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Abstract
Perilla frutescens var. crispa (Labiatae) has two chemo-varietal forms, i.e. red and green

forms of perilla, that differ in the production of anthocyanins. To facilitate molecular biologi-

cal and biochemical studies in perilla-specialized metabolism we used Illumina RNA-

sequencing technology in our comprehensive comparison of the transcriptome map of the

leaves of red and green forms of perilla. Sequencing generated over 1.2 billion short reads

with an average length of 101 nt. De novo transcriptome assembly yielded 47,788 and

47,840 unigenes in the red and green forms of perilla plants, respectively. Comparison of

the assembled unigenes and existing perilla cDNA sequences showed highly reliable align-

ment. All unigenes were annotated with gene ontology (GO) and Enzyme Commission

numbers and entered into the Kyoto Encyclopedia of Genes and Genomes. We identified

68 differentially expressed genes (DEGs) in red and green forms of perilla. GO enrichment

analysis of the DEGs showed that genes involved in the anthocyanin metabolic process

were enriched. Differential expression analysis revealed that the transcript level of anthocy-

anin biosynthetic unigenes encoding flavonoid 3’-hydroxylase, dihydroflavonol 4-reductase,

and anthocyanidin synthase was significantly higher in red perilla, while the transcript level

of unigenes encoding limonene synthase was significantly higher in green perilla. Our data

serve as a basis for future research on perilla bio-engineering and provide a shortcut for the

characterization of new functional genes in P. frutescens.

Introduction
Plants can produce a diverse range of secondary metabolites that are beneficial for human
health, food, and medicines. When exposed to environmental changes such as drought and
water-deficiency, plants can respond to these stresses by producing soluble phenolics, mainly
flavonoids (for example, see [1]) and lignins [2]. One group of flavonoids is an anthocyanin
pigment [3]. Genes involved in the central flavonoid biosynthetic pathway (see review: [4]),
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their modification reactions, and their transcriptional regulation have been characterized by
the combinatorial approach of transcriptomic and metabolomic profiles with a reverse genetic
technique in Arabidopsis [5–8] and other plants [9, 10]. A more detailed genetic, transcrip-
tomic, and metabolomic characterization of pigment plants will lead to a better understanding
of the transcriptional regulatory and metabolic systems for anthocyanin biosynthesis.

Perilla frutescens var. crispa (Labiatae) is a medicinal plant common in Southeast Asia.
Among its two chemo-varietal forms, red and green forms of perilla, only red perilla (‘Aka-jiso’
in Japanese) can produce anthocyanins, mainly malonylshisonin [11, 12]. The differential dis-
play of mRNA [13] from red and green forms of perilla plants was used for the characterization
of genes associated with regulation of the expression of biosynthetic genes [14], for example,
the Myb-like gene [15] and the Myc-like gene [16]. Other anthocyanin-related genes have been
identified [17–20] and a normalized cDNA library from whole young perilla was constructed
and 4,582 uni-expressed sequence tags (uniESTs) were identified [21]. As early methods such
as the mRNA differential display, differential hybridization, and serial analysis of gene expres-
sion (SAGE) can only monitor a small coverage of the transcript profile, the establishment of
fundamental molecular and genetic resources/tools such as DNA microarray- and EST data-
bases remains far from complete in perilla plants.

Recent advances in high-throughput RNA-sequencing technologies (RNA-seq) allow the
monitoring of genome-wide transcription, i.e. a complete set of transcripts of an organism (see
reviews, [22] and [23]). RNA-seq is applicable to both model organisms with reference genome
sequences and to non-model species without an existing reference genome, including crops,
trees, and vegetables [24, 25]. It can also detect novel transcribed regions in a genome, small/
micro RNAs, and novel alternative splicing patterns. The Medicinal Plant Genomics Resource
(MPGR) consortium (http://medicinalplantgenomics.msu.edu/) provides RNA-seq data for 14
medicinal plants including Catharanthus roseus; transcriptome data from 23 different tissues
in C. roseus are available [26]. RNA-seq technology is helpful for a better understanding of the
perilla-specialized metabolism and its regulation.

Using RNA-seq technology, we analyzed and here described the whole transcriptome map
of red and green forms of perilla leaves. We generated over 1.2 billion bases of high-quality
short reads using an Illumina sequencer and now demonstrate the suitability of our sequencing
for de novo transcriptome assembly and the functional annotation of unigenes in perilla leaves.
We compared transcript levels in red and green forms of perilla, especially the biosynthetic
pathways of anthocyanin and perillyl alcohol. Our findings serve as a basis for future studies
on perilla bio-engineering and provide a shortcut to the discovery of new functional genes in
P. frutescens.

Results and Discussion

Sample preparation and Illumina sequencing
For the comprehensive characterization of red and green forms of the perilla transcriptome,
total RNA samples were isolated from leaves. Using a bioanalyzer we performed DNase treat-
ment and confirmed RNA integrity. Then, the samples were mixed equally. Total RNA was uti-
lized in the mRNA preparation, fragmentation, and cDNA synthesis. After the removal of
adaptor sequences and low-quality and ambiguous reads, Illumina sequencing yielded
1,214,546,008 and 1,240,000,000 clean reads from the mRNA pool isolated from Perilla frutes-
cens var. crispa f. purpurea (red perilla) (Table 1) and P. frutescens var. crispa f. viridis (green
perilla), respectively (S1 Table). The short reads showed mean quality scores 36.2% in red- and
36.3% in green perilla, indicating that our RNA sequencing was adequate for de novo assembly.
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De novo transcriptome assembly of red and green forms of perilla
Using the Trinity program [27], all clean reads of red perilla were assembled de novo into
54,500 contigs with an average length of 824 base pairs (bp) and an N50 of 1,312 bp (S1 File).
In green perilla we obtained 54,445 contigs with an average length of 844 bp and an N50 of
1,368 bp. The length and GC% distribution for all contigs for red and green forms of perilla are
shown in Fig 1A and 1B, respectively, and in S1 Fig To estimate expression abundance we used
Bowtie [28] and RSEM [29] for the contigs. We obtained 47,788 unigenes with an average
length of 876 bp and an N50 of 1,349 bp in red perilla (Table 1) and 47,840 unigenes with an
average length of 897 bp and an N50 of 1,399 bp in green perilla (S1 Table). The length and GC
content distribution of all assembled unigenes in red and green perilla are shown in Fig 1C and
1D, respectively, and in S1 Fig To provide a general overview of the unigenes we calculated
basic statistics. The results showed that in red perilla, 21,174 unigenes were shorter than 500 bp
and 1,152 unigenes were longer than 3,000 bp; in green perilla 21,186 unigenes were shorter
than 500 bp and 1,257 were longer than 3,000 bp. In 3,909 unigenes of red- and in 3,810 uni-
genes of green perilla the GC content exceeded 50%.

Comparison of assembled unigenes and perilla sequences deposited in
GenBank
To assess the quality of the assembled unigenes we used all P. frutescens cDNA sequences avail-
able as of December 2014 from NCBI GenBank [30] which contains all 5,911 P. frutescens se-
quences (5,538 ESTs and 373 nucleotides). Of the 5,911 cDNA sequences in GenBank, 4,252
(71.9%) could be matched with red perilla unigenes using a cutoff E-value of 10−10 (BLASTn).
Of 47,788 unigenes, 3,957 (8.3%) matched with 5,911 perilla cDNA sequences, the others were
unmatched. There were significant similarities with previously characterized perilla genes en-
coding glutathione S-transferase (AB362191.1: 98.6% identity and E-value = 0.0) [31], anthocy-
anin 5-O-glucosyltransferase (AB013596.1: 97.6% identity and E-value = 0.0) [20],
anthocyanin 5-O-glucoside-6'''-O-malonyltransferase (AF405204.1: 98.9% identity and E-
value = 0.0) [32], a WD-repeat-containing putative regulatory protein in anthocyanin biosyn-
thesis (AB059642.1: 98.8% identity and E-value = 0.0) [33], and cytochrome P450 reductase
(GQ120439.1: 99.0% identity and E-value = 0.0) [34]. These results indicate that our assembled
unigenes have a wide coverage with known perilla cDNA sequences because many unigenes
had not been sequenced or had not been assembled correctly.

Functional annotation and classification of perilla unigenes
Next we validated and annotated the assembled unigenes. Our homology search against an
NCBI non-redundant (NR) protein database (http://www.ncbi.nlm.nih.gov; formatted on

Table 1. Summary of the sequence assembly after Illumina sequencing in red perilla.

Raw reads Contigs Unigenes

Total length (bp) 1,214,546,008 44,923,850 41,869,105

Number of contigs 12,025,208 54,500 47,788

Average length (bp) 101 824 876

Median length (bp) 101 515 580

Max length (bp) 101 12,157 12,157

Min length (bp) 101 201 201

N50 (bp) 101 1,312 1,349

doi:10.1371/journal.pone.0129154.t001
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April 7, 2014) was based on the BLASTx program [35] for all unigenes using a cutoff E-
value<10−5, and the best aligning results were selected to annotate the unigenes. As a result,
81.7% of the aligned sequences in red perilla exhibited significant homology with entries in the
NR database (E-value< 1E-5) (left panel in Fig 2A). The annotation results for green perilla are
shown in S2 Fig Based on the BLAST similarity distribution, 11,630 sequences in red perilla ex-
hibited alignment identities greater than 80% (right panel in Fig 2A). To obtain gene ontology
(GO) [36] for the unigenes we used the Blast2GO program v 2.7.1 [37]; it can also assign an En-
zyme Commission (EC) number and Kyoto Encyclopedia of Genes and Genomes (KEGG)

Fig 1. Overview of the de novo transcriptome assembly in Perilla frutescens purpurea (red perilla). (A and B) Length and GC distribution of contigs
assembled from high-quality clean reads by the Trinity program [27]. (C and D) Length and GC distribution of unigenes generated from further
contig assembly.

doi:10.1371/journal.pone.0129154.g001
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Fig 2. Characterization of the assembled unigenes based on a non-redundant (NR) protein database search in red perilla. (A) (Left panel): E-value
distribution of BLAST hits for the assembled unigenes with a cutoff of E-value < 10−5. (Right panel): Similarity score distribution of the top BLAST hits for the
assembled unigenes with a cutoff of E-value < 10−5. (B) Bar chart of the data distribution from BLAST2GO [37]. (C) Species distribution of the top BLAST hits
for the assembled unigenes with a cutoff of E-value < 10−5.

doi:10.1371/journal.pone.0129154.g002
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[38] information based on the BLAST results. The annotation results for red perilla are pre-
sented as a bar chart of the data distribution from BLAST2GO (Fig 2B).

A large number of the hits matched the sequences of Solanum tuberosum (18.2%), Vitis vinif-
era (15.2%), and Solanum lycopersicum (12.0%); other hits were identified within the reference
protein databases of Genlisea aurea (10.6%), Theobroma cacao (6.2%), Populus trichocarpa
(4.2%), Prunus persica (3.6%), Ricinus communis (3.5%),Citrus clementina (2.8%), and Citrus
sinensis (2.2%) (Fig 2C). The species distribution of the top BLAST hits for the assembled uni-
genes from red and green forms of perilla was quite similar (S2 Fig). Although there were many
unigenes with no BLAST hits, they may be uncharacterized genes that were not represented in
the annotated protein databases or assembled sequences too short to produce hits.

We used the BGI WEGO program [39] to perform GO functional classification of all uni-
genes and of the distribution of gene functions of the species (Fig 3). WEGO can map all of the
annotated unigenes to GO terms and identify the number of unigenes involved in each GO
term. All 30,048 unigenes in red perilla were categorized by three main GO terms: cellular com-
ponent, molecular function, and biological process. Within the cellular component, most uni-
genes were assigned to “cell” and “cell parts”, followed by “organelle” and “organelle part”.
Within the molecular function category, the great majority of unigenes was associated with the
terms “binding”, “catalytic”, and “transporter”. Within the biological process group, the great
majority of unigenes was related to the terms “cellular process”, “metabolic process”,

Fig 3. Gene ontology assignments for all assembled unigenes in red perilla. The results are summarized in terms of three functional categories: cellular
component, molecular function, and biological process. 30,048 unigenes were categorized by GO terms. The GO terms were visualized usingWEGO (http://
wego.genomics.org.cn) [39].

doi:10.1371/journal.pone.0129154.g003
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“biological regulation”, and “response to stimulus” (for green perilla, see S3 Fig). All unigenes
with functional annotations are presented in S2 and S3 Tables.

Functional classification by KEGG pathways
The KEGG pathway database [38] stores the molecular network interactions of cellular compo-
nents. Pathway-based annotation helps to further understand the biological functions of uni-
genes. The annotated unigenes in red perilla were grouped into 139 KEGG pathways. Fig 4
represents the top 30 pathways in our enrichment analysis of assembled unigenes in red perilla.
The top 3 ranking pathways were amino sugar and nucleotide sugar metabolism (109 uni-
genes), purine metabolism (108 unigenes), and arginine and proline metabolism (107 uni-
genes) (Fig 4 and S4 Table). The top 3 ranking pathways were identical for red and green
perilla. The number of unigenes associated with the anthocyanin biosynthetic pathway in red
and green forms of perilla was 25 and 19, respectively (see also S4 Fig).

Identification of simple sequence repeats (SSRs)
SSRs, or microsatellites, are ubiquitous repetitive DNA sequences in eukaryotic genomes (see
reviews, [40] and [41]). They are important markers for determining functional genetic varia-
tion including paternity determination, genetic diversity assessment, population genetics stud-
ies, and for the development of a genetic map. To identify SSRs we searched all unigenes in the
red and green forms of perilla with MISA [42]. We detected a total of 15,156 SSRs in 12,024
transcripts of red perilla (Table 2 and S5 Table). All SSRs can be classified by the number of re-
peat units. Di-nucleotide SSRs represented the largest fraction (46.5%) of SSRs identified, fol-
lowed by mono-nucleotide (36.1%) and tri-nucleotide (17.2%) SSRs. Although only a small
fraction of tetra- (120), penta- (12), and hexa-nucleotide (18) SSRs were identified in red perilla
transcripts, their number was significant. Our identified SSRs of Perilla species may provide
potential genetic markers for population genetics and comparative genomics research to en-
hance our understanding of the genetic control of adaptive traits.

Identification of differentially expressed genes (DEGs) in different forms
of perilla plants
We identified 68 differentially-expressed genes [false discovery rate (FDR)< 0.05] using the
TCC package [43], which is for comparing raw tag count data with a robust normalization
method. In S6 Table, we also listed uniquely expressed unigenes in the different forms of perilla
plants. The tables feature 22,359 and 22,187 unigenes in the red and green form, respectively.
We then performed GO enrichment analysis using a hypergeometric test implemented in
BiNGO [44]. This yielded significantly enriched GO functional categories in DEGs compared
to the genomic background (S5 Fig). GO functional categories with an FDR< 0.05 were de-
fined as significantly over-represented in DEGs. The top 5 enriched GO terms were “anthocya-
nin metabolic process (FDR = 1.6E-05)”, “flavonoid metabolic process (FDR = 1.6E-05)”,
“phenylpropanoid metabolic process (FDR = 4.6E-05)”, “flavonoid biosynthetic process
(FDR = 6.7E-05)”, and “phenylpropanoid biosynthetic process (FDR = 6.7E-05)”. Our identifi-
cation of DEGs suggests that mainly the biological processes of anthocyanin biosynthesis, but
not those of other metabolites, are different in red and green forms of perilla as has been re-
ported previously [12]. The leaves of the red form contain many anthocyanin pigments such as
malonylshisonin, shisonin, cis-isomers of malonylshisonin, and peonidin 3-O-malonylgluco-
side-5-O-p-coumarylglucoside. Among them, malonylshisonin was the main anthocyanin, rep-
resenting approximately 70% of the total anthocyanins in red perilla leaves. In contrast, green
perilla leaves did not accumulate these anthocyanins [12].
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Exploring gene expressions associated with the biosynthetic pathway of
anthocyanins
To detect more genes belonging to the relevant biosynthesis pathway of anthocyanin in the
transcriptome sequences we carried out a comparative inspection of transcriptome data from
red and green forms of perilla plants involved in the biosynthesis of phenylpropanoid and fla-
vonoid skeletons (Fig 5). In this pathway, red and green forms of perilla differed in that red

Fig 4. Pathway enrichment analysis of assembled unigenes in red perilla. Annotated unigenes were grouped into 139 KEGG pathways. The top 30
pathways containing unigenes are displayed.

doi:10.1371/journal.pone.0129154.g004
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plants manifested higher expression levels of genes encoding flavanone 3’-hydroxylase (F3’H),
dihydroflavonol 4-reductase (DFR), and anthocyanidin synthase (ANS) than did green plants
(FDR< 0.05) (green arrows in Fig 5). Because F3’H plays a crucial role in pigment biosynthesis
in Arabidopsis, mutant plants lacking F3’H (called tt7) produce pale brown seeds due to re-
duced levels of brown pigment [45]. DFR catalyzes the first committed reaction leading to an-
thocyanin and proanthocyanidin [46]. ANS, also called leucoanthocyanidin dioxygenase
(LDOX), can catalyze the formation of cyanidin from leucoanthocyanidin with oxygen and
2-oxo-glutaric acid as co-substrates [18, 47].

In Arabidopsis and maize, a set of transcription factors including MYB [48, 49], basic helix-
loop-helix (bHLH) [50], and WD40 [33, 51] plays a central role in the regulation of anthocya-
nin genes. Tohge et al. [5] suggest that MYB75/PAP1 (PRODUCTION OF ANTHOCYANIN
PIGMENT 1) and its homolog MYB90/PAP2 specifically induce the expression of genes asso-
ciated with the biosynthesis of anthocyanin in Arabidopsis, including DFR and ANS/LDOX.
Genes encoding a putative gene with homology to quercetin 3-O-glucoside-6-O-malonyltrans-
ferase (EC:2.3.1.172) (unigene ID: ‘c18250_g2_i2’) (blue arrow in Fig 5) and anthocyanidin 3-
O-glucoside 5-O-glucosyltransferase 1-like (unigene ID: ‘c19924_g1_i1’) (orange arrow in Fig
5) were significantly expressed in red perilla. We also compared the expression levels of previ-
ously identified genes including transcription factors and enzymes in red and green forms of
perilla (S6 Fig). In red perilla, there was a significant up-regulation (FDR< 0.05) of genes en-
coding F3G1 (AB103172), bHLH transcription factors associated with the regulation of the fla-
vonoid pathway [52, 53], and glutathione S-transferase (AB362191.1) [31].

Gene expressions involved in the biosynthetic pathway of
monoterpenes in red and green forms of perilla
Monoterpenes produced by plants play crucial roles in their defense against insects and mi-
crobes [54, 55]. Perillyl alcohol, a cyclic monoterpene, is secreted by numerous plant species in-
cluding lavender, mints, and perilla. The flavor of the perilla herb is characterized by
perillaldehyde, an index compound for quality control of the perilla herb in the Japanese Phar-
macopoeia (JP). Fig 6 is a comparative representation of transcriptome data related to the bio-
synthetic pathway of monoterpenes in red and green forms of perilla. Unigene encoding
limonene synthase (D49368.1: 100% identity and E-value = 0.0) showed significantly greater

Table 2. Statistics of SSRs detected in red perilla.

Results of SSR searches

Total number of sequences examined: 54,500

Total size of examined sequences (bp): 44,923,850

Total number of identified SSRs: 15,156

Number of SSR containing sequences: 12,024

Number of sequences containing more than 1 SSR: 2,460

Number of SSRs present in compound formation: 1,135

Distribution to different repeat type classes

Mono-nucleotide 5,352

Di-nucleotide 7,050

Tri-nucleotide 2,604

Tetra-nucleotide 120

Penta-nucleotide 12

Hexa-nucleotide 18

doi:10.1371/journal.pone.0129154.t002
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Fig 5. Comparative representation of transcriptome data in red and green forms of perilla plants. Biosynthetic pathways and the expression of
unigenes involved in the biosynthesis of phenylpropanoid and flavonoid skeletons are shown. The expression levels (TMM-normalized FPKM values) of
unigenes encoding the enzymes of each step are displayed. Homologous genes in red and green perilla represent the reciprocal best-hit BLAST results.
Asterisks identify the false discovery rate, (FDR) < 0.05, with the TCC package [43]. TMM, TrimmedMean of M values [63]; PAL, phenylalanine ammonia-
lyase; C4H, cinnamic acid 4-hydroxylase; 4CL, 4-coumaric acid: CoA ligase; ACC, acetyl-CoA carboxylase; CHS, chalcone synthase; CHI, chalcone
isomerase; F3H, flavanone 3-hydroxylase; F3’H, flavonoid 3’-hydroxylase; FLS, flavonol synthase; OMT1, O-methyltransferase 1; DFR, dihydroflavonol
4-reductase; ANS, anthocyanidin synthase; 3GT, UDP-glucose: anthocyanidin 3-O-glucosyltransferase.

doi:10.1371/journal.pone.0129154.g005
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up-regulation in green than red perilla. It produces limonene from geranyl diphosphate and is
an important step in the biosynthesis of perillaldehyde [56]. One of the major essential oil com-
ponents of green perilla is limonene. A study that applied gas chromatography—flame ioniza-
tion detection (GC—FID) showed that the chemical composition of limonene from the aerial
parts of red and green forms of perilla was 1.1% and 12.6%, respectively [57]. We think that
our results at least partially support the chemical composition of the essential oils of red and
green forms of perilla.

In another recent work, Tong et al. [58] analyzed the differences between red and green
forms of P. frutescens var. crispa to identify candidate genes involved in leaf color. More studies
are needed for a better understanding of the complex regulation of the biosynthetic pathway(s)
of anthocyanin and perillyl alcohol in perilla plants and its physiological significance. Although
the expression patterns at the protein level must be further investigated, our data and those of
others [58], are a basis for future studies on perilla bioengineering and may help to develop an
approach for the characterization of new functional genes in Perilla species.

Conclusion
Our study represents comprehensive transcriptome resource for perilla plants that feature two
varietal forms of anthocyanin accumulation (red and green forms). Our datasets are an inte-
grated genomic resources for molecular cloning and for identifying genes of interest in perilla.

Fig 6. Comparative representation of transcriptome data in red and green perilla plants. Biosynthetic pathways and the expression of unigenes
involved in the biosynthesis of perillyl alcohol are displayed. The expression levels (TMM-FPKM values) of unigenes encoding the enzymes of each step are
shown. Homologous genes in red and green perilla show the reciprocal best-hit BLAST results. Asterisks indicate the false discovery rate, (FDR) < 0.05,
obtained with the TCC package [43]. TMM, TrimmedMean of M values [63].

doi:10.1371/journal.pone.0129154.g006
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Given the incomplete knowledge on the molecular control mechanism(s) of the biosynthetic
pathways associated with anthocyanin and monoterpenes, our transcriptome analysis provides
useful information regarding the specialized metabolism of perilla plants.

Materials and Methods

Plant materials, RNA isolation, and cDNA synthesis
The plants of Perilla frutescens var. crispa f. purpurea (red perilla) and P. frutescens var. crispa f.
viridis (green perilla), were grown in the experimental gardens of the Center of Medicinal Re-
sources, Graduate School of Medical and Pharmaceutical Sciences, Chiba University, Chiba,
Japan. P. frutescens var. crispa is not an endangered or protected species. Fresh leaves were col-
lected from healthy plants in May 2012. The leaves were frozen by liquid nitrogen and subse-
quently powdered using a Multi Beads Shocker (Yasui Kikai, Japan). Total RNA was extracted
from powdered red and green leaves of P. frutescens var. crispa with the RNeasy Mini Kit (Qia-
gen, USA), cleaned by ethanol precipitation, and processed using an Illumina TruSeq Prep Kit
v2 according to the manufacturer’s protocol (Illumina, San Diego, CA, USA). We used unrepli-
cated data for each form of perilla (i.e., one sample per form).

Illumina sequencing
cDNA libraries were sequenced on an Illumina HiSeq 1000 sequencer (Illumina Inc., San
Diego, CA, USA) and 100-bp paired-end (PE) reads were produced. After the removal of adap-
tor sequences and ambiguous and low-quality reads, Illumina sequencing resulted in
1,214,546,008 and 1,240,000,000 clean reads from the mRNA pool isolated from red perilla
and green perilla, respectively. All raw read sequences are available at the DDBJ Sequence Read
Archive [59] under accession number DRA003003.

Data pre-processing, filtering, and de novo transcriptome assembly
For transcriptome assembly we filtered the raw reads and removed adapter sequences, non-
coding RNA, low-quality reads with ambiguous ‘N’ bases, and raw reads with an average length
less than 20 bases. The Trinity program [27] was used for de novo transcriptome assembly, it
combines read sequences of a certain overlap length to form longer fragments without ‘N’ gaps
(contigs). We then processed these contigs for read alignment and abundance estimation with
Bowtie [28] and RSEM [29]. To calculate unigene expression we used the Fragments Per Kilo-
base of exon per Million mapped fragments (FPKM) method. In the calculation of gene expres-
sion it can exclude sequencing discrepancies and the influence of different gene lengths. The
number of unigenes was 47,788 in red- and 47,840 in green perilla at a threshold more than
FPKM = 1. The length and GC% distribution of all assembled unigenes are shown in Fig 1C
and 1D and in S1 Fig To calculate the GC content and basic statistics values used custom
Ruby/Bioruby script [60], the R/Bioconductor package “ShortRead” [61], and “Biostrings”
[62].

Functional annotation and classification of unigenes
We performed a homology search against the NCBI NR protein database (http://www.ncbi.
nlm.nih.gov, formatted on April 7, 2014) based on the BLASTx program [35] for all unigenes
using a cutoff E-value<10−5. The best aligning results were selected to annotate the unigenes.
For their further annotation we used the Blast2GO program v 2.7.1 [37] to assign GO terms, an
EC number, and KEGG [38] information according to the BLAST results. For visualization of
the GO functional classification of all unigenes and the distribution of the gene functions in the
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different species we used the BGI WEGO program [39]. The microsatellite identification tool
(MISA) (http://pgrc.ipk-gatersleben.de/misa/) [42] with its default parameters was applied to
identify microsatellites in the unigenes.

Identification of differentially expressed genes (DEGs)
Differential gene expression analysis between red and green forms of perilla was with the TCC
package [43]. Briefly, the main algorithm to identify DEGs with the TCC package is based on
the combination of TMM normalization [63] and a DEG identification method [e.g., edgeR
[64] and DESeq [65]]. In the DEG identification step, we used a negative binomial test imple-
mented in DESeq [65]. BiNGO [44], a tool to calculate the over-representation of DEGs, was
used to analyze significantly over-represented GO categories.

Global BLAST search against currently available Perilla frutescens
sequences
To identify putative orthologous genes in red and green forms of perilla plants, all 5,911 P. fru-
tescens var. crispa sequences (5,538 ESTs and 373 nucleotides) were downloaded from NCBI
GenBank [30] and then submitted to reciprocal best-hit BLASTn searches against unigenes;
the cutoff E-value was< 10−10.

Supporting Information
S1 Fig. Overview of our de novo transcriptome assembly in Perilla frutescens var. crispa f.
viridis (green perilla). (A and B) Length and GC distribution of the contigs assembled from
high-quality clean reads by the Trinity program [27].
(C and D) Length and GC distribution of the unigenes generated from further contig assembly.
(PPTX)

S2 Fig. Characterization of the assembled unigenes based on a non-redundant (NR) protein
database search in green perilla.

1. (Left panel) E-value distribution of BLAST hits for the assembled unigenes with a cutoff of
E-value< 10−5. (Right panel) Similarity score distribution of the top BLAST hits for the as-
sembled unigenes with a cutoff of E-value< 10−5.

2. Bar chart of the data distribution from BLAST2GO [37].

3. Species distribution of the top BLAST hits for the assembled unigenes with a cutoff of E-
value< 10−5.
(PPTX)

S3 Fig. Gene ontology (GO) assignments for all assembled unigenes in green perilla. Results
summarized in three functional categories: cellular component, molecular function, and bio-
logical process. 29,813 unigenes were categorized by GO terms. The GO terms were visualized
using WEGO (http://wego.genomics.org.cn) [39].
(PPTX)

S4 Fig. Pathway enrichment analysis of assembled unigenes in green perilla. Annotated uni-
genes were grouped into 137 KEGG pathways. The top 30 pathways containing unigenes
are displayed.
(PPTX)
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S5 Fig. Significantly enriched GO functional categories in 68 differentially expressed genes
in red and green forms of perilla. The colored nodes indicate the significantly over-represented
GO categories. The pseudo-colored bar represents the significance [false discovery rate (FDR)].
(PPTX)

S6 Fig. Comparative representation of transcriptome data in red and green perilla plants.
Previously identified genes encoding transcription factor(s) and enzymes, and the expression
of unigenes are shown. The expression levels (TMM-normalized FPKM values) are displayed.
Homologous genes in red and green perilla indicate the reciprocal best-hit BLAST results. As-
terisks represent the false discovery rate (FDR)< 0.05 obtained with the TCC package [43].
TMM, Trimmed Mean of M values [63].
(PPTX)

S1 File. Unigene sequences of Perilla frutescens var. crispa f. purpurea (red perilla) in
FASTA format.
(FASTA)

S2 File. Unigene sequences of Perilla frutescens var. crispa f. viridis (green perilla) in
FASTA format.
(FASTA)

S1 Table. Summary of the sequence assembly after Illumina sequencing in green perilla.
(XLSX)

S2 Table. List of all annotated unigenes in red perilla.
(XLSX)

S3 Table. List of all annotated unigenes in green perilla.
(XLSX)

S4 Table. Functional classification of red (A) and green (B) forms of perilla unigenes by
KEGG pathways.
(XLSX)

S5 Table. Statistics of simple sequence repeats detected in green perilla.
(XLSX)

S6 Table. Differential expression analysis and identification of uniquely expressed genes in
different forms of perilla.

1. Detailed lists of differentially expressed genes (DEGs) up- or down-regulated between red
and green forms of perilla.

2. Uniquely expressed genes in red perilla.

3. Uniquely expressed genes in green perilla.
(XLSX)
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