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Abstract
Traumatic brain injury (TBI) incidence rises during adolescence because during this critical

neurodevelopmental period some risky behaviors increase. The purpose of this study was

to assess the contribution of cannabinoid receptors (CB1 and CB2), blood brain barrier pro-

teins (AQP4) and astrogliosis markers (vimentin) to neurological deficit and brain edema

formation in a TBI weight drop model in adolescent male mice. These molecules were se-

lected since they are known to change shortly after lesion. Here we extended their study in

three different timepoints after TBI, including short (24h), early mid-term (72h) and late mid-

term (two weeks). Our results showed that TBI induced an increase in brain edema up to

72 h after lesion that was directly associated with neurological deficit. Neurological deficit

appeared 24 h after TBI and was completely recovered two weeks after trauma. CB1 recep-

tor expression decreased after TBI and was negatively correlated with edema formation

and behavioral impairments. CB2 receptor increased after injury and was associated with

high neurological deficit whereas no correlation with edema was found. AQP4 increased

after TBI and was positively correlated with edema and neurological impairments as oc-

curred with vimentin expression in the same manner. The results suggest that CB1 and

CB2 differ in the mechanisms to resolve TBI and also that some of their neuroprotective ef-

fects related to the control of reactive astrogliosis may be due to the regulation of AQP4 ex-

pression on the end-feet of astrocytes.

Introduction
Traumatic brain injury (TBI) is the result of a mechanical insult to the brain that produces he-
matoma, hemorrhage, contusion and disruption of the blood brain barrier (BBB), which leads
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to brain edema formation [1]. The incidence of TBI varies with age, presenting an increase dur-
ing adolescence [2]. One of the reasons why TBI rises in adolescence is because during this pe-
riod, growth, freedom feeling and risky behaviors increase [3]. Adolescent rodents also show
elevated levels of novelty seeking [4], impulsivity and risk-taking behavior [5]. The causes for
TBI also vary with age. Among adolescents, the leading cause is motor accidents and falls [2].
This kind of accidents mostly induce close-head injuries that represent a high percentage of
TBI patients (85–89%) [6,7] and their lesions present a high variability, complexity and unpre-
dictable prognosis. Closed-head trauma animal models have been developed to understand the
physiopathology of TBI, which in the case of developing brains such as adolescent brains is still
poorly understood. In the present study, we used the weight-drop model [8] in adolescent male
mice, which induces a controlled closed-head trauma and mimics some symptoms found in
humans such as brain edema, astrogliosis and cognitive deficit [1,9]. Moreover, the majority of
the animal studies on TBI have focused on immediate effects (1 to 24 h) after injury [10–13];
however much less is known about mid- and long-term effects. Here we show the effects of TBI
at different timepoints after injury, including short (24h), early mid-term (72h) and late mid-
term (two weeks).

The endocannabinoid system (ECS) participates in the resolution of brain injuries, decreas-
ing vasoconstriction, gliosis, neuroinflammation and excitotoxicity [14] and plays an essential
role during critical neurodevelopmental periods such as adolescence [15]. The blockage of can-
nabinoid receptors (CB1 and CB2) results in more severe sequelae after TBI [16] and prevents
the anti-gliotic actions of estradiol [17] and the neuroprotective effects of minocycline [16].
Astrogliosis is commonly assessed by changes in vimentin expression which is an intermediate
filament responsible for maintaining astrocyte cell integrity [18]. Vimentin is overexpressed by
astrocytes after central nervous system (CNS) injury or in neurodegenerative diseases [19] and
its levels are a reliable indicator of reactive astrogliosis in the TBI model [20].

Brain edema is one of the hallmarks of TBI [8]. It occurs due to the rupture of BBB [13,21]
and the entrance of water through aquaporin-4 (AQP4) protein, a channel involved in fluid ho-
meostasis which is mainly expressed on the astrocytic end-feet [22–25]. The regulation of brain
edema may be one of the neuroprotective mechanisms elicited by CB1 and CB2 by the downre-
gulation of reactive astrogliosis, since AQP4 is present in these glial cells. In humans, genetic
variations in AQP4 gene influence the functional outcome of TBI [26]. However, the role of
AQP4 in TBI is unclear since AQP4 knockout mice present impairments in the clearance of
vasogenic edema after lesion [27] but are neuroprotected against cytotoxic edema [28]. Fur-
thermore, brain AQP4 silencing in rats improves functional recover after TBI [29].

In this study in the brain of adolescent male mice we have determined the time course of the
changes in the expression of several molecules known to present early modifications after le-
sion (CB1, CB2, AQP4 and vimentin) and we have followed their evolution up to two weeks,
which could be considered as “late mid-term” effects of TBI. A very important input of this
study is the analysis of whether the expression of these molecules correlated with neurological
deficit and brain edema.

Materials and Methods

Animals
All the experiments were performed in Swiss male mice (Harlan, Spain). All the animals sus-
tained TBI protocol at postnatal day (pnd) 35 and then the mice from different groups were
sacrificed at pnd36, pnd 38 and pnd 49 covering pre-, mid- and post- adolescence respectively
[30]. The range of weight varied from 28 (pnd35) to 37 g (pnd49). Animals were housed in a
controlled temperature environment (22 ± 2°C), 12 h light/dark cycle and with free access to
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food and water. Animal care and procedures were approved by our institutional animal use
and care committee (Comité de Experimentación Animal CEA-UCM; 68/2012) and followed
the Spanish regulations (Ley 6/2013, 11th June) and the European Communities Council Direc-
tive (2010/63/EU) on the protection of animals for experimental use.

A total of 37 animals were used and 19 of them sustained TBI, two of them died immediate-
ly after trauma, which meant a mortality rate of 10.53%. Finally, 18 naïve and 17 TBI animals
were included for all the assessments. Animals were sacrificed at 24 h (N = 6), 72 h (N = 5) and
two weeks (N = 6) after traumatic brain injury (TBI), what corresponded to pnd 36, pnd 38
and pnd 49 respectively. Naïve animals where sacrificed at these same times (N = 6 for all the
groups).

Body weight control
Animals were weighted 24 h before being subjected to TBI model and once again immediately
before the sacrifice in order to characterize their general status and well-being. This parameter
is used to describe the severity of the model, taking into account that 5–10% body weight (b.w.)
loss is associated with a moderate lesion, 10–20% b.w. loss is associated with a severe lesion
and more than 20% b.w. loss represents and endpoint criteria (Directive 2010/63/EU).

Traumatic brain injury
TBI mouse model was performed as previously described [16] at pnd 35, corresponding to the
early adolescence period. Prior to the protocol, each animal was randomly assigned to one of
the different groups of the study. Mice were anesthetized with 2% isofluorane (IsoFlo, Esteve)
before being subjected to TBI. Closed-head trauma was induced by a 50 g weight dropped from
a 36 cm height along a stainless steel rod, on the right frontal side of the head. This experimen-
tal paradigm creates a limited contra-coup lesion in the right hemisphere (orbitofrontal cortex
and perirhinal cortex), accompanied with functional deficit and a 5–15% mortality rate within
the first 5 min following the impact [31–33].

Neurological deficit assessment
The functional outcome was assessed 24, 72 hours and two weeks after TBI by a person that
was blind to the experimental groups. This test is a variation of a previous one which consid-
ered 10 essential parameters easy to evaluate, objective in interpretation and independent to
the subjective evaluation of the researcher [34,35]. The test was conducted in an open circular
plastic arena (16 cm height and 30 cm diameter) illuminated 50–50% that contained an exit ap-
erture (2 × 2.5 cm) located in the brighter area. The animal was initially placed in the darker
zone and was allowed to explore freely for 2 min. Table 1 resumes the score marks for this test.

Regarding neurological score test, we split the animals in two groups: High deficit and Low
deficit. We set� 5 as High and� 6 as Low deficit because 5 is the minimum mark animals can
reach even if they do not exit the circle. After this criterion, 11 mice were included in “High
deficit” and 24 in “Low deficit”.

Cerebral edema evaluation
Cerebral edema was evaluated in the left hemisphere, contralateral to the lesion since the right
hemisphere was used for PCR and Western blot analyses. Previous studies have shown that
BBB breakdown is also increased in the contralateral hemisphere at 24 h after lesion and that
water content in the contralateral hemisphere is a reliable indicator of edema formation [36].
Measurement of the brain water content (BWC) was performed as previously described
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[31,33,37]. Briefly, animals were sacrificed at 24 h, 72 h and two weeks after TBI by cervical dis-
location and the brain was gently removed. A region of tissue (75–100 mg) from the left hemi-
sphere (3–0 mm from bregma) was punched-out with a cannula of 5 mm inner diameter and
immediately weighed in order to obtain the wet weight (WW) and heated at 100°C for 24 h.
Then, samples were weighed again to obtain the dry weight (DW). BWC was calculated as fol-
lows: % H2O = [(WW − DW)/ WW] × 100.

Tissue homogenization and RNA and protein extraction
Animals were sacrificed at 24 h, 72h and two weeks after TBI by cervical dislocation and the
brain was gently removed. A region of tissue (75–100 mg) from the right hemisphere (3–0 mm
from bregma), ipsilateral to the lesion, was punched-out with a cannula of 5 mm inner diame-
ter and immediately frozen at -80°C. RNA and protein were obtained by double extraction pro-
tocol with Trizol reagent (TRI Reagent Solution, Ambion) according to the manufacturer’s
instructions. We proceeded to the phase separation, keeping the phenol phase for protein isola-
tion and the aqueous phase for RNA extraction.

Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)
After RNA isolation, first-strand cDNA was prepared from 2 μg RNA using M-MLV reverse
transcriptase (Promega, Madison, WI, USA) according to the manufacturer’s protocol. After
reverse transcription, cDNA was diluted 1:3 for cannabinoid receptor 2 (CB2); 1:8 for cannabi-
noid receptor 1 (CB1); 1:20 for aquaporin-4 (AQP4); 1:100 for vimentin and 1:300 for the
housekeeping gene (18S). 5 μl of these cDNA solutions were amplified by real-time PCR in
15 μl volume reaction using SYBR Green Master Mix (Applied Biosystems, Foster City, CA,
USA) using the ABI Prism 7500 Sequence Detection System (Applied Biosystems) with con-
ventional Applied Biosystems cycling parameters (40 cycles of changing temperatures, first at
95°C for 15 s and then 60°C for a minute). All the primer sequences were designed using Prim-
er Express software (Applied Biosystems) and are shown in Table 2.

Western blot
After protein isolation, the samples were boiled for 5 min. Solubilized proteins (30 μg) were re-
solved by 10% SDS–PAGE at 100 V at room temperature and then transferred to 0.2 μm nitro-
cellulose membranes (Trans-Blot, Bio-Rad) by a semi-dry system 25 V, 1.0 A, 30 min (Trans-

Table 1. Neurological Score test for mice. Circle exit task and physiologic parameters.

Task Description Points

Circle exit Exit the device < 2min. The animal performed risk evaluation behaviors (head-dipping or stretched attend posture). 3 points

Exit the device > 2min. The animal performed risk evaluation behaviors (head-dipping or stretched attend posture). 2 points

Exit the device < 2 min. The animal did not perform risk evaluation behaviors (head-dipping or stretched attend posture). 1 point

No exit. The animal did not perform risk evaluation behaviors (head-dipping or stretched attend posture). 0 points

Parameter Description Yes / No

Alertness Reaction to stimuli, vigilance in the cage. Eyes and ears alert. 1 / 0

Posture Four paws on the cage, normal coat appearance, no pain signs (hunched, piloerection). 1 / 0

Exploration Rearing onto hind legs and sniffing. 1 / 0

Blepharoptosis Falling of the upper or lower eyelid. 0 / 1

Stereotypes Repetitive or maladaptive behaviors. 0 / 1

Based on [33,71].

doi:10.1371/journal.pone.0128782.t001
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Blot Turbo Transfer System, Bio-Rad). The membranes were treated with 5% (w/v) BSA in
TTBS (138 mMNaCl, 25 mM Tris, pH 8.0, and 0.1% (w/v) Tween-20) at room temperature
for 3 h, and then incubated overnight at 4°C with the primary antibody diluted in this same
blocking solution (see Table 3 for the concentrations of the antibodies). Then, membranes
were incubated with the secondary antibody diluted in TTBS for 1.5 h at room temperature.
Antibody reaction was visualized by ECL chemiluminescence (Amersham). Densitometric
analyses were performed by Quantity One Bio-Rad software and data were normalized to β-
actin as protein control and represented as percentage relative to Naïve 24h group.

Statistical Analysis
Data were analyzed using a two-way analysis of variance (ANOVA), with factors being treat-
ment (TBI or naïve) and time (24, 72 hours and two weeks). Data were not always normally
distributed. Therefore, to satisfy the assumption of normality for the ANOVA, we transformed
the data when necessary by the natural logarithm function. If transformed data were not nor-
mally distributed, nonparametric tests were used (Kruskal–Wallis and post hoc pair-wise com-
parisons with Mann–Whitney U-test). When appropriate, two-way ANOVAs were followed
by separate one-way ANOVA split by the independent factors to further analyze the data. Post
hoc comparisons were performed with a level of significance set at p<0.05. For data that were
normally distributed and homoscedastic, we used a standard parametric post hoc test (Bonfer-
roni’s test) and for those that were normally distributed, but nonhomoscedastic, we performed
nonparametric post hoc comparisons (Games–Howell’s test). Student’s t-test was used when
two-group comparison was necessary. Data from all the groups were pooled and Spearman’s
rho was used to identify bivariant correlations followed by linear regression test. Statistical
analyses were carried out with the SPSS 19.0 software package (SPSS, Inc., Chicago, IL, USA).
Data are presented as mean + standard error of the mean (SEM).

Results
In this study we analyzed the time course of the changes in the endocannabinoid system (CB1
and CB2 receptors), BBB proteins (AQP4) and neuroinflammation markers (vimentin) in

Table 2. Primer sequences for quantitative real-time polymerase chain reaction.

Gene Forward primer Reverse primer

CB1 5’-TGCTGGTGCTATGTGTCATCCT-3’ 5’-CAAAGCTGTAGACAAAGATGACACTTC-3’

CB2 5’-TGGTCACCACGCTGAGTGA-3’ 5’-CCGCAGGGCGTAAATGATAG-3’

AQP4 5’-CCTGATGTGGAGCTCAAACGT-3’ 5’-CCACTTGGCTCCGGTTGT-3’

Vimentin 5’-GCTGCAGGCCCAGATTCA-3’ 5’-TTCATACTGCTGGCGCACAT-3’

18S 5’-CGCCGCTAGAGGTGAAATTCT-3’ 5’-CATTCTTGGCAAATGTCTTTCG-3’

doi:10.1371/journal.pone.0128782.t002

Table 3. Primary antibodies and dilutions used for Western Blot analyses.

Primary Antibody Host Dilution Supplier

CB1 receptor Rabbit Polyclonal 1:1000 Frontier Institute CB1-Rb-Af380-1

CB2 receptor Goat Polyclonal 1:1000 Santa Cruz Sc-10076

AQP-4 Rabbit Polyclonal 1:1000 Sigma HPA014784

Vimentin Rabbit Polyclonal 1:1000 Sigma HPA001762

β-actin Mouse Monoclonal 1:4000 Sigma AC-74

doi:10.1371/journal.pone.0128782.t003
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adolescent male mice after TBI. Furthermore, we have analyzed the possible associations of
these molecules with neurological deficit and brain edema.

Posttraumatic survival
Initially, we used a total of 45 males and 20 out of them sustained TBI. Within 5 min following
TBI, adolescent male mice showed a mortality rate of 10.53%. This acute mortality is compara-
ble to previously published percentages with this weight drop model [31,32,38].

Body weight
The percentage of b.w. change after TBI is represented in Fig 1A. Naïve males showed a normal
increase in b.w. with age. TBI resulted in a significant decrease of b.w. at 24 and 72 h compared
to naïve mice although they also showed a progressive b.w. change with age. Two way ANOVA
showed significant effect of treatment [F(1,41) = 57.484] and time [F(2,41) = 63.880] and a sig-
nificant treatment�time interaction [F(2,41) = 6.004]. Post-hoc comparisons revealed a de-
crease of the percentage of b.w. change compared to their controls at 24 h (p<0.0001) and 72 h
(p = 0.004) after TBI. Injured animals at two weeks after trauma significantly differed from
those at 24 h (p<0.0001) and 72 h (p = 0.008) after TBI.

Brain edema
Brain water content is represented in Fig 1B. Brain edema increased at 24 and 72 h after TBI
and recovered to naïve levels by two weeks after lesion. Two way ANOVA showed a significant
effect of treatment [F(1,41) = 13.692] and a significant treatment�time interaction [F(2,41) =
4.750]. Subsequent one way ANOVA split by treatment revealed a significant effect of time in
injured animals [F(2,14) = 7.685]. Post hoc comparisons showed a significant increase in brain
edema at 24 h (p = 0.007) and 72 h (p = 0.030) after TBI.

Fig 1. Effects of TBI on body weight, brain edema and neurological deficit. A) Percentage of b.w.
change at 24 h, 72 h and two weeks after TBI. B) Brain edema. C) Neurological score. D) Brain edema in
animals classified according to neurological score. Data are mean±SEM. * p< 0.05 versus naïve group of
same time; # p<0.05 versus two weeks of same treatment.

doi:10.1371/journal.pone.0128782.g001
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Neurological Score
Neurological score is represented in Fig 1C. Neurological score was reduced at 24 and 72 h
after TBI and recovered to control values by two weeks. Neurological score data were not nor-
mally distributed and therefore data were analyzed using the non-parametric Kruskal-Wallis
test. Data was split by time, revealing that TBI induced a significant decrease in neurological
score at 24 h (p<0.0001) and 72 h (p = 0.001) after lesion that was significantly recovered at
two weeks after trauma.

Brain edema/Neurological Score
Edema data were split in “High/Low” deficit according to the neurological score. “High deficit”
corresponded to low neurological score marks and “Low deficit” to high marks (Fig 1D). Stu-
dent’s t-test revealed that animals with high deficit show higher brain edema values
(p<0.0001).

CB1 receptor
Data for CB1 receptor changes are represented in Fig 2. CB1 mRNA and protein levels were
significantly decreased 24 and 72 h after TBI and recovered to control values by two weeks. Re-
garding mRNA levels (Fig 2A), two way ANOVA revealed a significant effect of treatment [F
(1,29) = 23.258]. One way ANOVA split by time, showed a significant effect of treatment at 24
[F(1,10) = 8.672; p = 0.015] and 72 hours [F(1,9) = 21.973; p = 0.001]. For protein (Fig 2D),
two way ANOVA showed a significant effect of treatment [F(1,27) = 11.172]. One way
ANOVA split by time, revealed a significant effect of treatment at 24 [F(1,9) = 6.862; p = 0.028]
and 72 hours [F(1,8) = 6.672; p = 0.032].

Pearson’s test showed a significant association of brain edema and CB1 mRNA levels
(p = 0.012; r = -0.424) with a negative correlation (r2 = 0.181, n = 34, p = 0.012). For CB1 pro-
tein, Pearson’s test indicated a significant association (p = 0.011; r = -0.444) with a negative
correlation (r2 = 0.169, n = 32, p = 0.017) (Fig 2B and 2E, respectively).

Data for CB1 mRNA and protein levels were split in “High/Low” deficit according to the
neurological score (Fig 2C and 2F). Student-t test showed that animals with higher deficit, pre-
sented lower CB1 mRNA levels (p = 0.032) (Fig 2C). Also for protein, mice with higher deficit
expressed lower CB1 receptor (p = 0.024) (Fig 2F).

CB2 receptor
Data related to CB2 receptor are represented in Fig 3. CB2 mRNA levels increased progressive-
ly after TBI whereas protein levels only increased 24 h after injury. For mRNA levels (Fig 3A),
two way ANOVA showed a significant effect of treatment [F(1,29) = 89.259], time [F(2,29) =
5.763] and a significant treatment�time interaction [F(2,29) = 5.325]. One way ANOVA split
by time, revealed a significant effect of treatment at 24 h [F(1,10) = 8.596; p = 0.015], 72 h [F
(1,9) = 48.329; p<0.0001] and two weeks [F(1,10) = 45.548; p<0.0001]. For proteins (Fig 3D),
two way ANOVA revealed a significant effect of treatment [F(1,29) = 5.319]. Post-hoc analyses
confirmed an increase in CB2 protein expression at 24 h after TBI compared to control values
(p = 0.015).

Spearman’s test did not reveal a significant association of brain edema and CB2 mRNA or
protein levels (Fig 3B and 3E).

Data for CB2 mRNA and protein levels were split in “High/Low” deficit according to the
neurological score (Fig 3C and 3F,). Student’s t-test revealed that mice with high neurological
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deficit expressed high CB2 mRNA levels (p = 0.013) and high protein expression (p = 0.011)
(Fig 3C and 3F, respectively).

Aquaporin-4
Results for AQP4 are represented in Fig 4. AQP4 mRNA levels were significantly increased 24
h after whereas protein expression increased at 24 h and 72 h after injury.

For mRNA levels (Fig 4A), one way ANOVA split by time, revealed a significant effect of
treatment at 24 h after lesion [F(1,10) = 6.332; p = 0.031]. In protein (Fig 4D), two way
ANOVA showed a significant effect of the treatment [F(1,25) = 13.894]. One way ANOVA
split by time, revealed a significant effect of treatment 24 h [F(1,10) = 5.752; p = 0.037] and 72
h [F(1,9) = 14.579; p = 0.004] after TBI.

Pearson’s test revealed a significant association of brain edema and AQP4 mRNA levels
(p<0.0001; r = 0.572) with a positive correlation (r2 = 0.326, n = 34, p = 0.0004). For protein,

Fig 2. Effects of TBI on CB1mRNA and protein levels. A) CB1mRNA levels. B) Analysis of correlation between brain edema and CB1mRNA levels. C)
CB1 mRNA levels in animals classified according to neurological score. D) CB1 protein levels. E) Analysis of correlation between brain edema and CB1
protein levels. F) CB1 protein levels in animals classified according to neurological score. Data are mean±SEM. * p< 0.05 versus naïve group of same time.

doi:10.1371/journal.pone.0128782.g002
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Spearman’s test showed a high trend of association (p = 0.053) for this same positive correla-
tion (Fig 4B and 4E, respectively).

Student’s t-test showed that animals with higher neurological deficit showed higher AQP4
protein levels (p = 0.010) (Fig 4F), but no significant difference in AQP4 mRNA levels was
found (Fig 4C).

Vimentin
Vimentin results are represented in Fig 5. Vimentin mRNA and protein levels increased 24 h
and 72 h after TBI and recovered to control values by two weeks. In mRNA levels (Fig 5A), two
way ANOVA revealed a significant effect of the treatment [F(1,29) = 55.141], time [F(2,29) =
4.346] as well as a significant treatment�time interaction [F(2,29) = 15.053]. Post-hoc compari-
sons showed a significant increase in vimentin mRNA levels at 24 h (p<0.0001) and 72 h
(p<0.0001) after TBI that was significantly recovered by two weeks after injury (p = 0.007 and
p<0.0001 for 24 and 72 h respectively). In the case of proteins, two way ANOVA showed a

Fig 3. Effects of TBI on CB2mRNA and protein levels. A) CB2mRNA levels. B) Analysis of correlation between brain edema and CB2mRNA levels. C)
CB2 mRNA levels in animals classified according to neurological score. D) CB2 protein levels. E) Analysis of correlation between brain edema and CB2
protein levels. F) CB2 protein levels in animals classified according to neurological score. Data are mean±SEM. * p< 0.05 versus naïve group of same time; #
p<0.05 versus two weeks of same treatment.

doi:10.1371/journal.pone.0128782.g003
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significant effect of treatment [F(1,27) = 15.863]. One way ANOVA split by time revealed a sig-
nificant effect of treatment in the levels of vimentin at 24 h [F(1,8) = 7.827; p = 0.023] and 72 h
[F(1,9) = 7.407; p = 0.024].

Spearman’s test revealed a significant association of brain edema with vimentin mRNA lev-
els (p<0.0001; r = 0.760) with a positive correlation (r2 = 0.362, n = 34, p = 0.0002). For pro-
tein, Spearman’s test showed a significant association (p = 0.045; r = 0.357) with a positive
correlation (r2 = 0.179, n = 32, p = 0.0156) (Fig 5B and 5E, respectively).

Student’s t-test showed that vimentin mRNA (p<0.0001) and protein (p = 0.003) levels
were higher in animals with high neurological deficit (Fig 5C and 5F, respectively).

Discussion
In this study we have analyzed the possible contribution of the changes of the endocannabinoid
system (CB1 and CB2 receptors), BBB proteins (AQP4) and neuroinflammation markers
(vimentin) to neurological deficit and brain edema after TBI in adolescent male mice. Previous

Fig 4. Effects of TBI on AQP4mRNA and protein levels. A) AQP4mRNA levels. B) Analysis of correlation between brain edema and AQP4 mRNA levels.
C) AQP4mRNA levels in animals classified according to neurological score. D) AQP4 protein levels. E) Analysis of correlation between brain edema and
AQP4 protein levels. F) AQP4 protein levels in animals classified according to neurological score. Data are mean±SEM. * p< 0.05 versus naïve group of
same time.

doi:10.1371/journal.pone.0128782.g004
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studies have shown that the expression of these molecules is altered shortly after TBI
[16,27,39–41]. Our present findings suggest that these changes influence the functional recov-
ery after injury.

The pathophysiology of TBI is very variable and complex and it is poorly understood in crit-
ical neurodevelopmental periods such as adolescence. The experimental models used to study
the impact of TBI at this age have used cortical ablation [42], scaled cortical impact [43] or ex-
posed the dura [44]; however, the highest percentage of TBI patients present close-head trauma
injuries [6,7] and so, close-head trauma models such as weight drop model are closer to the
clinical reality.

In our hands, weight-drop model generated a moderate lesion characterized by a b.w. loss
varying from 10–14% and a mortality rate of 10.53%. Brain edema, one of the hallmarks of TBI
caused by the disruption of BBB [1], increased 24 and 72 h after TBI and disappeared two
weeks after lesion which agrees with previous studies showing that brain edema increases up to
five days after lesion [10] and completely disappears after two weeks [45].

Fig 5. Effects of TBI on vimentin mRNA and protein levels. A) Vimentin mRNA levels. B) Analysis of correlation between brain edema and vimentin
mRNA levels. C) Vimentin mRNA levels in animals classified according to neurological score. D) Vimentin protein levels. E) Analysis of correlation between
brain edema and vimentin protein levels. F) Vimentin protein levels in animals classified according to neurological score. Data are mean±SEM. * p< 0.05
versus naïve group of same time; # p<0.05 versus two weeks of same treatment.

doi:10.1371/journal.pone.0128782.g005
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In humans, TBI induces impulsive behavior [46] and deficit in spatial learning and memory
[47]. As we have previously described in mice, TBI causes neurological impairments 24 h after
lesion [16]. Here we confirm this previous result and also show that deficit lasted up to 72 h
after TBI and disappeared two weeks after trauma. Neurological impairments were associated
with high levels of brain edema which is in line with previous studies showing that behavioral
alterations correlate with cell damage that in turn is directly related to brain edema [47]. Fur-
thermore, studies with patients suffering from subarachnoid hemorrhage accompanied by
brain swelling found that edema is consistently associated with cognitive impairments, affect-
ing four of the eight cognition domains analyzed [48].

The ECS participates in TBI sequelae decreasing harmful pathways and promoting the reso-
lution of the injury through CB1 and CB2 receptors [14]. CB1 receptor levels decreased after le-
sion. This decrease could exacerbate the neurological deficit, since animals with high
neurological impairments showed lower CB1 levels. In agreement with this observation, CB1
KO mice [49] and animals treated with a CB1 receptor antagonist [16] showed an impaired re-
covery after trauma that affected edema and neurological score. This finding is related to the
key role of CB1 receptor in anxiety and depression-like behaviors [50] and emotional homeo-
stasis [51] which would also affect the neurological score test performance. CB1 expression
presented a negative correlation with brain edema. Since CB1 is located in the end-foot of as-
trocytes [52], which are the principal glial cells that control ion exchange [53] and modulate ce-
rebral blood flow [54], a lower expression of CB1 could affect the ionic balance and may lead to
altered brain edema formation and resolution. Moreover, previous studies [55,56] with endo-
thelium derived from human brain capillaries and microvessels demonstrated that one of the
endogenous agonists of CB1 receptor, 2-arachydonoil glycerol (2-AG), inhibits some of the ef-
fects of endothelin-1 (ET-1). ET-1 is a potent vasoconstrictor that regulates the responses of
brain capillaries and microvessels [55,56] and controls the rearrangement of cytoskeleton
(actin and vimentin filaments). The use of selective antagonists of CB1 prevented the effects of
2-AG on ET-1, suggesting that the vasorelaxant function of 2-AG is mediated by CB1 receptor
and involves the control of endothelial molecules such as ET-1. As the endothelium plays a key
role in the control of vasculature tone and blood flow, which is directly related to edema forma-
tion and resolution [1], this suggests that the control of edema through CB1 receptor is also re-
lated to the endothelial factor ET-1.

In physiological conditions, CB2 is expressed at very low levels, predominantly in non-
neuronal cells [14], although it is also present in neural progenitors, neurons and endothelial
cells [57,58]. However, CB2 expression increases under neuroinflammation [59] as observed in
our TBI model. High CB2 levels were associated to high neurological impairments, perhaps
triggered as a rescue mechanism to reduce brain damage since its pharmacological blockage
worsens behavioral deficit after TBI [16]. Moreover, CB2 is commonly related to neuroprotec-
tive effects like BBB repair [60] or microglia activation [61] and CB2 agonists induce a better
recovery after lesion in behavioral tests [62]. No correlation was found between CB2 and
edema, possibly because after TBI this receptor is more expressed in microglia than in astro-
cytes [59], the principal glial cells involved in edema control. CB1 and CB2 receptors frequently
present divergent changes in expression under pathological conditions. For example CB1 re-
ceptor expression is decreased, while CB2 expression is increased in glioblastoma multiforme
tissue, even if both receptors present the same GTPase activity [63]. We have also demonstrat-
ed that the pharmacological blockage of CB2 is more potent than the blockage of CB1 in de-
creasing the protective actions of estradiol [17] or minocycline [16] in brain lesions. Here we
show that CB1 expression decreased and CB2 expression increased after TBI. CB1 receptor is
mainly expressed in astrocytes and neurons whereas CB2 is mostly present in microglia cells
[59]. Therefore, the decrease in CB1 levels could be the result of the neuronal loss caused by
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TBI, while the increase in CB2 levels could be associated with the increased microglia activation
and proliferation.

AQP4 changes during CNS injury depend on the type of edema generated [27]. Weight-
drop models predominantly induce vasogenic edema [64,65], whose resolution is AQP4-
dependent [28]. After TBI, AQP4 levels increased up to 72 h after lesion in the case of protein
expression, supporting previous studies with weight-drop models [66]. High AQP4 levels were
associated with high neurological deficit and presented a positive correlation with brain edema.
This suggests that increased AQP4 expression after TBI contributes to increase brain edema,
which in turn correlated with neurological impairments. Also, this leads to the study of new ap-
proaches to reduce the cognitive and behavioral impairments after TBI by controlling the ex-
pression or modulating the activity of AQP4.

After CNS injury astrocytes overexpress vimentin [19] and together with GFAP, is one of
the greatest increases in gene expression experimented at 24 h after brain lesion [41]; here we
show that this increase is maintained up to 72 h after injury. Elevated levels of vimentin were
associated with high neurological deficit and brain edema. There is a tight relation between
neuroinflammation and behavior. Animals experiencing immune activation present what is
known as “sickness behavior” [67], characterized by reduced food intake and activity or in-
creased sleep [68]. Regarding edema, high vimentin levels could regulate AQP4 mobility and
localization, which controls brain water balance [69]. High levels of vimentin probably reflect
an increased astrogliosis and consequently, more hypertrophic astrocytes expressing high
AQP4 mRNA after the disruption of BBB [70]. The control of AQP4 mobility and location in
reactive astrocytes could be an explanation for the antiedematous action of minocycline, a
microglia activation inhibitor [31] that secondarily results in the inhibition of reactive
astrogliosis.

In summary, our findings indicate that there is a correlation between brain edema and neu-
rological deficit after TBI in adolescent male mice. The negative correlation of CB1 with brain
edema and the fact that animals with high neurological deficit showed reduced CB1 expression
suggest that this receptor plays a crucial role in the recovery after TBI by the regulation of
brain edema. In contrast, our findings showing that high CB2 expression was associated to
high neurological impairments and the absence of correlation with edema suggest that CB2 has
a different function than CB1 after TBI; possibly the expression of CB2 increases as a compen-
satory or rescue mechanism whereas CB1 expression is decreased possibly due to neuronal
loss. The regulation of astrogliosis and AQP4 seems to be critical for the outcome of TBI as
well. Thus, higher expression of AQP4 and vimentin were associated with high neurological
deficit and showed a positive correlation with brain edema. These findings suggest that the re-
ported role of CB1 after CNS injury in the control of astrogliosis, assessed by vimentin expres-
sion [17], may contribute to CB1-mediated neuroprotection by the regulation of AQP4 levels
in reactive astrocytes.
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