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Abstract

The aim of this study was to validate the performance and reliability of results obtained from
a classification model that measures time spent performing activities in confined (CE) and
unrestricted (UE) environments. In CE, participants wore a pair of biaxial and/or triaxial ac-
celerometers while performing pre-determined training activities classified as variants of
lying down, dynamic standing, sitting, walking and running on two separate days. A classifi-
cation model trained with activities performed in a specific order during the first day was de-
veloped to validate the activities performed in a random order on the second day (CE) and
over 24 hours on a separate day (UE). The performance of the classification model was vali-
dated against triaxial accelerometers using six (x, y and step counts for arm and thigh) or
eight (same as six features plus z axis) features. The reliability of the classification model
was tested in both environments using six features. Results revealed an overall accuracy of
94% in CE and 90% in UE. The sensitivity in CE and UE was 94% and 95% for lying down,
88% and 80% for dynamic standing, 97% and 89% for sitting, 96% and 78% for walking and
90% and 64% for running, respectively. No significant differences were noted between per-
formances obtained with six or eight features. Results were highly reproducible in both envi-
ronments. The results obtained from the classification model were accurate and
reproducible, and highlight the potential use of this approach in research to quantify the time
spent performing different activities.

Introduction

Activity monitoring systems are used to estimate energy expenditure using data captured by
accelerometers and other sensors. They have been widely used due to their small size, low cost,
and low power consumption [1, 2]. Nevertheless, the measurement of energy expenditure does
not allow the characterization of the different activities performed during a determined time
frame. As reviewed by Preece et al (2009) and Yang & Hsu (2010), activities performed can be
computed from raw accelerometry data using classification models that are obtained from
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machine learning classifiers (e.g., decision trees, neural networks, Bayesian classifiers, support
vector machines and others).

The validation of classification models aimed at recognizing activities has been conducted
in a confined environment (CE), showing a high accuracy [3-6]. Some studies have also been
performed in a semi-unsupervised environment showing similar results [7-13]. Under a free
unsupervised period of 4 hours, Ermes [14] showed a sensitivity (chances of classifying an ac-
tivity as positive when it is indeed positive) of 98% for lying down, 80% for sitting/standing
and 30% for walking when four annotated activities were considered over a total of nine recog-
nized activities. Long et al. also demonstrated a sensitivity of 80% for walking and 93% for run-
ning when participants annotated five activities over a 10-hour period when using one
accelerometer [15]. However, to our knowledge, no study has validated the results obtained
from a classification model over 24 hours in an unrestricted environment (UE). One of the rea-
sons is that the internal memory of devices is limited in size and quickly fills up when data are
sampled at a high frequency. Nevertheless, recognizing only major categories of activities (i.e.,
lying down, dynamic standing, sitting and walking) does not require a high data-sampling fre-
quency due to the nature of these activities and thus makes the recording over a longer period
of time possible.

The first objective of this study was to build a classification model for biaxial and triaxial ac-
celerometers and to validate the performance of this classification model in discriminating five
different activities. Specifically, the performance was validated using data gathered under 2
hours in CE and under 24 hours in UE. The second objective was to compare the performance
of the classification model using a set of six (x, y and step counts for arm and thigh) or eight (x,
y, z and step counts for arm and thigh) features recorded from the triaxial accelerometers. The
third objective was to assess the reliability of the results acquired from the classification model
obtained with biaxial and triaxial using six features under CE and UE. We hypothesized that
() the results would be highly accurate in both environments using biaxial or triaxial acceler-
ometers (b) the performance of the classification model obtained with six or eight features
would be similar and (c) the results obtained from the classification model would be highly re-
producible in both the CE and UE.

Materials and Methods
Participants

A total of seventeen males and nineteen females students were recruited to complete this set of
experiments. The inclusion criteria were as follows (a) over the age of 18 years; (b) stable weight
(2 kg) within the past six months; (c) nonsmokers; (d) no drug or alcohol abuse; and (e) with-
out any orthopedic limitation. All experiments were conducted according to the guidelines laid
down in the Declaration of Helsinki and all the procedures involving human participants were
approved by the University of Ottawa ethics committees. Written informed consent was ob-
tained from all participants.

Accelerometers

A pair of biaxial and/or triaxial activity-monitoring systems (accelerometers) (SenseWear Pro
3 Armbands, HealthWear Bodymedia, Pittsburgh, PA) were used. SenseWear Pro 3 Armbands
were chosen because they provide access to raw data (acceleration axes and step counts) and
provide accurate estimates of energy expenditure [16]. One accelerometer was placed around
the upper arm (midway between the acromion and the olecranon) while the other was placed
around the thigh (midway between the patella and the inguinal fold; on the exterior of thigh).
The internal clocks of both accelerometers were synchronized before the beginning of each
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session with the researcher’s watch or with the participants’ watch. The data recorded over
time were the following features: x and y acceleration axes and the step counts (for the arm and
thigh) while using a biaxial accelerometer and the x, y and z acceleration axes and the step
counts (for the arm and thigh) while using a triaxial accelerometers. Therefore, the biaxial ac-
celerometers provided six features while the triaxial accelerometers provided eight features. In
terms of anatomic axes, the x, y and z axes represent the horizontal, vertical/frontal and sagittal
axes, respectively. The acceleration measures were accumulated and averaged over a period of
5s while the step count measures are accumulated and averaged over a one minute interval.
The combination of the accelerations and step counts recorded every five seconds refer to one
data sample. Note that the step counts measure was stable during one minute while the acceler-
ations were different every five seconds.

General Procedures of the Study

This study consisted of four experiments (Fig 1) (a) Building the classification model with biax-
ial and triaxial accelerometers (Experiment I); (b) Validating the performance of the classifica-
tion model in CE and in UE with biaxial and triaxial accelerometers (Experiment II); (c)
Validating the performance of the classification model with triaxial accelerometer when using
six or eight features (Experiment III); (d) Investigating the reliability of results obtained from
the classification model when using six features recorded by a biaxial and a triaxial accelerome-
ters under CE and UE (Experiment IV). The four experiments are further described in the
following sections.

Experiment I—building the Classification Model. The data (acceleration axes and step
counts) were obtained from accelerometers worn by participants performing 22 predetermined
training activities classified as variants of lying down, dynamic standing, sitting, walking, run-
ning, biking, and climbing stairs in a specific order. The procedures were performed under the
supervision of the researcher who recorded the beginning and end of each activity.

The INNERVIEW software (version 4.02; Bodymedia, Pittsburgh, PA) was used to extract
the data obtained from the 22 predetermined training activities (training data) from the accel-
erometers (Fig 2A). Training data were exported in two Comma-Separated Values (CSV) files:
one file for the accelerometer worn on the arm and one for the accelerometer worn on the
thigh. Activity Recognition software was used to combine and to synchronize these two training
data files, which produced a single file containing a sequence of training data samples. The as-
sociated activity for each sample was then identified based on the recording time. Transitions
from one activity to another were manually removed from the training data set. Two classifica-
tion models (support vector machines, kernel type: radial basis function; cost: 10; gamma pa-
rameter: 0.01) were then built using those training samples (recorded features and known
activity): one classification model with the biaxial accelerometers (Experiment 1: Biaxial) and
one with the triaxial accelerometers (Experiment 1: Triaxial). The Activity Recognition software
uses the SVM implementation of the open source software library Java-ML as a classification
algorithm [17]. To facilitate the discrimination between variants of dynamic standing and
walking, a threshold of 30 steps per minute or less was used. The threshold was applied during
data pre-processing in the training phase. If the step count for one data sample was lower than
30 steps per minute, it was assigned a value of 0 steps per seconds, and then fed to the classifier
as a training sample. The rationale for using a 30 step counts per minute threshold is based on
the reasoning that dynamic standing could be associated with minor lower body movement at
low speeds for short distances (which is equivalent to one step every two second or less).

Experiment II—validating the performance of the Classification Model. To validate the
performance of the classification model under CE (Experiment 2: Biaxial_CE and Experiment
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Experiment I. Building the classification model

Experiment 1. Biaxial
Supervised learning algorithm
training
1X2hrs
5 Men and 7 Women
Performed in a specific order 22
pre-determined tasks classified as
variants of lying down, dynamic
standing, sitting, walking and
running.

]

Experiment 1. Triaxial
Supervised learning algorithm
training
1X2hrs
3 Men and 3 Women
Performed in a specific order 22
pre-determined tasks classified as
variants of lying down, dynamic
standing, sitting, walking and
running.

I

|
Experiment II. Validati

classification model

ng the performance of the

Experiment 2. Biaxial CE
2 hrs
5 Men and 7 Women

Performed in a different order 22
pre-determined tasks classified as
variants of lying down, dynamic

standing, sitting, walking and

running.

Experiment 2. Biaxial UE
24 hrs
6 males and 6 females
Mark down 5 categories of activity
(lying down, dynamic standing,
sitting, walking or running) with the
start and finishing times.

Experiment II1. Validating the performance of the classification

Experiment 2. Triaxial CE model with triaxial accelerometers when using 6 or 8 features
2 hrs
3 Men and 3 Women P 777—771,,1 -
Performed in a different order 22 —
p\f:r_i':gglflrllegltazl(();cnlazsfsiis Experiment 2. Triaxial CE Experiment 2. Triaxial CE
siawdting s)illtifg wall’(in); ey 6 features: X and Y only and step 8 features: X, Y, Z and step counts
? % counts for both the arm and thigh for both the arm and thigh
running. ]
Experiment 2. Triaxial_UE Experiment 2. Triaxial_ UE Experiment 2. Triaxial_ UE
24 hrs *) 6 features: X and Y only and step 8 features: X, Y, Z and step counts
3 males and 3 females counts for both the arm and thigh for both the arm and thigh
Mark down 5 categories of activity
(lying down, dynamic standing, S~ R
sitting, walking or running) with the ﬂ
start and finishing times.

Experiment IV. Investigating the reproducibility of the

classification model when using 6 features

Experiment 2. Biaxial
Confined Environment
6 features: X, Y and step counts for
both the arm and thigh
Experiment 2. Biaxial
Unrestricted Environment
6 features: X, Y and step counts for
both the arm and thigh

Experiment 2. Triaxial
Confined Environment
6 features: X and Y only and step
counts for both the arm and thigh

Experiment 2. Triaxial
Unrestricted Environment
6 features: X and Y only and step
counts for both the arm and thigh

o u -

Fig 1. General Procedures of

the Study.

doi:10.1371/journal.pone.0128299.g001

2: Triaxial_CE), participants were asked to perform the same 22 predetermined training activi-
ties in a different order, which was different for each participant. After initial analyses, low ac-
curacy of biking and climbing stairs (i.e., 37% for climbing the stairs and 74% for biking in
Experiment 2: Biaxial_CE) were obtained. Therefore, these activities were removed from the
classification models and were not further classified as part of this study. The classification
model therefore classified climbing stairs or biking as either walking or running. During the
validation of the UE (Experiment 2: Biaxial UE and experiment 2: Triaxial UE), participants
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A
Pre-determined training activities:
Lying Down (2 min each)
Lie down on their back;
Lie down on their stomack;
Lie down on their right and left side.
Dynamic Standing (2 min each)
Stand;
Walk on a treadmill* at 0.5 mile/hr; - -
Walk on a treadmill* at 1 mile/hr.
Sitting (2 min each) Accelerometer
Sit normally (10 min); plafﬁg :;r(:lund "."""-"*-""""“\
I . .~
Sit with their legs cross.ed, R \\ iR eco nmition Combine and
Lean on their knees; csv S o time-align data files
Sit on both legs at a higher level than buttocks; | software R B =
Sit with both legs placed on the right or on the left side. Accelerometer ’," #
Walking (2 min each) placed around +===e=ceceen * --------- . I
Walk on a zreadmil-l *at 1.5 rrfiles/hr; the thigh Manual associations Each training data
Walk on a treadmill* at 2 miles/hr; BRI by the researcher sample, based on the
Walk on a treadmill* at 2.5 miles/hr; Training data sample: recording time, was
Walk on a treadmill* at 3 miles/hr; - Acceleration axes associated with an
Walk on a treadmill* at 3.5 miles/hr. sampled every 5 sec activity
Running (2 min each) - Step counts
Run on a treadmill* at 6 miles/hr; sampled every minute
Run on a treadmill* at 8 miles/hr.
Biking (2 min each) + T
Climbing the stairs (2 min each)

Classification SVM model was built
model using each training data
(SVM model) sample and it
association with an
activity

B Activity Recognition
software

Classification
model
(SVM model)

Each data sample

were classified as an Each activity were

activity by the SVM summed and
model Running ) o multiplied by 5

Activities Recognition
software

The confusion matrix
determines the
validity of the results
obtained from the
classification model

Confusion matrix

Note. The treadmill used is True 850 SOFT system, TRUE Fitness Technology 865 Hoff Road St. Louis, MO
Fig 2. Building the Classification Model (A) and Obtainment of the Time Spent Performing Activities (B).
doi:10.1371/journal.pone.0128299.g002
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were asked to mark down on a sheet of paper five categories of activities (lying down, dynamic
standing, sitting, walking or running) with the start and finish times (precision within one sec-
ond) over a 24-hour period. Dynamic standing was described to the participants as a static
standing position that could include dynamic movement of the upper body. Since it could be
associated with minor lower body movement, walking for short distances (less than 30 steps
per minute) was also considered as dynamic standing. Examples include meal preparation,
washing dishes, talking to someone while standing, etc. Walking was categorized as a displace-
ment of more than 30 consecutive steps per minute. Examples include walking to work, walk-
ing to the bus stop, walking the dog, etc. Each data sample from Experiment II was obtained as
previously described (i.e., INNERVIEW software, CSV, Activities Recognition Software) and
classified as an activity either by the biaxial or triaxial classification model (Fig 2B). When par-
ticipants were doing other types of activities, the latter were classified as one of the selected ac-
tivities. The Activity Recognition Software was used to coordinate this sequence. The total time
spent performing each activity was determined as the product of the sampling rate (5 s) and
the number of occurrences of the different activities. The classification was then compiled in a
confusion matrix to determine the validity of the results obtained from the classification
model. Under UE, participants were instructed to remove the accelerometer during all water
activity, including bathing, but to wear it overnight.

Experiment III—validating the performance of the Classification Model with triaxial ac-
celerometer when using six or eight features. For this experiment, data samples obtained
from six (i.e., X, y axes and step counts times two accelerometers) and eight features (i.e., x, y
and z axes and step counts times two accelerometers) were compared in a CE and in a UE. The
results in terms of activity classification were obtained from the same triaxial accelerometers
while either including (eight features) or removing the z axis (six features) (Fig 1).

Experiment IV—investigating the reliability of the results obtained from the Classifica-
tion Model using six features. The reliability of the results obtained from the classification
model using six features was investigated. Results of Experiment 2: Biaxial were compared with
results of Experiment 2: Triaxial in both CE and UE (Fig 1). The z axis (arm and thigh) from
each data sample obtained with the triaxial accelerometers was removed for this analysis.

Statistical Analysis

Statistical analyses were performed in Excel (version 2007). Performance of the classification
model was determined with the overall accuracy (i.e., mean proportion of all activities that are
correctly classified per person) and using five indicators: sensitivity (chances of classifying an
activity as positive when it is indeed positive), the positive predictive value (chances that an ac-
tivity is indeed positive, when it is classified as positive), the F-Score (the "harmonic mean be-

(sensitivity-precision)

tween sensitivity and positive predictive values" [18] (2 sensitiviy +pmmn))) and the specificity

(chances of classifying an activity as negative when they are truly negative) in a confusion ma-
trix. Cohen's kappa coefficient (measure of the agreement between the real activity and the
classifications) was also determined [19]. In order to investigate the difference between the per-
formance of the classification model using six or eight features, a Wilcoxon matched-pairs
signed rank test was performed using statistical software (Prism v5, GraphPad Software Inc.,
San Diego, CA). To investigate the reliability of the results obtained from the classification
model when using six features (overall accuracies) in CE and UE, an independent samples t-
test was performed. The underlying assumption of normality of the two samples t-test was veri-
fied with a normal probability plot performed with Minitab 16. A linear tendency was observed
in both plots suggesting that it is reasonable to assume that the accuracy is normally distributed
(data not shown). However, since the slopes were very different in CE, the equality of the
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Table 1. Participants Characteristics.

Experiment

Experiment 2. Biaxial_CE* ® °

Experiment 2. Biaxial_ UE

Experiment 2. Triaxial_CE ® °

Experiment 2. Triaxial UE

variance was not assumed. As a result, a t-test with a Welch correction was performed with the
GraphPad Prism. Values are presented as percentage + standard deviation.

Results

The participants’ characteristics are described in Table 1.

Phase Il—Validating the Performance of the Classification Model in CE

The confusion matrix presented in Table 2shows the real and classified time (s) spent perform-
ing activities in CE. The classification model had an overall accuracy of 94+4%, including lying
down, dynamic standing, sitting, walking and running. The sensitivity was higher than 90% for
all the time spent in activities except for dynamic standing, which had the lowest classification
results (88+18%). The positive predictive value was 95+8% for lying down, 95+8% for dynamic
standing, 98+3% for sitting, 66+8% for walking, and 88+18% for running. The F-score demon-
strated a high overall performance for lying down, dynamic standing, sitting, running, and
with the lowest value for walking (76+16%). The high specificity (higher than 99% for most of
the activities) suggested that the classification model can accurately detect a specific activity
with limited false-positive values. Finally, the association between the real activities and the
classification, measured with Cohen’s Kappa Coefficient, indicated that the classification
model developed in CE highly agrees with the reality (0.93+0.004).

Phase Il—Validating the Performance of the Classification Model in UE

The confusion matrix presented in Table 3presents the real and classified time (s) spent per-
forming activities in UE. The classification model had an overall accuracy of 90+4% and a sen-
sitivity that varies between 64 and 95%. Of all activities, lying down and sitting had the highest
sensitivity. The positive predictive values were 85+9% for lying down, 76+12% for dynamic

Weight (kg) BMI (kg/m?) Age (yr)
All (N=12) 67.9+11.2 23524 24646
Females (n =7) 60.2+6.8 22.7+1.8 24759
Males (n = 5) 78.7+4.8 245+ 3.0 244+24
All (N =12) 68.0+12.4 23.613.0 26.742.9
Females (n = 6) 58.916.3 22.4+1.1 26.0+2.8
Males (n = 6) 77.2£10.1 24.9+3.9 27.3+3.1
All (N = 6) 68.5+13.2 23.2+2.8 21.3+2.7
Females (n = 3) 58.17.5 21.6+1.5 22.7+3.5
Males (n = 3) 79.0£7.0 24.8+3.2 20.0+1.0
All (N = 6) 65.2+11.5 22.5+2.2 21.5+1.5
Females (n = 3) 55.2+4.8 21.1£0.9 21.0+2.0
Males (n = 3) 75.1+3.4 24.0+2.3 22.0+1.0

Values are mean + SD; BMI = body mass index.

& The same subjects for Experiment 1 and 2 were used.

b A total of 13 participants, were recruited. However, one participant had to be excluded because of incomplete accelerometry data.

¢ For experiment 2 performed with Biaxial, three participants (2 male and 1 female) performed both the Biaxial_CE and the Biaxial_UE. Other subjects

were different.

9 For experiment 2 performed with Triaxial, three participants (2 female and 1 male) performed both the Triaxial_CE and the Triaxial_UE. Other subjects

were different.

doi:10.1371/journal.pone.0128299.1001
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Table 2. Confusion Matrix of the Time Spent Performing Activities Obtain from the Results of the Classification Model in CE Sessions.

Class
Walking Sitting Running Lying down Dynamic Standing Overall

Walking 1334 0 36 0 24

Sitting 0 2552 0 55 10

Running 60 0 478 0 0
§ Lying down 9 43 0 1057 15
= Dynamic Standing 96 9 0 0 734
Overall Accuracy (%)? 94+4
Sensitivity (%)° 96+12 97+4 90+20 94+7 88+18
F-Score (%)° 76+16 98+2 88+18 94+6 90+11
Specificity (%) 884 99+2 9912 9912 99+1
Kappa® 0.93%0.00
Linear Weight Kappa 0.90£0.01
Quadratic Weighted Kappa 0.87+0.01

Class
Walking Sitting Running Lying down Dynamic Standing Overall

Walking 1334 0 36 0 24

Sitting 0 2552 0 55 10

Running 60 0 478 0 0
§ Lying down 9 43 0 1057 15
= Dynamic Standing 96 9 0 0 734
Overall Accuracy (%)? 9414
Sensitivity (%)° 96+12 97+4 90420 9417 8818
F-Score (%)° 76+16 98+2 88+18 9416 9011
Specificity (%)® 88+4 9942 9942 9942 99:+1
Kappa® 0.93+0.00
Linear Weight Kappa 0.90£0.01
Quadratic Weighted Kappa 0.87+0.01

@ Qverall accuracy is the mean proportion of all activities that are correctly classified per person

® Sensitivity corresponds to the chances of classifying an activity as positive when it is indeed positive
¢ F-Score is defined as the "harmonic mean between sensitivity and positive predictive values" [18]

9 Specificity is a measure of chances of classifying an activity as negative when they are truly negative
¢ Cohen’s Kappa is the measure of the agreement between the real activity and the classifications

doi:10.1371/journal.pone.0128299.t002

standing, 85+6% for sitting, 56+21% for walking and 88+18% for running. Since walking had
the lowest sensitivity and positive predictive value, it had an F-Score of 62+18%. The high spec-
ificity (between 87 and 100%) and a Cohen’s Kappa Coefficient of 0.85+0.001 suggested respec-
tively that the classification model had a low false-positive rate and that there was a high degree
of agreement between the reality and the classification.

Phase lll—Validating the Performance of the Classification Model with
Triaxial Accelerometer when using six or eight Features
Table 4presents results of the performance of the triaxial accelerometer when using six or eight

features in CE and UE. The difference between both overall accuracies revealed no significant
difference in CE (p = 0.81) and UE (p = 1.0).
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Table 3. Confusion Matrix of the Time Spent Performing Activities Obtained from the Results of the Classification Model in UE Sessions.

Class
Walking Sitting Running Lying down Dynamic Standing Overall

Walking 7663 318 60 17 1471

Sitting 515 80640 0 6495 2307

Running 260 0 780 0 0
§ Lying down 22 3855 0 69878 89
= Dynamic Standing 2418 1454 0 266 19937
Overall Accuracy (%)? 904
Sensitivity (%)° 78+16 89+11 64+27" 95+4 807
F-Score (%)° 62+18 83+7 7324 8614 7518
Specificity (%) 90+2 884 1000" 8716 902
Kappa® 0.85%0.00
Linear Weight Kappa 0.81+0.00
Quadratic Weighted Kappa 0.77+0.00

Class
Walking Sitting Running Lying down Dynamic Standing Overall

Walking 7663 318 60 17 1471

Sitting 515 80640 0 6495 2307

Running 260 0 780 0 0
§ Lying down 22 3855 0 69878 89
= Dynamic Standing 2418 1454 0 266 19937
Overall Accuracy (%)? 904
Sensitivity (%)° 7816 8911 64+27' 9514 807
F-Score (%)° 62118 83+t7 7324 8614 758
Specificity (%)® 90+2 88+4 1000f 87+6 902
Kappa® 0.85+0.00
Linear Weight Kappa 0.81+0.00
Quadratic Weighted Kappa 0.77+0.00

@ Qverall accuracy is the mean proportion of all activities that are correctly classified per person

® Sensitivity corresponds to the chances of classifying an activity as positive when it is indeed positive
¢ F-Score is defined as the "harmonic mean between sensitivity and positive predictive values" [18]

9 Specificity is a measure of chances of classifying an activity as negative when they are truly negative
¢ Cohen’s Kappa is the measure of the agreement between the real activity and the classifications
fOnIy three participants had practiced this activity.

doi:10.1371/journal.pone.0128299.t003

Phase IV—Investigating the Reliability of the Results Obtained from the
Classification Model using six Features

The analyses of the reliability of the results obtained from the classification model showed no
significant differences for the overall accuracy in CE (p = 0.056) or UE (p = 0.447). The results
confirmed with 95% confidence that the difference in the overall accuracies was 6.0% with a
maximum error of 6.3% in CE. Similarly, the analyses revealed with 95% confidence that the
difference in the overall accuracies was 1.6% with a maximum error of 4.3% in the UE.

Discussion

To our knowledge, this is the first study to validate a classification model to determine the time
spent performing activities in UE for a period of 24 hours. Collectively, these results indicate
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Table 4. Confusion Matrix of the Time Spent Performing Activities with Triaxial Accelerometers when using six and eight Features.

Sensitivity (%)?

F-Score (%)?

Specificity (%)°

Overall Accuracy (%)°
Kappa®

Kappa linear weight
Kappa quadratic weight

CE UE'

6 features 8 features 6 features 8 features
Walking 917 91+7 8316 83+6

92+8 94+7 933 9415
Running 64+25 64+25 - -
Lying Down 92+4 90+11 88+11 87+10”
Dynamic Standing 85+11 8719 7948 7918
Walking 8516 85+6 774 77+4

94+5 95+3 90+5 905
Running 69+21 69421 - -
Lying Down 86+13 88+9 916 915"
Dynamic Standing 8816 8915 8315 8415
Walking 94+3 94+3 98+1 98+1

98+1 97+2 9015 89+7
Running 99+2 99+2 1000 100+0
Lying Down 965 97+3 97+2 9714
Dynamic Standing 99+1 99+1 99+1 99+1

88+6 8914 89+4 89+4

0.84+0.01 0.85+0.00 0.82+0.00 0.83+0.00

0.81+0.01 0.81+0.00 0.79+0.00 0.80+0.00

0.79+0.02 0.79+0.02 0.76+0.01 0.76+0.01

& Sensitivity corresponds to the chances of classifying an activity as positive when it is indeed positive

P F-Score is defined as the "harmonic mean between sensitivity and positive predictive values" [18]

¢ Specificity is a measure of chances of classifying an activity as negative when they are truly negative

9 Overall accuracy is the mean proportion of all activities that are correctly classified per person

¢ Cohen’s Kappa is the measure of the agreement between the real activity and the classifications
fIn UE, the results for running are not included since no participants had practiced this activity and the results for lying down are based on 5 participants
since one participant had not practiced this activity.

doi:10.1371/journal.pone.0128299.t004

the relatively high performance of the classification model in CE and UE. Furthermore, the
present findings demonstrate that including eight features vs. six features does not increase the
performance of the classification model, at least when investigating the five categories of activi-
ties presented in this paper. Finally, the results obtained from the classification model showed a
high level of reliability when using six features in both CE and UE.

Phase Il—Validating the Performance of the Classification Model in CE

The results obtained in CE suggest an overall accuracy of 94%. This accuracy is similar to that
previously reported [4]. When further investigating the time spent in activities, our results
showed a higher sensitivity than the one observed by Van Laerhoven in a case study measuring
seven activities [5]. The only exception was for dynamic standing, which is 6% lower in our
study [5]. The lower recognition accuracy for dynamic standing in our study could be related
to the confusion involving the transition between the static and dynamic activities [20]. The
classification model could not accurately recognize the transitions between each task, which
highlights a need for machine-learning classifiers that can detect temporal sequences such as
Hidden Markov Models. However, it could be speculated that in a normal environment, the
number of transitions between different activities is relatively low compared to the transition
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that was done every 2 min in the CE protocol. Nevertheless, when dynamic standing was com-
bined with walking, the sensitivity increased to 98+4%. The number of accelerometers used
could also explain slight differences between studies. The classification model shows better ac-
curacy for sitting and dynamic standing as did other studies that used multiple sensors [7, 9,
21] compared to studies that only used one accelerometer [4, 20, 22]. Our results as well as
those from other studies [20, 23] emphasize the importance of using at least two sensors to im-
prove the classification accuracy of sitting and dynamic standing. This is particularly important
because these activities constitute a large proportion of daily activity in a modern environment
[24].

Phase Il—Validating the Performance of the Classification Model in UE

Based on Foester’s research, a reduction in the overall accuracy of the classification model
would have been expected in CE (95.8%) compared to UE (66.7%) (nine activities) [9]. The
overall accuracy obtained from the 24 hours of participants’ annotations was only 4% lower,
which is less than what has been observed by others [8, 14]. A closer inspection of our data re-
vealed that the sensitivity for dynamic standing, walking, and running were the lowest. Never-
theless, after combining dynamic standing and walking, the sensitivity improved to 93+5%.
These values are slightly better than those reported by Ermes et al. (2008) for 4 hours of testing
when four out of nine activities were annotated by the participants. It is also important to note
that the proportion of time was 37% or 8.9 hours for lying down, 12% or 2.9 hours for dynamic
standing, 45% or 10.8 hours for sitting, 5% or 1.2 hours for walking and 0.05% or 0.01 hours
for running. In this case, even if the proportion of time spent lying down and sitting (82% or
19.7 hours) is high, it represents the percentage of time spent in sedentary behaviors (i.e., lying
down and sitting) generally observed in the population [24].

Phase lll—Validating the Performance of the Classification Model with
Triaxial Accelerometer when using six or eight Features

It would seem logical that adding the z acceleration axes should lead to a better activity classifi-
cation. However, this is not the case since no significant differences were noted between the
overall accuracy when including or excluding the z axis of both accelerometers. It should be
noted that the step count was part of both features sets. In addition, the activities analyzed were
mostly performed in the x and y acceleration axes, which does make the inclusion of a third
axis (z axis) rather unnecessary. We can thus conclude from our data that using a classification
model that was trained using either six or eight features does not improve classification accura-
cy under the conditions described in this study.

Phase IV—Investigating the Reliability of the Results Obtained from the
Classification Model using six Features

Our results suggest that the classification model obtained in CE and in UE is reproducible. In-
deed, the maximum error was.6.3% in CE and 4.3% in UE. A small difference between the in-
ternal clocks of both accelerometers and the researcher’s watch could have increased the
variability across sessions in the CE. Similarly, the maximal error can be explained by the small
difference between internal clocks of both accelerometers and the participant's watch in UE.
The complexity and inconvenience related to the exact description of the movement second-
by-second by the participant may have been associated to lower annotation compliance and
thus may have lead to a certain degree of under-reporting that could have also reduced the reli-
ability of the classification model.

PLOS ONE | DOI:10.1371/journal.pone.0128299 June 8,2015 11/14



@’PLOS ‘ ONE

Measurement of Time Spent Performing Activities

Limitations

Even if the classification model presented and discussed could be considered to have good clas-
sification accuracy in both CE and UE, several confounding factors should be considered and
identified. Only 2 min in each activity were used to construct the classification model and the
transition between the static and dynamic movements was not taken into account. In addition,
even with pre-determined training activities classified as variants of lying down, dynamic
standing, sitting, walking, and running, more variations of these activities exist and are likely
adopted in a real life setting. In this regard, it is important to note that this study initially in-
cluded stair ascending and descending as well as biking. Because the preliminary validation of
the performance of the classification model obtained with biaxial accelerometers in CE gave us
a low sensitivity for these activities (i.e., 37% for climbing stairs and 74% for biking), they were
not included in the classification model nor were they further investigated. Firstly, the protocol
used to measure stairs climbing included 2 min of ascending and descending stairs. Since both
patterns are different, the method used was not specific enough for a good classification. Sec-
ondly, the sampling rate of 5 s for the accelerations and 1 min for the step count was not high
enough to measure biking. It could be hypothesized that a higher time spent doing the activity
and a higher sampling frequency would have been helpful in this case. The decision to maintain
the sampling frequency was mostly informed by the fact that a higher sampling frequency
would have overwhelmed the storage capacities of the devices over longer sampling periods
under real life conditions. Finally, the use of an another accelerometer and/or a GPS could
have help to measure biking [25].

The results of the present study highlight the high accuracy and reproducibility of both clas-
sification models in CE and UE. To the best of our knowledge, no study has investigated and
validated several activities under unrestrictive conditions for a period longer than 24 hours.
The main reasons that explain this is that the internal memory capacity of sensors is limited
and quickly fills up when data are sampled at high frequency. In this study we show that our
model, which was developed while using a lower frequency of sampling, has comparable validi-
ty to previously published work as far as activity recognition is concerned with the major ad-
vantage of being useful for the measurement of several activities that make up for a great
proportion of daily life over a much longer duration (up to 7 days). This study also shows that
activity recognition models including either 6 or 8 features (i.e. Biaxial vs. Triaxial accelerome-
ters, respectively) are not different in terms of their performance, at least when investigating
the five categories of activities presented in this paper. Future research in this area is needed to
develop classification models that are more sensitive to capture activities such as biking, stair-
climbing as well as transitions from one activity to another.

Conclusions

The classification model developed in this study was shown to be accurate and reliable over 24
hours in UE. Our results show no significant benefit of using eight compared to six features to
determine the time spent performing five activities as far as the present classification model is
concerned. The study highlights the potential use of this classification model in applied re-
search aimed at investigating the time spent performing activities.
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