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Abstract
Lung cancer causes over one million deaths every year worldwide. However, prevention

and treatment methods for this serious disease are limited. The identification of new chemi-

cals related to lung cancer may aid in disease prevention and the design of more effective

treatments. This study employed a weighted network, constructed using chemical-chemical

interaction information, to identify new chemicals related to two types of lung cancer: non-

small lung cancer and small-cell lung cancer. Then, a randomization test as well as chemi-

cal-chemical interaction and chemical structure information were utilized to make further se-

lections. A final analysis of these new chemicals in the context of the current literature

indicates that several chemicals are strongly linked to lung cancer.

Introduction
With more than one million cases per year worldwide, lung cancer causes significantly more
mortalities than do other cancers [1]. Furthermore, due to delayed diagnosis, the overall 5-year
survival rate remains at only 15% [2]. Based primarily on histological considerations, lung can-
cer can be categorized as either non-small lung cancer (NSCLC) or small-cell lung cancer
(SCLC), with the former accounting for approximately 85% of cases. The NSCLCs are divided
into three subtypes: adenocarcinoma, squamous-cell carcinoma and large-cell carcinoma. The
first two subtypes comprise 90% of NSCLC cases [3,4].

There are various molecules that participate in tumorigenesis and treatment, most of which
function by affecting the driver mutation genes. Additionally, some exotic or synthetic mole-
cules have been used as effective drugs in chemotherapy. The standard platinum doublet che-
motherapeutic has been used to effectively treat NSCLC [2]. It has been observed that
epidermal growth factor receptor (EGFR) mutations are associated with approximately 15% of
NSCLC patients, and administration of gefitinib, a selective chemotherapeutic agent targeted at
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EGFR, led to longer patient survival [5,6,7,8]. In the second-line treatment for SCLC, adminis-
tration of topotecan, a camptothecin-based drug, improved the survival of patients from 14 to
26 weeks [9,10]. HER2, also known as ERBB2 (erb-b2 receptor tyrosine kinase 2), is a receptor
tyrosine kinase, which is overexpressed in more than 20% of NSCLCs and mutated in approxi-
mately 2% of NSCLCs [11,12,13,14]. In clinical trials, BIBW 2992 was assessed for NSCLC
treatment and was shown to be effective for patients with lung adenocarcinoma [15]. PIK3CA,
a member of the phosphatidylinositol 3-kinases, is a key mediator between growth factor re-
ceptors and the downstream signaling network [16]. Mutations in PIK3CA have been identi-
fied in approximately 2% of NSCLC cases, with particular enrichment at exon 9 [17,18,19]. In
mice, BEZ235, a small molecule inhibitor, inhibited the growth of tumor cells by targeting
PI3K and the mTOR protein and is being used in early clinical development [20].

In addition to the molecules involved in chemotherapy, many substances contribute to the
complex process of carcinogenesis. At various stages, ion channels play key roles in tumorigen-
esis and lung cancer pathology. Ca2+ channels are associated with the pro-proliferative action
of mitogen in lung cancer cell lines [21]. Increased expression has also been observed in Na+

and K+ channels in lung tumors [22,23]. However, the detailed mechanism is still unclear. Mg2
+ is an important part of many essential enzymes involved in lung carcinogenesis such as
TSLL2, which participates in cell adhesion [24]. Oxygen and oxidative stress function as mes-
sengers and regulators of cell proliferation, apoptosis and survival. DNA damage, including
single/double-stranded DNA breaks and purine/pyrimidine modifications, are induced by re-
active oxygen species (ROS). The lung is the major organ affected by environmental pollutants
and endogenous ROSs. Chronic inflammation and activation of leucocytes, which generate
high-dosage ROS and affect normal cell density, are induced by cigarette exposure [25,26]. Ad-
ditionally, many other hazardous materials, including asbestos, arsenic and polycyclic aromatic
carbohydrates, were identified as potential pathogenic factors in lung cancer [27].

Although some chemicals have a proven association with lung cancer, this knowledge is still
limited compared with the quantity of newly discovered chemicals. Discovery of new chemicals
that may influence the function of lung cancer is helpful to decrease the incidence of this dis-
ease and to design effective treatments. However, it is time-consuming and expensive to use
traditional methods to detect new chemicals related to lung cancer because there are too many
candidate chemicals to allow for a detailed analysis. Fortunately, the development of computer
science provided an alternative screening method by introducing effective computational
methods. Given the successful application of computer science to tackle various biological
problems in many previous studies [28,29,30,31,32,33,34,35,36,37,38], we anticipate effective
computational methods for the discovery of new candidate chemicals related to lung cancer.

Recently, Li et al. [39] proposed a computational method to identify new candidate genes in
a protein-protein interaction network. This method can be easily generalized to identify candi-
date chemicals. In this study, the generalized method was applied to study two types of lung
cancer: NSCLC and SCLC. We constructed a weighted network according to chemical-chemi-
cal interaction information retrieved from STITCH (Search Tool for Interactions of Chemi-
cals) (latest version 4.0) [40,41]. To detect new chemicals related to lung cancer, we employed
the known lung cancer-related chemicals retrieved from the CTD (Comparative Toxicoge-
nomics Database) [42]. By applying a shortest path algorithm in the constructed network, we
searched all shortest paths connecting any two known chemicals related to lung cancer. Chemi-
cals occurring in any path were deemed candidate chemicals. Furthermore, a randomization
test was executed to control false discoveries, and the interaction score provided in STITCH
and compound similarity scores were employed to further screen chemicals that have strong
links to lung cancer. Finally, we analyzed the relationship between the candidate chemicals and
the two types of lung cancer. Interestingly, most of the candidate chemicals are potential
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chemotherapy drugs. The identification of multiple relevant molecules will improve the under-
standing and treatment of lung cancer.

Materials and Methods

2.1 Chemicals related to lung cancer
The NSCLC and SCLC-related chemicals were downloaded from the CTD (accessed on June
19, 2014) [42] at the web sites http://ctdbase.org/detail.go?type = disease&acc=MESH:
D055752&view = chem and http://ctdbase.org/detail.go?type = disease&acc=MESH:
D002289&view = chem, respectively. In the CTD, the disease and chemical relationships were
manually extracted from the literature. We only used chemicals with direct evidence of an asso-
ciation with NSCLC or SCLC, such as a marker, mechanism or therapeutic. After excluding
chemicals without a record in the constructed network (see Section 2.2), 16 NSCLC-related
chemicals and 13 SCLC-related chemicals were obtained (listed in Table 1). For convenience,
let SNSCLC and SSCLC be sets consisting of 16 NSCLC-related chemicals and 13 SCLC-related
chemicals, respectively.

2.2 Construction of the weighted network
Some studies have shown that interactive chemicals (i.e., chemicals that can interact with each
other) always share similar functions [29,31,43]. It is tempting to infer that known chemicals
related to lung cancer have some common lung cancer-related functions. Thus, the interactive
chemical of these chemicals also likely shares these functions. To investigate this possibility, we
constructed a weighted network from chemical-chemical interactions data. These data were
downloaded from STITCH (version 4.0, http://stitch.embl.de/) [40,41], a large scale database
consisting of known and predicted interactions of chemicals and proteins, which are derived
from experiments, databases and the literature. In the obtained file (chemical_chemical.links.
v4.0.tsv.gz), each interaction contains two chemicals and one score that were obtained by

Table 1. Chemicals related to two types of lung cancer.

NSCLC SCLC

PubChem ID Name PubChem ID Name

CID2141 Amifostine CID2907 Cyclophosphamide

CID2244 Aspirin CID3690 Ifosfamide

CID3117 Disulfiram CID3950 Lomustine

CID3121 Valproate CID4168 Metoclopramide

CID3385 Fluorouracil CID5426 Thalidomide

CID3690 Ifosfamide CID5978 Indole Alkaloid

CID5426 Thalidomide CID31703 Doxorubicin

CID5746 Mitomycin C CID36462 Etoposide

CID36462 Etoposide CID41867 Epirubicin

CID41867 Epirubicin CID89594 Nicotine

CID72120 Nedaplatin CID126941 Methotrexate

CID89594 Nicotine CID5351344 Combretastatin A-4

CID91466 Matrine CID5359596 Arsenic

CID126941 Methotrexate

CID441207 Digitoxin

CID5282379 Isotretinoin

doi:10.1371/journal.pone.0128696.t001
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integrating various information, including structures, activities, reactions, etc., thereby widely
noting the associations between chemicals. In the calculations, the score of the interaction be-
tween the chemicals c1 and c2 is noted as Si(c1, c2). In particular, if the chemicals c1 and c2 do
not occur as an interaction in the obtained file (chemical_chemical.links.v4.0.tsv.gz), Si(c1, c2)
is set as zero. Additionally, to reduce the search space, we only considered the interactions be-
tween chemicals that have records in KEGG [44].

The constructed network interpreted chemicals as nodes. Two nodes were connected by an
edge if and only if the corresponding chemicals interacted. Additionally, to utilize the fact men-
tioned in the above paragraph and using the shortest path algorithm to identify new candidate
chemicals, each edge was assigned a weight defined by 1000- Si(c1, c2), where c1 and c2 were
two corresponding chemicals of the endpoints of the edge.

2.3 Method used to identify new candidate chemicals
As mentioned in Section 2.2, interactive chemicals may share common functions. Specifically, in-
teractive chemicals with high scores have a higher likelihood of sharing common functions than
those with low scores. In view of this, in the constructed network in Section 2.2, chemicals occur-
ring on the shortest path connecting two known lung cancer-related chemicals may have some
functions shared by the known chemicals. Thus, we used Dijkstra’s algorithm [45], implemented
in a graph theory software package of Maple 14 (http://www.maplesoft.com/), to search all the
shortest paths connecting any pair of known chemicals related to lung cancer and collected all
chemicals occurring in at least one path as inner nodes. These newly discovered chemicals were
termed candidate chemicals. Additionally, we counted the number of paths containing each can-
didate chemical as an inner node and defined this value as betweenness. In fact, betweenness in-
dicates the direct and indirect relationship of the candidate chemicals and known chemicals [46].

Furthermore, some chemicals may have a special position in the constructed network (i.e.,
these chemicals may always occur and receive high betweenness), even if we randomly selected
some chemicals to search shortest paths connecting any pair of them. However, these chemi-
cals have weak associations with lung cancer. To exclude this class of chemicals, a randomiza-
tion test was executed as follows. We randomly constructed 500 chemical sets that had sizes
equal to that of the set consisting of known chemicals. Then, for each set, all the shortest paths
connecting any pair of chemicals in the set were found, and the betweenness of each candidate
chemical was determined. Finally, we calculated the permutation FDR of each candidate chem-
ical, which was defined as “the number of chemical sets in which the betweenness was higher
than that for the known chemical set”/500. In fact, the permutation FDR can further measure
the associations between candidate chemicals and lung cancer. Specifically, low permutation
FDR of a candidate chemical indicates that its betweenness for the known chemical set is
higher than or equal to those for the most randomly constructed chemical sets and implies that
this candidate chemical is specific to lung cancer. High permutation FDR of a candidate chemi-
cal indicates that its betweenness for the known chemical set is smaller than those of the most
randomly constructed chemical sets, suggesting that this candidate chemical is the general hub
of the constructed network and not specific to lung cancer. Therefore, we selected candidate
chemicals with permutation FDRs less than 0.05, which is often used as the cutoff of traditional
significance level of the test.

2.4 Further selection by linking the candidate and lung cancer related
chemicals
After executing the method mentioned in Section 2.3, some candidate chemicals for NSCLC
and SCLC were extracted from the network constructed in Section 2.2. In this section, a further
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method was given to measure the relationship between each candidate chemical and lung can-
cer, thereby selecting candidate chemicals that have core associations with lung cancer. As
mentioned above, interactive chemicals may share common functions [29,31,43]. However,
chemicals with similar structures always have similar functions [47]. Therefore, we measured
the associations between candidate chemicals and lung cancer based on the following two
points: (1) chemical-chemical interactions between candidate chemicals and lung cancer-relat-
ed chemicals; (2) chemical structure similarities between candidate chemicals and lung cancer-
related chemicals.

For a candidate chemical c of NSCLC or SCLC, its maximum interaction score can be com-
puted by:

Qi
NSCLCðcÞ ¼ maxfSiðc; c0Þjc0 2 SNSCLCg ð1Þ

Qi
SCLCðcÞ ¼ maxfSiðc; c0Þjc0 2 SSCLCg ð2Þ

It can be observed that high Qi
NSCLCðcÞ or high Qi

SCLCðcÞ indicates that the candidate chemical c
is an interactive chemical of a NSCLC-related chemical or SCLC-related chemical with a high
score, implying the candidate chemical c is closely related to NSCLC or SCLC. Here, we select-
ed 900 as a threshold (i.e., candidate chemicals with maximum interaction score higher than or
equal to 900 were selected) because 900 is set to be the threshold of the highest confidence level
in STITCH.

Moreover, we also measured the relationships between candidate chemicals and lung cancer
according to their structures. SMILES (Simplified Molecular Input Line Entry System) [48] is
one of the most well-known chemical representation systems. Based on this type of representa-
tion and a particular fingerprint, a similarity score can be calculated to measure the structure
similarity of two chemicals, which is given by Tanimoto coefficient (Tc) [49], in which chemi-
cals that are identical have a Tc of 1.0, and compounds that are dissimilar have a Tc of 0. Here,
FP2 fingerprint and Open Babel 2.3.2 [50] was used for pairwise Tc calculation. For formula-
tion, let Ss(c1, c2) be the similarity score of chemicals c1 and c2. Then, similar to Eqs 1 and 2, the
maximum similarity score of a candidate chemical c of NSCLC or SCLC was calculated by

Qs
NSCLCðcÞ ¼ maxfSsðc; c0Þjc0 2 SNSCLCg ð3Þ

Qs
SCLCðcÞ ¼ maxfSsðc; c0Þjc0 2 SSCLCg ð4Þ

Similarly, high Qs
NSCLCðcÞ or high Qs

SCLCðcÞ indicates a close relationship between c and NSCLC
or SCLC. Here, we selected 0.4 as a threshold (i.e., candidate chemicals with maximum similar-
ity score higher than or equal to 0.4 were selected) because this value typically indicates that
two chemical compounds share similar core substructures. Additionally, a Tc cutoff of 0.35–
0.45 has also been frequently used for scaffold hopping and hit identification in computational
drug design studies [51].

In summary, the candidate chemicals obtained by the method mentioned in Section 2.3
were further filtered by selecting chemicals with maximum interaction scores greater than or
equal to 900 or maximum similarity scores greater than or equal to 0.4. The remaining candi-
date chemicals are deemed to have strong associations with lung cancer and termed significant
candidate chemicals.
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Results and Discussion

3.1 Candidate chemicals for NSCLC and SCLC
For NSCLC, we examined the shortest paths connecting any pair of the 16 known NSCLC-re-
lated chemicals. We obtained 120 shortest paths (see S1 Table for details), which are illustrated
in Fig 1. It can be seen from Fig 1 that 23 other chemicals were involved in these paths beyond
the 16 NSCLC-related chemicals. These 23 chemicals were selected as candidate chemicals for
NSCLC, which are listed Table 2. To exclude false discoveries, a randomization test was execut-
ed by calculating the permutation FDR for each candidate chemical, which is listed in column
5 of Table 2. We selected 0.05 as the threshold (i.e., only chemicals with permutation FDRs
smaller than 0.05 were considered), thereby excluding three chemicals (see chemicals labeled
with ‘c’ in Table 2): oxygen, adenosine triphosphate, hydroxyl radicals, and obtaining 20 candi-
date chemicals for NSCLC (see the first 20 chemicals in Table 2).

Fig 1. 120 shortest paths connecting 16 NSCLC-related chemicals, which were obtained by applying Dijkstra’s algorithm in the constructed
network. Yellow rectangles represent 16 NSCLC-related chemicals, and red rectangles represent 23 other chemicals involved in these 120 shortest paths.
Numbers on edges represent edge weights in the network.

doi:10.1371/journal.pone.0128696.g001
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Following the same procedures, 78 shortest paths (see S2 Table for details) connecting any
pair of 13 known SCLC-related chemicals were obtained in the weighted network, which are il-
lustrated in Fig 2. A total of 22 other chemicals were also involved in one of these paths beyond
the 13 SCLC-related chemicals; these 22 chemicals were selected as candidate chemicals for
SCLC. These candidate chemicals are listed in Table 3. Similarly, these candidate chemicals
were filtered by a randomization test, thereby calculating the permutation FDR for each candi-
date chemical, which is listed in in column 5 of Table 3. Similar to NSCLC, we also selected
0.05 as the threshold. Thus, five chemicals (see chemicals labeled with ‘c’ in Table 3): magne-
sium, zinc, calcium, glycerol, adenosine triphosphate were excluded, and 17 candidate chemi-
cals remained (see the first 17 chemicals in Table 3).

3.2 Significant candidate chemicals for NSCLC and SCLC
According to the procedures described in Section 2.4, for each of 20 candidate chemicals of
NSCLC, we calculated the maximum interaction score (cf. Eq 1) and maximum similarity

Table 2. Detailed information of 23 candidate chemicals for NSCLC.

Row
number

PubChem
ID

Name Betweenness Permutation
FDR

Maximum
interaction score

Maximum
similarity score

Supporting
reference

1 CID1174 a Uracil 34 <0.002 993 0.333 [52]

2 CID888 a Magnesium Ion 32 0.004 917 0 [53]

3 CID271 a Calcium Ion 36 0.008 975 0 [54,55]

4 CID444795 Tretinoin 14 <0.002 824 1 —

5 CID23994 Zinc 44 <0.002 940 0 —

6 CID643975 Flavin-Adenine
Dinucleotide

2 0.032 900 0.102 —

7 CID439501 Ouabain 15 <0.002 549 0.449 —

8 CID2724385 Digoxin 15 <0.002 711 0.808 —

9 CID65063 2'-Deoxyuridylic Acid 14 0.006 959 0.138 —

10 CID753 Glycerol 28 0.036 925 0.167 —

11 CID597 b Cytosine 32 <0.002 762 0.182 —

12 CID2353 b Berberine 15 <0.002 295 0.179 —

13 CID2907 b Cyclophosphamide 22 <0.002 866 0.283 —

14 CID28486 b Lithium Ion 12 0.002 820 0 —

15 CID30323 b Daunorubicin 13 0.002 897 0.855 —

16 CID5743 b Dexamethasone 12 0.004 773 0.196 —

17 CID5789 b Thymidine 1 0.004 808 0.15 —

18 CID98792 b Dihydrofolate 5 0.01 844 0.352 —

19 CID9700 b Thymidine
Monophosphate

5 0.036 724 0.141 —

20 CID1775 b Phenytoin 3 0.044 862 0.205 —

21 CID977 c Oxygen 34 0.142 — — —

22 CID5957 c Adenosine
Triphosphate

27 0.17 — — —

23 CID961 c Hydroxyl Radicals 15 0.198 — — —

a: These chemicals were reported to be related to NSCLC in previous studies.

b: These chemicals were excluded by further selection because their maximum interaction scores were smaller than 900 and their maximum similarity

scores were smaller than 0.4.

c: These chemicals were excluded by a randomization test because their permutation FDRs were equal to or larger than 0.05.

doi:10.1371/journal.pone.0128696.t002
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score (cf. Eq 3); these values are listed in column 6 and 7 of Table 2, respectively. After check-
ing these scores, ten candidate chemicals (see chemicals labeled with ‘b’ in Table 2) were ex-
cluded because their maximum interaction scores were smaller than 900 and maximum
similarity scores were smaller than 0.4. Ten candidate chemicals remained (see the first ten
chemicals in Table 2), which were deemed to be highly related to NSCLC, and these com-
pounds were termed significant candidate chemicals for NSCLC.

For SCLC, the maximum interaction score and maximum similarity score of each candidate
chemical were calculated by Eq 2 and Eq 4, respectively. These scores are listed in column 6
and 7 of Table 3, respectively. Six candidate chemicals received maximum interaction scores
greater than or equal to 900 or maximum similarity scores greater than or equal to 0.4, and
eleven chemicals (see chemicals labeled with ‘b’ in Table 3) were excluded. The remaining six
candidate chemicals were deemed to have strong associations with SCLC and termed signifi-
cant candidate chemicals for SCLC.

3.3 Analysis of significant candidate chemicals for NSCLC
In this study, we identified ten new candidate chemicals related to NSCLC (see the first ten
chemicals in Table 2). Of these ten candidate chemicals, three chemicals: uracil, magnesium
ion, calcium ion (see the first three chemicals in Table 2) have been reported to be related to
NSCLC in some previous studies [52,53,54,55]. For the remaining seven candidate chemicals,
five were found to have associations with NSCLC according to their currently known functions

Fig 2. 78 shortest paths connecting 13 SCLC-related chemicals, which were obtained by applying Dijkstra’s algorithm in the constructed network.
Yellow rectangles represent 13 NSCLC-related chemicals, and red rectangles represent 22 other chemicals involved in these 78 shortest paths. Numbers on
edges represent edge weights in the network.

doi:10.1371/journal.pone.0128696.g002
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(listed in rows 4–8 of Table 2). The following paragraphs provide a detailed discussion of the
associations between these chemicals and NSCLC.

Tretinoin. This chemical was identified as a significant candidate chemical for NSCLC
(see row 4 of Table 2). Tretinoin, or all-trans-retinoic acid (ATRA), is derived from vitamin A
and plays an important role in the regulation of gene expression. It has been widely used in the
treatment of acute promyelocytic leukemia (APL) because ATRA inhibits the growth of myelo-
ma cells by restraining both interleukin 6 (IL-6) and its receptor (IL-6R) [56,57]. Moreover, it
was recently reported that the proliferation of lung fibroblasts induced by irradiation is inhib-
ited by ATRA, also through the suppression of the cytokines IL-6 and IL-6R [58]. TGF-β and
PDGF are also potential targets of ATRA [59]. There have been attempts to use ATRA as a che-
motherapeutic for the treatment of lung cancer [60,61]. However, the effects of ATRA on tu-
morigenesis are complex. In A549 cells, a human lung adenocarcinoma cell line, ATRA
upregulates the expression of VEGF, which gives rise to angiogenesis and cancer growth

Table 3. Detailed information of 22 candidate chemicals for SCLC.

Row
number

PubChem
ID

Name Betweenness Permutation
FDR

Maximum
interaction score

Maximum
similarity score

Supporting
reference

1 CID977 a Oxygen 34 0.024 959 0.034 [85,86]

2 CID30323 Daunorubicin 11 0.004 930 0.855 —

3 CID5865 Prednisone 1 <0.002 903 0.170 —

4 CID8947 Monomethylarsonic
Acid

12 <0.002 936 0.042 —

5 CID1567 Mercaptoethanol 1 0.004 921 0.039 —

6 CID65063 2'-Deoxyuridylic acid 11 0.004 959 0.138 —

7 CID2513 b Cacodylic Acid 12 <0.002 659 0.057 —

8 CID4915 b Procarbazine 1 <0.002 864 0.219 —

9 CID6167 b Colchicine 12 <0.002 716 0.176 —

10 CID124886
b

Glutathione 12 <0.002 0 0.188 —

11 CID6830 b Guanosine
Triphosphate

12 0.002 327 0.112 —

12 CID681 b Dopamine 12 0.01 802 0.163 —

13 CID5743 b Dexamethasone 8 0.01 773 0.196 —

14 CID98792 b Dihydrofolate 3 0.02 844 0.352 —

15 CID23925 b Iron 16 0.024 542 0 —

16 CID9700 b Thymidine
Monophosphate

3 0.032 724 0.135 —

17 CID643975
b

Flavin-Adenine
Dinucleotide

1 0.034 0 0.096 —

18 CID888 c Magnesium 15 0.058 — — —

19 CID23994 c Zinc 12 0.122 — — —

20 CID271 c Calcium 13 0.158 — — —

21 CID753 c Glycerol 9 0.228 — — —

22 CID5957 c Adenosine
Triphosphate

15 0.28 — — —

a: These chemicals were reported to be related to SCLC in previous studies.

b: These chemicals were excluded by further selection because their maximum interaction scores were smaller than 900 and their maximum similarity

scores were smaller than 0.4.

c: These chemicals were excluded by a randomization test because their permutation FDRs were equal to or larger than 0.05.

doi:10.1371/journal.pone.0128696.t003
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[62,63]. If the induced VEGF can be countered, ATRA is a promising drug for lung
cancer therapy.

Zinc. This chemical was identified as a significant candidate chemical for NSCLC (see row
5 of Table 2). Zinc (molecular formula: Zn) is a metallic element, which is required for over
300 enzymes and 2,000 transcription factors involved in many enzymatic and metabolic func-
tions [64]. In our study, zinc had a betweenness score of 44 and a maximum link to known
compounds score of 940, indicating a significant relationship with NSCLC. It has been ob-
served that a zinc deficiency may be related to the increased risk of cancer in epidemiologic
studies [65]. Immune function such as the activity of natural killer and cytolytic T cells is de-
creased in zinc deficiency [65]. The downregulation of IL-2 and IL-2 receptors may be due to
the suppression of NF-kB caused by zinc deficiency [66]. Additionally, zinc deficiency gives
rise to the excess production of ROS, which is an essential factor in tumorigenesis [65]. In head
and neck cancer patients, the tumor size and stage were closely associated with zinc deficiency
[67]. These adverse effects are reversible with zinc supplementation, suggesting that zinc sup-
plementation may be an agent for lung cancer chemoprevention.

FAD. This chemical was identified as a significant candidate chemical for NSCLC (see row
6 of Table 2). Involved in many essential reactions, Flavin adenine dinucleotide (FAD) is a
redox cofactor with two redox states: FAD and FADH2. Our data reveals that the FAD has a be-
tweenness score of 2 and a maximum link to known compounds score of 900. In PCa (prostate
cancer) cells, the acetyl derivatives of spermidine and spermine are oxidized by acetyl poly-
amine oxidase (APAO), excess ROS are produced, and FAD is released [68,69]. The concentra-
tion of FAD was increased by APAO enhancive activity within cells due to the FADH2 to FAD
conversion [70,71,72]. The function of p53, a key tumor suppressor, is to affect MDM2-inde-
pendent, NADH quinone oxidoreductase 1-mediated protein degradation, which is likely due
to the imbalance of FAD/NAD in vitro [73]. The role of FAD in cancer is unclear and requires
further research.

Ouabain. This chemical was identified as a significant candidate chemical for NSCLC (see
row 7 of Table 2). Ouabain is a cardiac glycoside, which has been identified as a human hor-
mone. Many studies show that ouabain plays an important role in cancer and possesses anti-
tumor activity [74,75]. Ouabain has been found to mediate cell apoptosis through TRAIL (ne-
crosis factor-related apoptosis-inducing legend) [76] and enhance lung cancer cell detachment
[77]. In lung cancer cell lines, ouabain suppressed metastasis by regulating integrin, which
caused resistance to chemotherapeutic agents [78,79]. Ouabain is also a Na+, K+-ATPase in-
hibitor that may mediate its anti-tumor function [80]. In our study, a close relationship was ob-
served between ouabain and NSCLC.

Digoxin. This chemical was identified as a significant candidate chemical for NSCLC (see
row 8 of Table 2). Digoxin, also known as 12-beta-hydroxydigitoxin, is a cardiac glycoside and
has been used to treat heart-related diseases, but it may be toxic to heath. Digoxin is a known
inhibitor of Na+/K+ ATPase and disrupts the balance in intracellular Ca2+ and Na+ concentra-
tions [81], which may be the mechanism of digoxin-induced apoptosis. In the 549 cell line (the
NSCLC cell line), the hypoxic conditions induced VEGF (Vascular endothelial growth factor)
and NDRG1 (N-Myc downregulated gene 1) overexpression, and tumor cell proliferation was
suppressed by digoxin, likely through the inhibition of HIF1-α (hypoxia-inducible factor-1α)
[82]. In a model of neuroblastoma mice, tumor growth was inhibited by digoxin [83]. In our
study, digoxin has a betweenness score of 15 and is significantly associated with NSCLC. The
above evidence indicates that digoxin is a potential chemotherapy drug for NSCLC patients.
However, the dosage window between toxicity and therapy is small, and humans are more sen-
sitive to the drug’s toxicity than mice [84], indicating that it must be carefully tested clinically.
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For the remaining two significant candidate chemicals (2'-deoxyuridylic acid, Glycerol), we
could not find any literature reporting associations between them and NSCLC. However, their
possibility cannot be excluded. We list them in rows 9–10 of Table 2 and hope that they may
be further studied in the context of NSCLC.

3.4 Analysis of significant candidate chemicals for SCLC
Similar to NSCLC, we identified six new candidate chemicals related to SCLC. Of these six sig-
nificant candidate chemicals, one chemical, oxygen (see row 1 of Table 3), has been reported to
be related to SCLC in some previous studies [85,86]. Among the remaining five significant can-
didate chemicals, three were found to have associations with SCLC (listed in rows 2–4 of
Table 3). The following paragraphs provide a detailed discussion of the associations between
these chemicals and SCLC.

Daunorubicin. This chemical was identified as a significant candidate chemical for SCLC
(see row 2 of Table 3). Daunorubicin, or Daunomycin (DAUD), is an aminoglycoside antineo-
plastic, isolated from Streptomyces peucetius and other bacteria. DAUD is used to treat various
types of cancer because of its antineoplastic effects [87,88]. However, due to side effects, its
clinical application is limited. The mechanism of antineoplastic and cytotoxic effects is not
clear. It has been speculated that it may be involved in DNA and RNA synthesis (DNA damage
through interference with topoisomerase II, cell apoptosis and iron channel balance)
[89,90,91]. The aldo-keto reductases (AKRs) and carbonyl reductases (CBRs), which have dif-
ferent enzymatic activity in DAUD-stimulated cell lines, have been implicated in the metabo-
lism of DAUD [92]. AKRs and CBRs play essential roles in various biological functions in lung
cancer. Our study revealed that DAUD is closely associated with both NSCLC and SCLC. As a
widely used antitumor drug, DAUD is a potential drug to treat lung cancer. Considering the
side effects of DAUD, more studies are needed on the appropriate dosage and the mechanism
underlying the antineoplastic and cytotoxicity effects.

Prednisone. This chemical was identified as a significant candidate chemical for SCLC
(see row 3 of Table 3). Prednisone, also known as meticorten and short for CPR, is a synthetic
glucocorticoid obtained from cortisone. CPR is utilized as an agent of multi-drug therapy for
the treatment of some tumors [93]. The combination drug therapy of mitoxantrone and low-
dose prednisone had fewer side effects and an improved quality of life compared with patients
taking CPR alone [94,95]. In metastatic castration-resistant prostate cancer (mCRPC) patients,
the combination therapy of prednisone, azacitidine and docetaxel with growth factor (GF) sup-
port is effective [96], although the mechanism responsible for its anti-tumor and cytotoxicity
activity is unclear. In our study, CPR was closely associated with SCLC and may be an effective
chemotherapy drug for lung cancer.

Monomethylarsonic Acid. This chemical was identified as a significant candidate chemi-
cal for SCLC (see row 4 of Table 3). Monomethylarsonic acid (MMA V) is synonymous with
Methylarsonous acid (MMA III) in Medical Subject Heading (MeSH). MMA V is the methylat-
ed metabolite of inorganic arsenic (iAs) and is reduced to MMA III [97]. MMA III is the meth-
ylated metabolite of inorganic arsenic (iAs), both of which are potential carcinogenic materials
in rodents [98,99,100]. In our study, MMA III showed a betweenness score of 12 and a maxi-
mum link to known compound score of 936, which indicated a close relationship with NSCLC.
In various cell lines including skin, lung, liver, prostate, and kidney, malignant transformation
was induced by iAs [101,102,103,104,105,106], and in urinary bladder cell lines, the malignant
transformation of cells can be caused by MMA III [107,108]. It has been shown that iAs and
MMA III can induce the generation of ROS and ODD (oxidative DNA damage), both of which
are involved in carcinogenesis [109,110,111]. Oxidative damage is not the only effect of
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arsenicals; arsenic can also deplete the expression of PTEN, a tumor suppressor gene [99,
112,113], leading to further genomic instability [114]. Some studies suggest that MMA III may
be even more cytotoxic than iAs [115]. As discussed above, MMA III and iAs are important
carcinogens requiring further research.

For the remaining two significant candidate chemicals (mercaptoethanol and 2'-deoxyur-
idylic acid), no literature reported that they were associated with SCLC. However, we cannot
confirm that they have no associations with SCLC (i.e., they may still be related to SCLC). We
list them in rows 5–6 of Table 3 and hope that they may further studied in the context of
SCLC.

3.5 Analysis of other candidate chemicals
Some chemicals with weak associations with NSCLC-related or SCLC-related chemicals are
possible putative anti-carcinogenesis drugs. There are few studies regarding their roles in lung
cancers, but there is evidence indicating that they have antitumor effects in other cancers. This
finding suggests that they may be putative attractive antineoplastic drugs for NSCLC/SCLC.
Two of them are discussed below.

Berberine. This chemical is related to NSCLC (see row 12 of Table 2). Berberine (BBR), or
Umbellatine, is a member of the isoquinoline alkaloids, which are found in some medicinal
plants such as Rhizoma Coptidis and Coptis chinensis [116]. Initially, due to its antibacterial
properties, BBR was widely used to treat bacterial and fungal infections. It also has an antineo-
plastic effect in various cancers including leukemia and large intestine carcinoma [117,118]. In
breast cancer, apoptosis of tumor cells is induced by TRAIL (tumor necrosis factor related apo-
ptosis-inducing ligand), which is enhanced by BBR [119]. The AP-1 signaling pathway and the
transcription factors binding to the CCND1 (cyclin D1) AP-1 motif were suppressed by BBR
in PG cells (human lung carcinoma cell line), which may be an important anti-cancer mecha-
nism [120]. In A549 lung cancer cells, TGF-β induced EMT is inhibited by BBR, revealing a po-
tential mechanism for the anti-invasion and anti-metastasis effects [121]. Additionally, BBR
has low toxicity in normal cells, which indicates that BBR is a putative attractive antineoplastic
drug [122,123,124].

Colchicine. This chemical is related to SCLC (see row 9 of Table 3). Colchicine, also
known as Colcin, is isolated from Colchicum autumnae, which is used for the treatment of gout
and Mediterranean fever [125,126]. Colchicine has strong tubulin binding capacity, which per-
turbs microtubule assembly, therefore limiting its clinical application. One marked characteris-
tic of cancer cells is their high-rate of mitosis rendering them more sensitive to colchicine. In
fact, the growth of tumor cells in hepatocellular carcinoma (HCC) is inhibited by colchicine
with few side effects [127]. The expression of MX dynamin-like GTPase 1 (MX1) and TGFB2
are upregulated by colchicine in these HCC cells, which may be one of the mechanisms of its
antineoplastic function [128]. Although colchicine shows great promise as a chemotherapeutic
for lung cancer, the curative effect and clinical dose are not yet clear. Furthermore, more re-
search is needed to develop better drug delivery strategies, which directly target the cancer cells
and reduce chemotherapeutic toxicity.

Conclusions
In this study, we proposed a variation on an existing computational method to identify new
candidate chemicals related to non-small lung cancer and small-cell lung cancer. According to
the literature, some newly discovered chemicals have strong associations with the biological
process of lung cancer. Future research is required to replicate and validate the new findings in
this study and to shed new light on the study of lung cancer and other diseases.
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