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Abstract

Background

T-cell epitopes play the important role in T-cell immune response, and they are critical com-
ponents in the epitope-based vaccine design. Immunogenicity is the ability to trigger an im-
mune response. The accurate prediction of immunogenic T-cell epitopes is significant for
designing useful vaccines and understanding the immune system.

Methods

In this paper, we attempt to differentiate immunogenic epitopes from non-immunogenic epi-
topes based on their primary structures. First of all, we explore a variety of sequence-de-
rived features, and analyze their relationship with epitope immunogenicity. To effectively
utilize various features, a genetic algorithm (GA)-based ensemble method is proposed to
determine the optimal feature subset and develop the high-accuracy ensemble model. In
the GA optimization, a chromosome is to represent a feature subset in the search space.
For each feature subset, the selected features are utilized to construct the base predictors,
and an ensemble model is developed by taking the average of outputs from base predictors.
The objective of GA is to search for the optimal feature subset, which leads to the ensemble
model with the best cross validation AUC (area under ROC curve) on the training set.

Results

Two datasets named ‘IMMA2’ and ‘PAAQD’ are adopted as the benchmark datasets. Com-
pared with the state-of-the-art methods POPI, POPISK, PAAQD and our previous method,
the GA-based ensemble method produces much better performances, achieving the AUC
score of 0.846 on IMMAZ dataset and the AUC score of 0.829 on PAAQD dataset. The sta-
tistical analysis demonstrates the performance improvements of GA-based ensemble meth-
od are statistically significant.
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Conclusions

The proposed method is a promising tool for predicting the immunogenic epitopes. The
source codes and datasets are available in S1 File.

Background

A vaccine is a biological preparation, which stimulates the production of antibodies to induce
immunity to a particular disease. There are different types of vaccines. The epitope-based vac-
cine is a new kind of vaccine that recently attracts the wide interests. Critical components in
manufacturing epitope-based vaccines are epitopes, which are designed to trigger the immune
responses of T-cells or B-cells.

The intracellular antigen-processing pathway for T-cell immune responses is a complex
procedure. At first, antigens are cleaved into short peptides, and some peptides are transported
into the endoplasmic reticulum (ER) by the antigen presenting proteins. Then, some peptides
will bind to major histocompatibility complex (MHC) molecules and form the MHC-peptide
complexes. Finally, the complexes are presented on the cell surface to induce the
immune response.

T-cell epitopes are defined as the antigen segments that bind to major histocompatibility
molecules. The major histocompatibility complex (MHC) is the cell surface molecules in verte-
brates that are encoded by a specified gene family. The MHC molecules are of two sorts:
MHC-I and MHC-II. MHC-I molecules usually present epitopes of 9 amino acids, whereas epi-
topes binding to MHC-II may consist of 12-25 amino acids. In the study, we discuss the
MHC-I restricted T-cell epitopes, which are also known as ‘CTL epitopes’. In the following
context, T-cell epitopes refer to the CTL epitopes.

Wet methods that recognize T-cell epitopes are laborious and time-consuming, while
computational methods are capable of reducing time and saving resources for the development
of epitope-based vaccines. In recent years, the increasing coverage of experimental data and the
development of intelligent techniques lead to the growth of computational methods. These pre-
diction methods are designed for different stages of intracellular antigen-processing pathway,
i.e. antigen cleavage [1-3], peptide transport [4-5] and MHC binding [6-17]. In addition,
some computational methods that integrate multiple pathway steps were further developed
[18-21].

In the design of vaccines, the primary consideration is to reduce risk and retain capability of
inducing immune responses. Immunogenicity is the ability to trigger immune responses. Some
studies showed that epitopes have the potential of activating the immune response but have
not always been immunogenic. In other words, some epitopes can activate the immune re-
sponse, and the others cannot. Because epitopes are classified into immunogenic epitopes and
non-immunogenic epitopes, the work of predicting immunogenic epitopes is challenging
and valuable.

A lot of studies [22-24] have been focused on crystal structures of the MHC-peptide com-
plexes, but few useful conclusions were drawn because of the limited number of complex struc-
tures. Considering the fact that there are much more epitope sequences than epitope structures
in databases, researchers make efforts to develop machine-learning prediction models based on
epitope sequences. As far as we know, four machine-learning methods were proposed to pre-
dict the immunogenic epitopes. POPI [25] is the first method for immunogenic epitope predic-
tion. This method selected 23 informative amino acid propensities from AAIndex database,
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and then utilized support vector machine classifier (SVM) to construct the prediction models.
POPISK [26] is a SVM-based method using the weighted degree string kernel. PAAQD [27]
adopted two novel sequence-derived features (the amino acid pairwise contact potentials and
the quantum topological molecular similarity), and the SVM-based predictor was constructed.
In the previous work [28], we proposed the average scoring ensemble method by combining
seven sequence-derived features. Specifically, individual feature-based classifiers were used as
base predictors, and the ensemble model takes the average of the outputs from base predictors
for prediction.

To the best of our knowledge, there are some key issues for developing high-accuracy mod-
els. Firstly, the accuracy of models is highly dependent on the diversity of features. In order to
achieve high-accuracy models, we should consider as many sequence-derived features as possi-
ble. Secondly, how to effectively combine various features to build high-accuracy model is very
challenging. Considering the redundant information between features, the model using all fea-
tures does not necessarily lead to the best result than a model using a subset of features. There-
fore, we need to solve the problem that which features should be selected for modeling.

In this paper, we address above issues to make accurate predictions for the immunogenic
epitopes. In order to obtain the diversity of features, we consider 18 sequence-derived features,
which describe the sequential and structural characteristics of epitope sequences. Then, a ge-
netic algorithm (GA)-based ensemble method is proposed to simultaneously determine the op-
timal feature subset for ensemble learning and develop the high-accuracy ensemble model. In
the GA optimization, a chromosome is to represent a subset of features in the search space. For
each chromosome, the selected features are adopted to construct base predictors, and then an
ensemble model is developed by taking the average of outputs from base predictors. The fitness
score of a chromosome is the 10-fold cross validation AUC (area under ROC curve) of the cor-
responding ensemble model on the training set. After an initial population is generated, the
population is updated by three operators: selection, mutation and crossover. The objective of
GA is to search for the optimal feature subset in the large search space, which leads to the en-
semble model with best AUC score. Compared with the state-of-the-art methods, the proposed
GA-based ensemble method yields much better performances on benchmark datasets, indicat-
ing it is a promising tool for the immunogenic epitope prediction.

Methods
2.1. Datasets

To the best of our knowledge, there are several immune databases such as SYFPEITHI [29]
and IEDB [30], which contain immunogenic epitopes. SYFPEITHI is a database with more
than 7000 MHC-binding peptide sequences. In addition, SYFPEITHI can provide the retrieval
of sequences and the epitope prediction. The Immune Epitope Database (IEDB) contains a cat-
alog of experimentally characterized T-cell epitopes. Moreover, the epitope structures, source
antigens and epitope-derived organisms are annotated. We retrieved MHC-binding peptides
with immunogenicity information from above databases, and compiled them in terms of MHC
alleles. However, after removing duplicate entries and high homology sequences, only the
MHC allele HLA-A2 contains enough epitope sequences (more than 100 sequences) for the
study on the immunogenic epitopes. Therefore, we directly adopt the datasets used in the pre-
vious studies [25-28].

We assess the performances of the proposed method on two publicly available datasets. One
dataset has been used in the development of POPISK [26]. It consists of 558 HLA-A?2 restricted
immunogenic epitopes and 527 non-immunogenic epitopes. This dataset named as TMMA2
dataset' is available at http://iclab.life.nctu.edu.tw/POPISK/download.php. The other dataset
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has been applied to PAAQD [27], and we name it ' PAAQD dataset'. This dataset contains 278
HLA-A2 restricted immunogenic epitopes and 101 non-immunogenic epitopes, available at
http://pirun.ku.ac.th/~fsciiok/PAAQD.rar. Two datasets have no duplicate sequences, and
IMMA?2 dataset contains much more epitope sequences than PAAQD dataset. We use IMMA2
dataset to analyze and evaluate the features, and compare the proposed methods with state-of-
the-art methods by using two benchmark datasets.

2.2 Sequence-Derived Features

Our work is to differentiate immunogenic epitopes from non-immunogenic epitopes. The first
step for the immunogenic epitope prediction is to represent the protein sequences with certain
encoding scheme. In this work, we extract 18 protein sequence-derived features that are com-
monly used to predict protein functions, with the aim of obtaining diversity. Seven out of 18
features have been utilized for the immunogenic epitope prediction, while the rest are taken
into account for the first time.

Physicochemical propensities: 11 physicochemical propensities from AAindex database
[31] (AAindex IDs: MEE]J800102, WOLS870102, CASG920101, NAKH900110, FASG760105,
FAUJ880105, CHAMS830107, QIAN880127, RACS820108, DIGM050101 and TANS770109)
were proved to be useful for the immunogenic epitope prediction [26].

Amino acid pairwise contact potentials (AAPPs) and quantum topological molecular simi-
larity (QTMS): AAPPs describes the potentials between peptide amino acids and MHC amino
acids. QTMS includes both physical and topological properties of peptides. Saethang et al. [27]
used AAPPs and QTMS descriptors to represent epitopes in the immunogenic epitope predic-
tion. Details about AAPPs and QTMS are available in [27].

Amino acid composition (AAC): the amino acid composition denotes the percentage of
each of 20 amino acids in a sequence [32], and the AAC of a sequence is a 20-dimensional
numeric vector.

Amino acid pair profile: the amino acid pair profile [33] of a sequence is a 400-dimensional
number vector, and each dimension is the percentage of an amino acid pair pattern.

Sparse profile: by encoding each amino acid type as a 20-bit vector with 19 bits set to zero
and one bit set to one, the sparse profile [34] of a sequence is obtained by merging the bit vec-
tors for its amino acids.

Pairwise similarity profile: the pairwise similarity profile [35] of a sequence is represented
by a numerical vector, which consists of the Smith-Waterman pairwise similarity scores be-
tween it and all sequences in the dataset.

Composition (CTDC), transition (CTDT), and distribution (CTDD): by dividing 20 amino
acids into three groups in terms of different amino acid attributes, CTDC, CTDT, and CTDD
[36] are respectively used to describe the global percent composition of each group in a se-
quence, global percent composition of group changes along the entire length of the sequence,
and distribution pattern of each group along the sequence.

Autocorrelation: autocorrelation descriptors [37] are defined based on the distribution of
amino acid properties along sequences. There are three kinds of autocorrelation, namely Nor-
malized Moreau-Broto autocorrelation, Geary autocorrelation and Moran autocorrelation.

Quasi-sequence-order (QSO): QSO [38] is to incorporate physicochemical distance matrix
between each pair of the 20 amino acids, and it reflects the sequence order coupling number
based on the physicochemical distance.

Pseudo amino acid Composition (PseAA): PseAA [39] is proposed to avoid losing the se-
quence-order information. PseAA of a sequence consists of two components. The first
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Table 1. Details about sequence-derived features.

Index

F1
F2
F3
F4
F5
F6
F7
F8
F9
F10
F11
F12
F13
F14
F15
F16
F17
F18

Feature Dimension Parameters Annotation
Physicochemical propensities 99 No parameter used in [26,28]
Amino acid composition (AAC) 20 No parameter used in [28]
Amino acid pair profile 400 No parameter used in [28]
Sparse profile 20 No parameter used in [28]
Pairwise similarity profile n No parameter used in [28]
AAPPs 360 No parameter used in [27,28]
QTMS 189 No parameter used in [27,28]
Amino acid composition (CTDC) 21 No parameter New feature
Amino acid Transition (CTDT) 21 No parameter New feature
Amino acid Distribution (CTDD) 105 No parameter New feature
Moran autocorrelation 8xA A, the lag of the autocorrelation New feature
Geary autocorrelation 8xA A, the lag of the autocorrelation New feature
MoreauBroto autocorrelation 8xA A, the lag of the autocorrelation New feature
Quasi-sequence-order (QSO) 40+2xA\ A, the number of sequence order factors New feature
Pseudo Amino Acid Composition (PseAA) 20+A A, the number of sequence order factors New feature
Amphiphilic Pseudo Amino Acid Composition (AmPseAA) 20+2xA A, the number of sequence order factors New feature
Predicted relative accessible surface areas (RASA) 9 No parameter New feature
Predicted secondary structure (SS) 27 No parameter New feature

* n is the number of sequences in the dataset, 0<A< L(sequence length), the new feature means that the features were not used in the immunogenic
epitope prediction

doi:10.1371/journal.pone.0128194.t001

component represents amino acid composition while the other component reflects the se-
quence-order information.
Amphiphilic Pseudo Amino Acid Composition (AmPseAA): AmPseAA [40] is an extension
of Pseudo-Amino Acid Composition, and it integrates a set of correlation factors that reflect
different hydrophobicity and hydrophilicity distribution patterns along a protein chain.
Secondary structures (SS) and relative accessible surface areas (RASA): secondary structures

and relative accessible surface areas of residues in a sequence are calculated by the SABLE pro-
gram [41]. The predicted SS is denoted as H, E or C (helix, sheet, coil). We use (1, 0, 0), (0, 1, 0)
and (0, 0, 1) to represent the residue that belongs to three types of secondary structures, respec-
tively. The predicted RASA of a residue is a real value between 0 and 100, representing the per-
centage of exposed area of the residue over its full area.

These features are summarized in Table 1.

2.3. The GA-Based Ensemble Method

Combining informative features helps to make high-accuracy prediction, because various fea-
tures describe different characteristics of immunogenic epitopes. However, redundant infor-
mation or unwanted noise is the main concern for feature combination.

In machine learning, the work that combines various features is also known as feature fu-
sion, whose purpose is to exploit features and remove the redundant information. Merging var-
ious feature vectors is a simple and widely used feature fusion approach, whereas the ensemble
learning is a sophisticated technique. Recently, ensemble learning attracts more and more in-
terests in bioinformatics for their unique advantages in dealing with high-dimensional and
complicated data [42-43].
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In this paper, we design a genetic algorithm (GA)-based ensemble method for the immuno-
genic epitope prediction. There are two crucial components for designing the ensemble system,
including base predictors and the rule for integrating base predictors. To develop the base pre-
dictors, the training sequences can be respectively encoded into different sets of feature vectors
by using different features, and the individual feature-based classifiers are built based on the
different sets of feature vectors. Here, the random forest (RF) [44] is adopted as the basic classi-
fication engine. Then, the individual feature-based RF classifiers are used as the base predictors.
Further, we adopt the average scoring ensemble rule to integrate base predictors, and it takes
the average of outputs from base predictors to make predictions.

Considering that each feature corresponds to a base predictor, there are 18 candidate base
predictors for the ensemble learning. As discussed above, the ensemble based on all features
does not always lead to the best result than an ensemble model based on a subset of features.
The key to our ensemble method is to select optimal features for base predictors, which can
lead to the best ensemble model. There are 262144 (2'%) possible feature subsets for 18 features,
and it is difficult to make the exhaustive search in such large search space. The genetic algo-
rithm (GA) is a search approach that mimics the process of natural selection. GA can effective-
ly search the interesting space and easily solve complex problems without requiring the prior
knowledge about the space and the problem. Here, we adopt GA to simultaneously determine
the optimal feature subset and build the high-accuracy ensemble model.

Fig 1 demonstrates the flowchart of the GA-based ensemble method. The data is split into
training set and testing set. The optimal feature subset and the corresponding ensemble model
are achieved on the training set, and then the model is applied to the testing set.

The first step of GA is to encode the possible solutions as the chromosomes. For 18 features,
a subset of features is naturally represented by a 18-dimensional binary vector, denoted as V =
{v1, V2, . . ., Vig}. The binary value 0 or 1 for each dimension indicates the absence or presence

‘ The start of GA-based ensemble method ‘

‘ Initialize a population of chromosomes
representing feature subsets

| Construct the ensemble models based on
chromosomes

Internal cross validation for the
ensemble models on the training set

Calculate AUC scores of ensemble models and use them
as the fitness scores of the corresponding chromosomes

Update the population «<N-| Termination condition satisfied?

\
Y
\ 4

The ensemble model based on the optimal feature subset

v

Make prediction for testing set

Fig 1. The flowchart of GA-based ensemble method.
doi:10.1371/journal.pone.0128194.g001
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of the corresponding feature. A good fitness function is essential to assessing the performance
of each chromosome. For each chromosome, base predictors are built by using selected features
in the chromosome, and then an average scoring ensemble model is developed. An internal
5-fold cross validation is implemented for the ensemble model on the training set, and AUC of
the ensemble model is taken as the fitness score of the chromosome. After randomly generating
an initial population, the population is updated by three operators: selection, crossover and
mutation, according to the fitness scores of chromosomes. GA optimization is to search for the
chromosome that maximizes the AUC score.

Here, we use the Matlab GA toolbox and Matlab random forest toolbox (http://code.google.
com/p/randomforest-matlab/) to implement the GA optimization and random forest classifi-
ers. The default parameters are adopted for random forests.

Results and Discussion
3.1. Performance Evaluation Metrics

The proposed methods are constructed on the benchmark datasets, and evaluated by the
10-fold cross-validation (10-CV). In the 10-CV, a dataset is randomly split into 10 subsets with
equal size. In each fold, one subset is used as the testing data and the rest is treated as training
data. The prediction model is trained on the training data, and then it is applied to the testing
data. This procedure is repeated until every subset is ever used for testing.

Here, we adopt several metrics to measure the performances of prediction models, namely
sensitivity (SN), specificity (SP), accuracy (ACC), Matthew’s correlation coefficient (MCC) and
the area under the ROC curve (AUC). These metrics are defined as follows.

N TP
" TP+ FN
TN
SP=———
TN + EP
TP + TN

ACC =
TP 4 TN + FP + FN
TP x TN — FP x FN

MCC =
\/(TP + FN) x (TP + FP) x (TN + FP) x (TN + FN)

where TP, TN, FP and FN are the number of true positives, the number of true negatives, the
number of false positives and the number of false negatives. The ROC curve is plotted by using
the false positive rate (1-specificity) against the true positive rate (sensitivity) for different cut-
off thresholds. AUC evaluates the performances regardless of any threshold, and it is adopted
as the primary metric in this study.

3.2. Evaluation of Various Features

Before constructing prediction models, we investigate the sequence-derived features and ana-
lyze their capabilities of discriminating immunogenic epitopes from non-
immunogenic epitopes.

As shown in Table 1, the dimensions of six sequence-derived features (e.g., indexed from
F11 to F16) are related to a parameter A, while the rest of features have fixed dimensions. For
the features indexed from F11 to F13, the parameter A denotes the lag of the autocorrelation;
while for the features indexed from F14 to F16, the parameter A denotes the additional length
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Table 2. The average AUC scores of individual feature-based models using different values for A, evaluated on IMMA2 by 20 independent runs of

the 10-CV.
Parameter A

Moran autocorrelation

Geary autocorrelation

MoreauBroto autocorrelation
Quasi-sequence-order

Pseudo Amino Acid Composition
Amphiphilic Pseudo Amino Acid Composition

doi:10.1371/journal.pone.0128194.1002

1 2 3 4 5 6 7 8 Optimal value

0.567 0.585 0.592 0.605 0.604 0.617 0.633 0.631
0.571 0.580 0.588 0.608 0.609 0.616 0.640 0.636
0.655 0.663 0.659 0.674 0.679 0.680 0.684 0.684
0.704 0.708 0.708 0.712 0.716 0.721 0.718 0.723
0.704 0.699 0.705 0.701 0.708 0.709 0.705 0.713
0.691 0.719 0.712 0.715 0.708 0.704 0.707 0.707

N oo 0o N N N

or dimensions of sequence order factors. Note that A is an integer and 1< =A< = L-1, where L
is the sequence length (e.g., L = 9 in our work). To test the impact of A on six features, the pre-
diction models are constructed based on these features, for which different values of A ranging
from 1 to 8 are adopted. We conduct 20 independent runs of 10-CV for each model to avoid
the bias of the data split, and the mean scores demonstrated in Table 2. It is observed that six
features are to some extent influenced by the parameter A. Take the Geary autocorrelation as
an example, the variation of A can cause a difference of approximately 7% AUC. The optimal
values of A that yield best results are used for six features in the following context.

Further, 18 sequence-derived features are evaluated on the IMMA?2 datasets. More specifi-
cally, prediction models are respectively constructed by encoding epitope sequences with vari-
ous features, and the AUC scores of individual feature-based models help to rank features. As
shown in Table 3, AUC scores of individual feature-based models range from 0.58 to 0.78. Ac-
cordingly, the performances of these features are categorized into three groups: 'Exceptional’
(>0.7),'Good' (< = 0.7 and >0.6) and ‘Poor’ (< = 0.6). In general, there are 10 ‘exceptional’
features, 7 ‘good’ features and 1 ‘poor’ feature. The predicted relative accessible surface area
(RASA) yields the best results, indicating the structural information is the most important clue
that recognizes the immunogenic epitopes.

Table 3. The average performances of different individual feature-based models, evaluated on IMMA2 by 20 independent runs of the 10-CV.

# Feature SN SP ACC Mcc AUC
F1 Physicochemical propensities 0.507 0.847 0.672 0.377 0.738
F2 Amino acid composition (AAC) 0.574 0.701 0.636 0.289 0.693
F3 Amino acid pair profile 0.541 0.793 0.664 0.348 0.718
F4 Sparse profile 0.523 0.811 0.663 0.352 0.725
F5 Pairwise similarity profile 0.692 0.680 0.687 0.375 0.741
F6 AAPPs 0.550 0.813 0.678 0.382 0.747
F7 QTMS 0.507 0.825 0.662 0.354 0.732
F8 Amino acid composition (CTDC) 0.730 0.523 0.629 0.262 0.667
F9 Amino acid Transition (CTDT) 0.512 0.742 0.624 0.266 0.671
F10 Amino acid Distribution (CTDD) 0.592 0.743 0.666 0.340 0.720
F11 Moran autocorrelation 0.337 0.868 0.595 0.246 0.633
F12 Geary autocorrelation 0.333 0.861 0.589 0.238 0.640
F13 MoreauBroto autocorrelation 0.411 0.847 0.623 0.293 0.684
F14 Quasi-sequence-order (QSO) 0.626 0.724 0.674 0.352 0.723
F15 Pseudo Amino Acid Composition (PseAA) 0.661 0.657 0.659 0.325 0.713
F16 Amphiphilic Pseudo Amino Acid Composition (AmPseAA) 0.664 0.646 0.655 0.325 0.719
F17 Predicted relative accessible surface areas (RASA) 0.643 0.781 0.710 0.430 0.783
F18 Predicted secondary structure (SS) 0.917 0.295 0.615 0.273 0.585

doi:10.1371/journal.pone.0128194.1003
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Table 4. The absolute values of correlation coefficients of AUC scores yielded by individual feature-based models
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18

F1 1.00 057 000 050 0.18 051 067 007 051 041 005 019 005 038 049 039 019 0.34
F2 057 100 018 069 052 042 056 0.11 029 040 007 027 002 060 056 038 027 0.02
F3 0.00 0.18 100 008 002 002 030 022 015 009 020 0147 019 005 0.02 026 0.13 0.04
F4 050 069 008 100 063 047 082 003 053 049 0.17 001 002 041 045 015 027 0.13
F5 0.18 052 002 063 100 051 050 0.01 042 003 028 019 037 033 013 022 0.01 0.12
F6 0.51 042 0.02 047 051 100 068 010 045 019 004 008 028 0.11 0.09 029 0.14 0.10
F7 067 056 030 08 050 068 100 005 053 044 026 012 001 039 040 0.12 0.16 0.24
F8 0.07 011 022 003 001 010 005 100 007 0.07 006 067 010 014 038 0.10 0.02 o0.21
F9 0.51 029 015 053 042 045 053 007 100 039 003 012 041 021 033 020 0.08 0.19
F10 0.41 040 009 049 003 019 044 007 039 100 012 005 003 056 065 017 033 0.02
F11 005 007 020 017 028 004 026 006 003 012 100 0.17 045 019 0.10 030 0.00 0.40
F12 019 027 0417 001 019 008 012 067 012 005 0.17 100 029 026 023 025 0.18 023
F13 005 0.02 019 002 037 028 0.01 010 041 003 045 029 100 0.18 002 028 031 022
F14 038 060 005 041 033 011 039 014 021 056 019 026 018 100 080 048 0.13 0.08
F15 049 056 002 045 013 009 040 038 033 065 010 023 002 080 100 050 0.15 0.02
Fi16 039 038 026 015 022 029 012 010 020 017 030 025 028 048 050 1.00 025 0.05
F1i7 019 027 013 027 001 014 016 002 008 033 000 0.18 031 013 0.15 025 1.00 0.35
F18 034 0.02 004 013 012 0.10 024 0.21 019 002 040 023 022 008 0.02 005 035 1.00

doi:10.1371/journal.pone.0128194.t004

3.3. Analysis on Redundant Information between Features

The sequence-derived features display different capability of predicting immunogenic epitopes.
However, the redundant information or correlation between features may have the negative
impact on combining these features.

To investigate the correlations between features, the individual feature-based models are
evaluated on IMMA?2 dataset by 20 independent runs of 10-CV, and Pearson correlation coeffi-
cients are calculated between the AUC scores of any two individual feature-based models. In
statistics, Pearson correlation coefficient is a widely used measure of the linear dependence be-
tween two variables. The correlation coefficient is a real value between -1 and 1, where 1 is to-
tally positive correlation, 0 is no correlation, and —1 is totally negative correlation. Here, we
take the absolute values of correlation coefficients to measure the redundant information or
correlations between features. The results in Table 4 show some features are highly correlated,
such as F6 and F1, F6 and F7, indicating the difficulty of utilizing these features.

In order to test the negative impact of redundant information, we directly combine the
features by merging feature vectors. Here, seven feature combinations are generated by ad-
ding one feature once, in descending order of their AUC scores presented in Table 3. For sim-
plicity, we do not test all feature combination, but it would not influence our analysis. For each
feature combination, different groups of feature vectors are merged, and then the prediction
model is constructed. According to Table 5, the model based on AAPPs and RASA yields the
best results. Therefore, we can conclude that more features do not necessarily lead to better
performance.

3.4. Performances of GA-based Ensemble Method

Given a variety of sequence-derived features, selecting features that are used for base predictors
is the key to building high-accuracy ensemble model. Therefore, we apply GA to determine the
optimal subset and develop the ensemble model.
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Table 5. The average performances of models merging different feature vectors, evaluated by 20 independent runs of the 10-CV.

#

Combination 1
Combination 2
Combination 3
Combination 4
Combination 5
Combination 6
Combination 7

Feature SN SP ACC MCC AUC

F17+F6 0.692 0.758 0.724 0.455 0.799
F17+F6+F5 0.658 0.767 0.711 0.430 0.783
F17+F6+F5+F1 0.663 0.763 0.712 0.430 0.782
F17+F6+F5+F1+F7 0.652 0.774 0.711 0.431 0.783
F17+F6+F5+F1+F7+F4 0.639 0.782 0.708 0.429 0.782
F17+F6+F5+F1+F7+F4+F14 0.631 0.793 0.710 0.432 0.782
F17+F6+F5+F1+F7+F4+F14+F10 0.653 0.770 0.710 0.428 0.781

doi:10.1371/journal.pone.0128194.t005

The configurations for GA are described as follows. The initial population has 100 chromo-
somes. In the update of population, the elitist strategy is used for the selection operator, and de-
fault parameters in the Matlab GA toolbox are adopted for the mutation probability and
crossover probability. The population update may terminate when the change of best fitness
scores is less than the default value of 1E-6 or the max generation number of 100 is reached.

The results of GA-based ensemble method on IMMA?2 dataset and PAAQD dataset are
given in Table 6. The GA-based ensemble method produces the AUC score of 0.846 on
IMMAZ2 dataset and AUC score of 0.829 on PAAQD dataset. We compare the ensemble mod-
els with the individual feature-based models, according to Table 2 and Table 6. Clearly, the
GA-based ensemble method produces much better results, indicating this ensemble approach
can effectively combine various features to enhance performances.

Further, we analyze the optimal subsets that are identified by GA. In each fold of 10-CV, the
optimal feature subset is automatically determined by internal cross validation on the training
set. There are 200 optimal feature subsets (20x10) for 20 independent runs of 10-CV. Here, we
count the frequencies of features appearing in the optimal subsets, and then we may have some
useful observations from the results in Table 7. Firstly, these optimal feature subsets are differ-
ent, because of the different training data. Secondly, the optimal feature subsets do not consist
entirely of the highly ranked features. Instead, an optimal subset may include some ‘poor’ fea-
tures. For example, the secondary structure (F18) is ever included in 18 optimal subsets. Third-
ly, size of optimal subsets ranges from 2 features to 5 features. In conclusion, the optimal
feature subset for the ensemble model depends on the training data, and identifying the opti-
mal feature subset is necessary for building high-accuracy models.

3.5. Comparison with Benchmark Methods

As far as we know, four computational methods (POPI [25], POPISK [26], PAAQD [27] and
our previous method [28]) were proposed to predict immunogenic epitopes. Therefore, we
adopt these methods as benchmark methods for comparison.

In this paper, we compare the proposed GA-based ensemble method with four state-of-the-
art methods on IMMA?2 dataset and PAAQD dataset. The models are evaluated by 10-fold
cross validation. In addition, the significance of improvements is tested by
statistical techniques.

Table 6. The average performances of GA-based ensemble method on benchmark datasets, evaluated by 20 runs of 10-CV.

Dataset

IMMA2
PAAQD

SN

0.715
0.919

doi:10.1371/journal.pone.0128194.1006

SP ACC MCC AUC
0.812 0.762 0.534 0.846
0.534 0.817 0.509 0.829
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Table 7. The frequencies of features in the optimal feature subsets.

Index F1 F2 F3 F4 F5 F6 F7 F8 Fi1 F13 F15 F16 F18

Frequencies 4 0 17 3 145 77 97 0 0 0 24 11

doi:10.1371/journal.pone.0128194.t007

Table 8. The average performances of different models evaluated by 20 independent runs of 10-CV.

Dataset Method SN SP ACC McC AUC

IMMA2 POPI N.A. N.A. 0.60 0.19 0.64
POPISK N.A. N.A. 0.68 0.37 0.74
PAAQD 0.523 0.832 0.673 0.379 0.747
Our previous method 0.573 0.818 0.692 0.406 0.766
GA-based ensemble method 0.715 0.812 0.762 0.534 0.846

PAAQD PAAQD 0.508 0.898 0.612 0.373 0.749
Our previous method 0.548 0.902 0.642 0.403 0.773
GA-based ensemble method 0.919 0.534 0.817 0.509 0.829

*N.A. means data not available.

doi:10.1371/journal.pone.0128194.t008

Table 9. The statistics of improvements over benchmark methods (significance level 0.05).

Dataset Method POPI POPISK PAAQD Our previous method

IMMA2 GA-based ensemble method 1.9E-16 3.0E-11 4.0E-22 1.3E-20

PAAQD GA-based ensemble method N.A. N.A. 3.3E-14 3.5E-12

*N.A. means data not available.

doi:10.1371/journal.pone.0128194.t009

First of all, we have to obtain the 10-CV performances of different methods. The source
codes for POPI and POPISK are not publicly available, and it is difficult to correctly replicate
these methods because details are ambiguous. For the fair comparison, we have to directly
adopt their results, which were reported in [25, 26]. Although 20 independent runs of 10-CV
were ever implemented for POPI and POPISK on IMMA?2 dataset, only the average scores are
available in the publications, and some scores such as sensitivity and specificity are not provid-
ed. The standalone R package of PAAQD can be downloaded at http://pirun.ku.ac.th/~fsciiok/
PAAQD.rar, and we could replicate PAAQD to obtain the results on IMMA?2 dataset and
PAAQD dataset. Therefore, we conduct 20 independent runs of 10-CV for PAAQD, our previ-
ous method and GA-based ensemble method to obtain the scores.

As shown in Table 8, POPI [25], POPISK [26], PAAQD [27] and our previous method [28]
produce the AUC scores of 0.64, 0.74, 0.747 and 0.766 on the IMMA?2 dataset, while the GA-
based ensemble method produces the AUC score of 0.846. The GA-based ensemble method
also yields much better performances than PAAQD [27] and our previous method [28] on the
PAAQD dataset, enhancing the AUC scores from 0.773 to 0.829.

Although the GA-based ensemble method yields much better performances than bench-
mark methods, we further adopt the statistical technique to test the significance of performance
improvements. Since we implemented 20 independent runs of 10-CV for PAAQD method, our
previous method and GA-based ensemble method, we obtain 20 samples for each method by
considering the AUC score in a run as a sample. Therefore, the paired t-test is used to compare
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GA-based ensemble method with PAAQD and our previous method. As discussed above, only
the average scores of 20 runs were given for POPI and POPISK [25, 26]. Following the work of
PAAQD [27], we have to take the one-sample t-test to test 20 samples of the GA-based ensem-
ble method against the average AUC scores of POPI and POPISK. The results in Table 9 indi-
cate that the improvements of the GA-based ensemble method over benchmark methods are
statistically significant (P<0.05 in terms of AUC scores).

There are some reasons for the superior performances of the GA-based ensemble method.
Firstly, we consider a great number of sequence-derived features, which can guarantee the di-
versity for ensemble learning. Secondly, the GA-based ensemble method automatically deter-
mines the optimal feature subsets for base predictors, for the purpose of incorporating the
useful information and reducing the information redundancy. Thirdly, the ensemble model
equally treats base predictors, and the ensemble rule does not use any prior knowledge that
may affect the performances.

Conclusion

The prediction of T-cell immunogenic epitopes is a crucial task in the immunoinformatics,
which can facilitate the epitope-based vaccine design. In this paper, we explore a wide variety
of sequence-derived features that make differences between immunogenic epitopes and non-
immunogenic epitopes. Then, we propose the GA-based ensemble method to automatically se-
lect the optimal feature subset for base predictors, and develop the ensemble model for the im-
munogenic epitope prediction. When compared with the state-of-the-art methods POPI,
POPISK, PAAQD and our previous method, the GA-based ensemble method produces much
better performances on the benchmark datasets, and the t-test analysis demonstrates that the
performance improvements of the GA-based ensemble method are statistically significant.
Nevertheless, there are some remaining spaces for improving our work. Currently, only the
MHC allele HLA-A?2 has sufficient immunogenic epitopes for the computational work. In the
near future, more immunogenic epitopes will be available, and the computational experiments
would be conducted on other MHC alleles. The source codes and datasets are available in sup-
porting information files (S1 File).
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