by ultrafiltration
using Amicon Ultra filters with molecular weight cut-off of 3 kDa (Millipore) and the retained
sample was loaded onto a MonoQ 5/50 GL column (GE Healthcare). The proteins were sepa-
rated using a mobile phase of 20 mM Tris, pH 8.0 and a segmented gradient of NaCl: 0–0.58 M
in 5 CV, 0.58–0.61 M in 10 CV, and 0.61–1M in 2 CV. Fractions containing Shiga B-sulf2 were
pooled and the concentration of NaCl was reduced by buffer change using Amicon Ultra filters
with molecular weight cut-off of 3 KDa (Millipore). The resulting sample was purified a second
time over the MonoQ 5/50 GL column using the same settings as described above. The frac-
tions containing Shiga B-sulf2 were pooled, the buffer was changed to 20 mM Tris, pH 8.0 and
the sample was concentrated by ultrafiltration. The purity of the Shiga B-sulf2 preparation was
assessed by Coomassie staining following SDS-PAGE on a 4–20% polyacrylamide gel. The re-
sult showed only the band corresponding to the Shiga B-sulf2 subunits of the Shiga B-sulf2
complex (S7 Fig).

Endocytosis of Shiga toxin and ricin
The endocytosis of Shiga toxin was quantified as previously described [15]. Briefly, after inhibi-
tor treatment cells were incubated with 40 ng/ml of Shiga toxin 1 mutant labeled with biotin
bound via a reducible linker (EZ-link Sulfo-NHS-SS-Biotin, Pierce Biotechnology) for 20 min
at 37°C. The cells were then washed with cold buffer (0.14 M NaCl, 2 mM CaCl2, 20 mM
HEPES, pH 8.6). To determine the amount of internalized toxin, half of the plate was incubated
with 0.1 M sodium 2-mercaptoethanesulfonate (MESNa) and 2 mg/ml BSA in the same buffer
on ice to reduce the SS-biotin in cell surface-bound toxin. The other half of the plate was mock
treated to determine the amount of total cell-associated toxin (internalized + cell surface-
bound toxin). The cells were washed and lysed in a lysis buffer (0.1 M NaCl, 10 mM Na2HPO4

(pH 7.4), 1 mM EDTA, 1% Triton X-100, supplemented with a mixture of Complete protease
inhibitors (Roche Diagnostics) and 60 mM n-octyl-β-pyranoside). Cell lysates were incubated
in the presence of 0.5 μg/ml BV-TAG-labeled monoclonal anti-Shiga toxin antibody (3C10)
containing a Tris(bipyridine)-chelated ruthenium (II) atom (BioVeris Corporation) and 0.1
mg/ml streptavidin-coated Dynabeads (Invitrogen) for 1.5 h in assay diluent (0.2% BSA, 0.5%
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Tween20 in PBS) with gentle shaking. The amount of streptavidin-captured BV-TAG-labeled
anti-Shiga toxin was determined by the specialized electro-chemiluminescent detection system
M1R Analyzer (BioVeris Corporation).

Ricin was 125I-labeled using the IODO-GEN Iodination Reagent (Pierce Biotechnology) ac-
cording to the manufacturer’s protocol. Cells were treated with or without 10 μMGA for 30
min at 37°C and subsequently incubated with ~50 ng/ml 125I-labeled ricin for 30 min. To dis-
tinguish between total cell-associated toxin and internalized toxin, half of the samples were in-
cubated with 0.1 M lactose for 5 min at 37°C to remove cell surface-bound ricin. The cells were
then washed in PBS or 0.1 M lactose, dissolved in 0.1 M KOH, and the amount of total cell-
associated or internalized toxin was measured using an LKBWallac 1261 Multigamma γ-
counter (LKB Instruments).

Sulfation of Shiga B-sulf2 or ricin-sulf1
The cells were washed twice with sulfate-free medium and subsequently incubated with 0.2
mCi/ml 35SO4

2- for 3 h at 37°C in the same medium, with or without inhibitors as indicated in
the figure legends. Then ~2 μg/ml Shiga B-sulf2 or ~4 μg/ml ricin-sulf1 was added and the in-
cubation continued for 1 h or 1.5 h. Cells treated with ricin-sulf1 were subsequently incubated
twice with 0.1 M lactose in HEPES-buffered medium for 5 min at 37°C to remove surface-
bound toxin. The cells were then washed with ice-cold PBS and lysed (0.1 M NaCl, 10 mM
Na2HPO4 (pH 7.4), 1 mM EDTA, 1% Triton X-100, supplemented with a mixture of Complete
protease inhibitors (Roche Diagnostics) and 60 mM n-octyl-β-pyranoside). Shiga B-sulf2 or
ricin-sulf1 was immunoprecipitated from cleared lysates overnight at 4°C using Protein A
Sepharose beads (GE Healthcare) with the appropriate antibody adsorbed. The immunoprecip-
itate was washed twice with 0.35% Triton X-100 in PBS, resuspended in sample buffer and
boiled. The immunoprecipitate was separated by SDS-PAGE, transferred to a PVDF mem-
brane and investigated by digital autoradiography using a phosphor imaging screen (Imaging
Screen-K (Kodak), Bio-Rad Laboratories Inc). Images were acquired using the Molecular Imag-
ing PharosFX System (Bio-Rad Laboratories Inc) and band intensities were quantified with the
Quantity One 1-D Analysis Software (Bio-Rad Laboratories Inc). The total amount of sulfated
proteins was determined by TCA precipitation of the remaining lysates followed by β-
counting.

Shiga toxin recycling
To measure Shiga toxin recycling, a modified version of the endocytosis method described
above was used. The cells were incubated with or without 10 μMGA in HEPES-buffered medi-
um for 30 min at 37°C before addition of 40 ng/ml of biotinylated Shiga toxin 1 mutant labeled
with the reducible SS-Biotin and the incubation was continued for 30 min at 37°C. The cells
were then washed with cold buffer (0.14 M NaCl, 2 mM CaCl2, 20 mMHEPES, pH 8.6) and
treated with 0.1 MMESNa and 2 mg/ml BSA in the same buffer for 30 min at 4°C. This is to re-
move the SS-biotin from Shiga toxin present at the cell surface to prevent its detection. The
cells were subsequently washed with warm HEPES-buffered medium and chased in the same
medium with or without GA for 30 min at 37°C. Then, the medium was collected and detached
cells were removed by centrifugation. The cells were washed with cold buffer and half of the 24
well plate was treated with 0.1 MMESNa and 2 mg/ml BSA in the same buffer to remove SS-
biotin from recycled Shiga toxin present at the cell surface. The other half of the plate was
mock treated to determine the amount of total cell-associated Shiga toxin. The cells were lysed
in lysis buffer (0.1 M NaCl, 10 mMNa2HPO4 (pH 7.4), 1 mM EDTA, 1% Triton X-100, supple-
mented with a mixture of Complete protease inhibitors (Roche Diagnostics) and 60 mM n-
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octyl-β-pyranoside) and cell lysates and medium were incubated in the presence of BV-TAG-
labeled monoclonal anti-Shiga toxin antibody containing a Tris(bipyridine)-chelated rutheni-
um (II) atom and 0.1 mg/ml streptavidin-coated Dynabeads and analyzed as described above
in the endocytosis method. The amount of recycled Shiga toxin was determined as the amount
of Shiga toxin in medium + the difference between internalized and total cell-associated Shiga
toxin divided by the total amount of Shiga toxin (medium + total cell-associated Shiga toxin).

Ricin degradation and recycling
Cells were incubated with or without 10 μMGA for 30 min at 37°C before 125I-ricin (100–500
ng/ml) was added and the incubation continued for 20 min at 37°C. The cells were then incu-
bated with 0.1 M lactose in HEPES-buffered medium for 5 min and washed three times in the
same solution to remove surface-bound ricin. The cells were subsequently chased in 1 mM lac-
tose in HEPES-buffered medium with or without 10 μMGA for 2 h at 37°C. 1 mM lactose was
included to prevent re-binding and reuptake of recycled ricin. The medium was collected and
proteins were precipitated with 0.5 mg/ml BSA and 5% TCA and pelleted by centrifugation.
The cells were dissolved in 0.1 M KOH. The radioactivity associated with the medium superna-
tant and pellet, and with the cells was measured with a LKBWallac 1261 Multigamma γ-
counter. Degradation or recycling was calculated as the amount of radioactivity in the non-pre-
cipitable fraction of the medium (supernatant) or the precipitable fraction of the medium (pel-
let), divided by the total radioactivity in cells and in medium, respectively.

CI-M6PR retrograde transport
CI-M6PR transport was studied in a HeLa cell line stably expressing the CD8-M6PR fusion
protein. The protocol was slightly modified from Breusegem and Seaman [22]. Cells grown on
glass coverslips were incubated with 10 μMGA for 30 min in HEPES-buffered medium at
37°C. Then, the cells were chilled in cold HEPES-buffered medium for 10 min at 4°C to stop
trafficking. The cells were labeled with 10 μg/ml CD8 antibody for 30 min at 4°C before wash-
ing in cold PBS and chasing in warm HEPES-buffered medium in the presence of inhibitor for
0 or 15 min. The cells were washed and prepared for immunofluorescence confocal microscopy
as described below. The following antibodies were used: 1:1000 anti-giantin, 1:200 Alexa488
donkey anti-rabbit IgG and 1:500 Cy3 donkey anti-mouse IgG or Alexa568 donkey anti-mouse
IgG.

Immunofluorescence confocal microscopy
Cells grown on glass coverslips were serum-starved in HEPES-buffered medium for 2 h before
incubation with 10 μMGA for 30 min. For retromer localization studies, the cells were subse-
quently fixed, while in Shiga toxin experiments, 100 ng/ml Shiga toxin 1 mutant was added
and the incubation continued for 30 min. All samples were fixed in 10% formalin (Sigma-
Aldrich) or 3% methanol-free paraformaldehyde (Alfa Aesar) and permeabilized with 0.1%
Triton X-100, before blocking in 5% FCS. The samples were incubated with primary antibodies
in 5% FCS for 1 h at room temperature (for Shiga toxin experiments: 4 μg/ml STX1-3C10 and
1:1000 anti-giantin, for retromer localization studies: 1:200 anti-SNX1 and 1:100 anti-EEA1),
followed by 30 min incubation with fluorophore-conjugated secondary antibodies (1:200
Alexa488 donkey anti-rabbit IgG and 1:500 Cy3 goat or donkey anti-mouse IgG for Shiga
toxin experiments and retromer localization studies, respectively). The samples were mounted
in ProLong Gold with DAPI (Molecular Probes) and investigated using a Zeiss LSM 780 laser
scanning confocal microscope (Carl Zeiss MicroImaging) equipped with an Ar-Laser Multiline
(458/488/514 nm), a DPSS-561 10 (561 nm), and a Laser diode 405–30 CW (405 nm). The
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objective used was a Zeiss Plan-Apochromat 63×/1.40 Oil DIC M27. Images were acquired
using the ZEN 2010 software (Carl Zeiss MicroImaging). Fiji software [54] was used for quanti-
fication of signal intensities and for image preparation. Shiga toxin and CD8-M6PR transport
to the Golgi was determined in a similar manner as described in Breusegem and Seaman [22].
A Golgi mask was created from the giantin staining, and the cell outline was defined from com-
posite images with increased contrast. The intensity of Shiga toxin or CD8-M6PR in the cell
outline and in the Golgi mask was then measured from background-subtracted images and
transport was calculated as the ratio of signal intensity in the Golgi mask to the signal in the
whole cell mask. As the ratio of CD8-M6PR reaching the Golgi varied in different experiments,
data was normalized to DMSO samples in individual experiments. For the retromer localiza-
tion studies, the colocalization between SNX1 and EEA1 was determined by using the coloc2
plugin in Fiji to measure Manders’ colocalization coefficients in single cells in background-
subtracted images. For visualization, the image contrast was enhanced and the histogram nor-
malized to contain 0.5% saturated pixels.

Western blotting
Cells were serum-starved for 2–2.5 h and subsequently treated with inhibitors as indicated in
the figure legends. The cells were washed and lysed in lysis buffer (0.1 M NaCl, 10 mM
Na2HPO4 (pH 7.4), 1 mM EDTA, 1% Triton X-100, supplemented with a mixture of Complete
protease inhibitors and PhosStop phosphatase inhibitors (Roche Diagnostics) and 60 mM n-
octyl-β-pyranoside), before separation by SDS-PAGE and transfer to PVDF membranes. The
membranes were blocked in 5% milk in TBS for 1 h, washed and incubated overnight with pri-
mary antibodies diluted in 5% BSA in 0.1% TBS-Tween (p-p38 1:1000, p38 1:1000, p-Akt
1:2000, Akt 1:1000, p-Hsp27 1:1000, Hsp27 1:1000, Hsp90 1:5000). The membranes were
washed and incubated with appropriate HRP-labeled secondary antibodies (1:5000) in 5% milk
in TBS-Tween for 1 h at room temperature. After washing, the membranes were incubated
with SuperSignal West Dura Extended Duration Substrate (Thermo Scientific) for 5 min and
images were acquired using the ChemiDoc XRS+ System with Image Lab Software (Bio-Rad
Laboratories Inc).

Statistics
All experiments were performed with duplicates. The experimental results are presented as
mean values + standard error of the mean (SEM) or standard deviation (SD) of n independent
experiments, where n is indicated in each figure legend. The paired Student’s t-test was used to
determine the difference between means of two groups and the minimum level of significance
was set at p� 0.05.

Supporting Information
S1 Fig. Retrograde transport of Shiga toxin is increased upon Hsp90 inhibition by
NVP-AUY922 and is negated by p38 inhibition.HEp-2 cells were treated with DMSO or 100
nM NVP-AUY922 alone or in combination with 10 μM SB 203580 (SB) for 30 min before
2 μg/ml Shiga B-sulf2 was added and the incubation continued for 1 h. The cells were lysed,
and the toxin was immunoprecipitated and separated by SDS-PAGE. The amount of sulfated
toxin and the total protein sulfation was determined as described in Materials and Methods.
The toxin sulfation (black bars) and total protein sulfation (grey bars) are expressed relative to
control treatment (DMSO) and are plotted as mean values + SD, n� 2. � p� 0.05, paired Stu-
dent’s t-test.
(TIF)
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S2 Fig. GA does not alter ricin endocytosis.HEp-2 cells were preincubated with 10 μMGA
for 30 min at 37°C and subsequently incubated with ~50 ng/ml 125I-labeled ricin for 30 min.
The amount of internalized or total cell-associated toxin was quantified as described in Materi-
als and Methods. Mean values + SEM of total cell-associated (black bars) and internalized
(grey bars) 125I-labeled ricin are presented as percentage of control (DMSO), n = 2.
(TIF)

S3 Fig. Ricin recycling and degradation is not altered by GA treatment.HEp-2 cells were
preincubated with 10 μMGA for 30 min at 37°C and subsequently incubated with 100–500 ng/
ml 125I-ricin for 20 min. Cell surface-associated ricin was removed by lactose washes and the
toxin chased in the cells for another 2 h in the presence of inhibitor. The amount of cell-
associated and released (precipitable and non-precipitable) 125I was measured to determine
ricin recycling and degradation. (A) Ricin recycling was calculated as the precipitable fraction
of 125I in the medium divided by the total amount of 125I. Mean values + SEM are presented as
percentage of control (DMSO). (B) Ricin degradation was calculated as the non-precipitable
fraction of 125I in the medium divided by the total amount of 125I. Mean values + SEM are pre-
sented as percentage of control (DMSO), n = 3.
(TIF)

S4 Fig. The GA-mediated increase in ricin sulfation is not reduced after p38 inhibition.
HEp-2 cells were preincubated with 10 μMGA in combination with 10 μM SB 203580 (SB) for
30 min and subsequently incubated with ricinsulf-1 for 1.5 h. The ricin sulfation (black bars)
and total protein sulfation (grey bars) are expressed relative to control treatment (DMSO) and
are plotted as mean values + SEM, n = 3. ��� p� 0.005, paired Student’s t-test.
(TIF)

S5 Fig. Radicicol does not activate p38.HEp-2 cells were serum-starved in HEPES-buffered
medium before incubation with 10 μMGA or 1 μM radicicol (Rad) for 30 min. The cells were
lysed and proteins were separated by SDS-PAGE. The membranes were cut above the molecu-
lar marker for 150 kDa and just below 75 kDa, 50 kDa and 25 kDa. Blots were probed with the
indicated antibodies. Hsp90 was used as a loading control.
(TIF)

S6 Fig. SNX1 localization is not altered by GA treatment. (A) HEp-2 cells were treated with
10 μMGA for 30 min and subsequently fixed, permeabilized and stained with antibodies
against SNX1 (magenta) and EEA1 (green). DAPI is shown in blue. Scale bar 20 μm. (B) The
colocalization between SNX1 and EEA1 was quantified using the coloc2 plugin in the Fiji soft-
ware and is presented as the mean Manders’ colocalization coefficient for the ratio of SNX1
colocalizing with EEA1 + SEM. n = 3, with at least 59 cells quantified for each condition. � p
�0.05, paired Student’s t-test.
(TIF)

S7 Fig. Purity of Shiga B-sulf2. Coomassie-stained SDS-polyacrylamide gel (4–20%) showing
a single band for Shiga B-sulf2. Purified Shiga toxin 1 mutant was included as a reference to
show the A-moiety (~32 kDa) and B-subunits (~8 kDa) of Shiga toxin. Shiga B-sulf2 runs
slightly higher than the B-subunit due to the additional sulfation sites.
(TIF)

S8 Fig. Original Western Blots. Original western blots for (A) Fig 6A, (B) Fig 6B, and (C)
Fig 7A. The blots in A and B were cut between the molecular markers 150 and 250 kDa, 50 and
75 kDa, and 20 and 25 kDa. The blots in C were cut above 150 kDa and just below 75 kDa, 37
kDa and 15 kDa. The exposure time was optimized for each blot to give strong signals without
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saturation. The red boxes indicate the bands shown in Figs 6 and 7.
(TIF)
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