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Abstract
With the advent of high throughput technology, a huge amount of microRNA information

has been added to the growing body of knowledge for non-coding RNAs. Here we

present the Dietary MicroRNA Databases (DMD), the first repository for archiving and an-

alyzing the published and novel microRNAs discovered in dietary resources. Currently

there are fifteen types of dietary species, such as apple, grape, cow milk, and cow fat, in-

cluded in the database originating from 9 plant and 5 animal species. Annotation for each

entry, a mature microRNA indexed as DM0000*, covers information of the mature se-

quences, genome locations, hairpin structures of parental pre-microRNAs, cross-species

sequence comparison, disease relevance, and the experimentally validated gene

targets. Furthermore, a few functional analyses including target prediction, pathway en-

richment and gene network construction have been integrated into the system, which en-

able users to generate functional insights through viewing the functional pathways and

building protein-protein interaction networks associated with each microRNA. Another

unique feature of DMD is that it provides a feature generator where a total of 411 descrip-

tive attributes can be calculated for any given microRNAs based on their sequences and

structures. DMD would be particularly useful for research groups studying microRNA reg-

ulation from a nutrition point of view. The database can be accessed at http://sbbi.unl.edu/

dmd/.

Introduction
Empowered by revolutionary sequencing technology, microRNAs have been extensively discov-
ered in various dietary resources including plants (e.g. rice and tomato) and animals (e.g. milk
and meats). Given the broad implications of microRNA in health and disease [1–8], research en-
thusiasm for functional impacts of exogenous food microRNA in human cellular phenotypes
has soared, which warrants the efforts to build related bioinformatics tools and databases. The
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Dietary MicroRNA Database (DMD) represents the first repository in this domain for archiving
and distributing the published food-borne microRNAs in literatures and public databases.

There are several public databases focused on microRNA identification and targets predic-
tion that archive validated microRNAs with sequence, structure and interaction information.
For example, miRBase (http://www.mirbase.org) records 64,473 microRNAs from 223 species
[9] and MiRecords [10] hosts 2,705 records of interactions between 644 microRNAs and
1,901 target genes in 9 animal species. Databases such as TargetScan [11], Miranda [12] and
MirTarBase [13] provide information of the validated gene targets as well as the computation-
ally predicted targets. For example, 60% of human genes are regulated by microRNAs, partici-
pating in many major cellular processes such as cell growth, differentiation and apoptosis [14,
15]. In addition, microRNA expression data, although limited, are archived in public data-
bases such as GEO databases [16] and TCGA [17]. However, none of the aforementioned da-
tabases cover dietary information that may represent new horizon in microRNA research. For
example, miRBase has reported 808 microRNAs in bovine, whereas only 243 of them have
been found in cow milk [18] and 213 in the fat of cow beef [19]. Likewise, human breast milk
only contains 434 microRNAs, out of the total of 2,588 microRNAs in human [20]. We envi-
sion such diet-specific cohorts would be important for nutritionists and general biologists to
investigate microRNA dietary intake and analyze subsequent regulations in human health
and diseases. Expelling evidences sustaining our hypothesis include the following: it has been
recently discovered that human can absorb certain exosomal microRNAs from cow’s milk,
e.g., miR-29b and 200c, and that endogenous microRNA synthesis does not compensate for
dietary deficiency [21]; the biogenesis and function of such exogenous miRNAs are evidently
health related [21–24]. However, while the evidence in support of bioavailability of milk miR-
NAs is unambiguous, a recent report that mammals can also absorb plant miRNAs (e.g. miR-
168a) from rice [25] was met with widespread skepticism [26–29]. Based on these evidences,
challenging questions may be raised regarding how humans pick up microRNAs from diet
and what are the broader roles played by such exogenous microRNAs in human
disease processes.

In order to facilitate more advanced research related to dietary microRNAs, DMD was de-
veloped as the first repository for archiving and analyzing the published microRNAs discov-
ered in dietary plants and animals, such as cow milk, breast milk, grape, beef, pork, apple,
banana and etc. For each reported microRNA, various types of information have been covered,
including sequences, genome locations, hairpin structures of parental pre-microRNAs, disease
relevance, and experimentally validated gene targets. We also integrate an analytical pipeline
into this platform that includes cross-species sequence comparison, target prediction, gene en-
richment analysis and microRNA-mediated gene network construction, which we will intro-
duce in the following sections.

Compared to other microRNA-related databases, DMD also has a few unique features. For
example, a feature generation tool allows users to calculate a comprehensive set of molecular
discriminators based on the sequences and structures of any microRNA entry in the database
or uploaded on their own. These discriminators have been considered as important features for
microRNA identification and microRNA-mRNA interaction prediction and have been em-
ployed by many current tools in addition to the use of complementary seed sequences as major
motifs in animal and plant species [11, 30–34]. Based on the targets, one can extract the func-
tional pathways information and infer the functional impacts of the microRNAs through their
gene regulation [35, 36]. In the later section, we will use a case study to demonstrate the useful-
ness of this database.
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Materials and Methods

Database Construction and Access
Fig 1 shows the workflow of the data collection and analysis with DMD. Through literature
and database search, we compiled and reported microRNAs from 15 types of dietary species.
For each entry, the basic annotation page includes ten types of information including mature
sequences, genome coordinates, pre-microRNA sequence, hairpin structure, cross-species se-
quence comparison, disease relevance, and the experimentally validated and predicted gene
targets. For entries from public databases, e.g. miRBase, we have provided links to the external
annotation pages.

The DMD was created using a MySQL database, consisting of 25 tables (S1 Fig). The outline
(Fig 1) shows that the database content can be categorized into three areas, namely basics, an-
notation and analysis. First, many external databases are integrated within DMD to allow for
quick viewing and annotation of microRNAs. Second, there are the prediction tools, which
allow users to quickly view homologous microRNAs via the clustering analysis by CD-HIT
[37] and predict gene targets in their own species and in human. Finally, there is an intensive
process to annotate microRNAs into dietary species and tissues.

The S1 Fig shows the database design, table relationships and indexing patterns among
these tables. All information, including from external databases, to prediction tools and anno-
tation, are heavily connected, as can be seen from the schema. This allows for the information
within the database to be shared easily and quickly.

In addition to the MySQL databases, the graph database Neo4j (http://neo4j.org) was used
to model protein-protein interaction. The graph database consists of two different types of
nodes, a microRNA and a protein node, and two types of edges, a protein-protein interaction
undirected edge, and a microRNA to protein regulation directed edge.

The information of DMD can be freely accessed from http://sbbi.unl.edu/dmd/. Data sub-
mission and download can be accessed through a secure user login system.

Cross-species Sequence Comparison
In order to assess the sequence conservation of each microRNA during evolution, we con-
ducted sequence alignment and comparison using CD-HIT [37] where the microRNA with

Fig 1. DMD construction workflow and the outline of data content.

doi:10.1371/journal.pone.0128089.g001
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similar sequences can be grouped into the same clusters. In this analysis, each cluster represents
a collection of microRNAs that share identical or highly similar sequences (with identity higher
than 95% of the sequence length), which could originate from various species, e.g. homologous
microRNAs. Within the cluster, the user will be able to view the microRNA name, sequence
alignment, associated gene targets and diseases, along with the option of viewing information
among diet-only or all species.

Querying the Database (Browsing and Searching)
Users are able to browse microRNAs by species using the browse page. Accessing each species
will output a whole list of microRNAs specifically discovered in that dietary species. For exam-
ple, microRNAs under “cow milk” and “cow fat” are subsets of all known microRNAs from bo-
vine organism. In addition to being able to browse by species, there are three methods of
searching the datasets, by “ID” (DMD index number, e.g. DM00001), “Name” (microRNA
name, e.g. bta-miR-29b or part of the name, e.g. 29b) or “Sequence”(either mature or pre-
microRNA sequences, e.g. ugagguaguagguuguauaguu). Again, the search can be constrained
within mature microRNAs or precursors according to the user defined criteria. All outputs
from the search are organized initially by their unique DMD identifiers, but the results may be
re-sorted by microRNA name, or sequence.

Experimental and Predicted Targets
Experimental targets information was extracted from miRTarBase [38], which contains 18 spe-
cies and 51,460 miRNA-target interactions. A few of computational tools were included for tar-
get prediction, especially for species without validated target information, including MirTarget
[39], targetScan [11] and psRNAtarget [40]. Please note prediction could be specifically de-
signed for certain organism, e.g. human specific or plant specific. All microRNA sequences will
be also subject to a target prediction against human genome no matter whether predictions on
their own genomes are available or not.

Functional Analysis Based on MicroRNA Targets
According to the predicted and experimental targets for each microRNA entry, users can
choose to run a pathway enrichment analysis on selected targets. 1,955 pathways from KEGG
[41] are included. Modified p-value was calculated for each relevant pathway based on Fisher’s
exact test on queried targets against the whole genome. In addition to the pathway enrichment
analysis, protein-protein interaction (PPI) network [42] was employed to visualize the micro-
RNA-mRNA regulation network.

Feature Construction
As molecular properties of microRNA sequences and structures are key for target identifica-
tion, we have developed a feature page to allow users to calculate for any given microRNA se-
quences a list of features categorized into two classes: sequence-based features and secondary
structure features. Particularly, for each mature miRNA, features were generated on both ma-
ture sequences and the corresponding pre-miRNA sequences, such as existence of palindromic
sequences, sequence length and the composition of monomers and dimers. Such features have
been shown to be discriminants when used for machine learning [18, 31, 32, 43–46].

Secondary structure features were calculated based on the pre-miRNA sequences. For exam-
ple, RNAfold [47] was employed to predict secondary structure and calculate Minimum Free
Energy (MFE) [48]. Based on the predicted structure of pre-miRNA, 32 triplet features and 11

A Database Specific for Dietary MicroRNAs

PLOSONE | DOI:10.1371/journal.pone.0128089 June 1, 2015 4 / 13



base-paired features were calculated, such as A ((((the frequency of 3 paired nucleotides lead-
ing with A) and %pairGC (percentage of the paired G-C bases). Additionally, RNAshape was
used to map secondary structures to tree-like domain of shapes, retaining adjacency and nest-
ing of structural features, but disregarding helix length [49]. STOAT, packaged in the NOBAI
web server, was utilized to compute Shannon Entropy (Q) and Frobenius Norm (F) [50]. See
Table 1 for a complete list of features.

Results and Discussion
As a dietary microRNA database, DMD acts as the first repository archiving microRNA se-
quence and annotation that are related to any dietary species. Currently there are 15 dietary
species have been curated in DMD, including five animal species (human, chicken, cow, pig
and salmon) and nine plant species (soybean, tomato, corn, apple, orange, banana, grape, rice,
and wheat). Please note that dietary species might originate from the same biological organism.

Table 1. List of features available for generation.

Category Feature Details Feature
Dimensions

Reference

Primary
Sequence

Single Nucleotide Frequency 4 x 31 [31, 46]

Pairwise Nucleotide Frequency 16 x 31 [31, 32, 43, 46]

Triplet Nucleotide Frequency 64 x 31 [31, 43, 46]

Quadruplet Nucleotide Frequency 256 x 31 [46]

A + U Frequency 1 x 31 [43, 44]

G + C Frequency 1 x 31 [31, 32, 43, 44,
46]

G + U Frequency 1 x 3 1 [43, 44, 46]

Number of Palindromes in Sequence 1 x 31 [45]

Length 1 x 31 [31]

Pairs of A-U in Premature microRNA 1 [43]

Pairs of G-C in Premature microRNA 1 [43, 44]

Pairs of G-U in Premature microRNA 1 [43]

Secondary
Structure

Nucleotide to RNAfold2 triplet match. (A(((, C(.(, G(. . . etc. . .) 32 [44, 46]

Minimum Free Energy, Normalized Minimum Free Energy, Frequency of Minimum Free
Energy Structures

3 [31, 32, 43, 44]

Ensemble Free Energy, Normalized Ensemble Free Energy 2 [32, 44]

Stem Statistics (Stems, Average Stem Length, Maximum Stem Length, Stem containing AU,
Stem containing GC, Stem containing GU)

6 [32, 43, 44]

Minimum Free Energy Statistics (mfe/G+C frequency, mfe/stems, mfe/unpaired nucleotides,
mfe/paired nucleotides, difference in mfe and efe, and ensemble diversity).

6 [32, 43, 44]

Percentage of sequence composing of pairs. 1 [46]

Frequency of Nucleotides that occur outside of UA, GU, GC pairs. 4 [46]

Predicted shape type probability base on RNAshapes3. 5 [51]

STOAT4 statistics (Shannon Entropy, Frobenius Norm, Base-pairing propensity, and mean
stem length)

4 [32]

1These features may be calculated for the premature sequence, mature sequence, and seed region sequence.
2RNAfold is an external tool that is run with the—p option to generate the partition function and base pairing probability.
3RNAshapes is an external tool that is run with the—t option to specify 5 different shape types.
4STOAT is an external tool that is run with the—x 31 option to signify 31 character states and the—v option to display a verbose option that is easier

to parse.

doi:10.1371/journal.pone.0128089.t001
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For example, the bovine microRNAs are organized under different dietary groups, including
cow milk and cow fat. Table 2 shows the statistics of different types of information archived for
each species.

Database Content
The information stored in DMD is categorized into Sequences and Annotation.

Sequences: Currently, there are 11,569 microRNA entries in DMD, including 5,217 unique
mature sequences and 5,865 unique pre-microRNA sequences. Duplicates contribute to the
total microRNA, which is due to a microRNA being present in multiple dietary species. DMD
follows the same naming standard for each entry, e.g. microRNA gene names have the form
hsa-miR-200, consistent with other databases, e.g. miRBase. The prefix signifies the organism,
in this case Homo Sapiens. Each entry in the database, indexed as DM0000�, represents the
mature sequence, with the information on the genomic location and hairpin sequence of the
parental pre-microRNA, indexed as DP0000�, which will have the corresponding miRBase
index if entries from both database are the same. Homologous microRNA loci in different spe-
cies are assigned the same number. Paralogous microRNAs are assigned names with lettered
and numbered suffixes, depending on whether the derived mature microRNA is identical in se-
quence, or contains sequence differences. The derived mature microRNAs were previously as-
signed names of the form dme-miR-100 and dme-miR-100�, for the guide and passenger
strand, respectively while hsa-miR-100-5p and hsa-miR-100-3p were assigned for sequences
derived from the 5’ and 3’ arms of the hsa-miR-100 hairpin precursor.

Annotation: In addition to the general information such as sequence and structure, DMD
has also generated features for each of the microRNAs. The feature page provides users
with 411 molecular attributes that can be calculated based on the microRNA sequences and

Table 2. Statistics of microRNAs and species in DMD.

Types Species Mature [9] Precursor [9] Exp. Target Pred. Target [38, 40]
#. of dietary miRNAs/#. of known

miRNAs in the organism
[38]

Animal Human Breastmilk 434/ 2588 402 / 1881 9995 17,416

Cow Milk 243 / 793 245 / 808 3 16,451

Cow Fat 205 / 793 229 / 808 5 16,269

Atlantic Salmon 498 / 498 371 / 371 - 17,319

Chicken 994 / 994 740 / 740 19 18,075

Pig 411 / 411 382 / 382 - 17,406

Plant Apple 203 / 207 202 / 206 - 13,098

Banana 360 / 360 180 / 180 - 16,537

Corn 309 / 321 166 / 172 - 16,456

Grape 108 / 186 157 / 163 - 12,236

Orange 047 / 064 057 / 060 - 12,655

Rice 634 / 713 526 / 592 - 21,355

Soybean 620 / 639 554 / 573 - 20,261

Tomato 040 / 110 068 / 77 - 10,827

Wheat 111 / 119 108 / 116 - 15,327

doi:10.1371/journal.pone.0128089.t002
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structures. Table 1 lists all the features included in this study, and also presents a non-exhaus-
tive list of studies that have reported use of a particular feature. Other annotation information
covers targets, sequence comparison against other species, and pathway and interaction net-
work analysis based on the either experimentally validated targets or computational predicted
targets. Specifically, the pathway information was compiled from KEGG. PPI information has
also been used to visualize the interaction network based on the given targets. Furthermore,
microRNA disease information was extracted from mirCancer and obesity, the Human micro-
RNA Disease Database [52], PhenomiR [53], and PubMed literature search.

The browse page allows users to access microRNAs under each dietary species while the da-
tabase metadata can be downloaded as plain text. For each microRNA sequence entry, there
are links to other databases providing the primary references that describe its discovery, links
to the evidence supporting the microRNA annotation, genomic coordinates and links to data-
bases of predicted and validated microRNA target sites. Entries can be searched either by se-
quence or keyword. Note the name cannot be used as a substitute for rigorous sequence
analysis.

Unique Analytical Workflow
DMD offers not only the basic access to sequence and annotation data stored in the database
but also a few analytical tools integrated as the web services. For examples, the feature
page allows users to calculate for any given microRNA a list of 411 features based on the se-
quences and structures; the cross-species sequence comparison was integrated on each entry
page. Other analyses are focused on the functional inference through microRNA target
identification.

Target prediction. On each annotation page for a given microRNA, we have provided tar-
gets from both experimental studies and computational prediction. A total of 91,032 experi-
mental targets have been included in this database while computational predictions are mainly
through MirTarget and psRNAtarget. Since the target prediction could be organism specific,
we separated the cases for plant and animal and provide for each microRNA the potential tar-
gets in human.

Functional inference and Network Analysis. Pathway enrichment analysis and gene net-
work construction have been implemented for users who are interested in functional analysis.
Protein-protein interaction visualization network can be seen from a microRNA entry’s pre-
dicted and experimental targets. First, selecting from the list of targets will display a new list,
which shows the interactions between two targets with up to three intermediates. Opting to
show the interaction will open a new window, which visualizes the interaction between the two
targets. Included in the network are the two selected targets, all its shared gene intermediates,
and all the microRNAs that regulate the two targets. We will illustrate in the following section
of these analyses.

In addition to the analysis, the password-protected upload page allows registered users to
deposit newly identified evidences of microRNA occurrences in food. Novel microRNAs can
be submitted after an article describing their identification is accepted for publication in a
peer-reviewed journal. Since this field needs fast gain of knowledge, we also allow users to up-
load their raw data prior to the publication, for instance, a single microRNA detected based
on PCR or a raw microRNA array or sequencing data that might under review or in-house
use. We will take these data in and analyze internally using the broadly used bioinformatics
standards.
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An Application Example to Reconstruct microRNA-29b Regulation
Network
Bta-miR-29b, a cow-milk microRNA that has been discovered in individuals involved in a milk
feeding study [21], is used for illustration of searching and analyzing a specific microRNA in
DMD. Fig 2 shows the returned entry when user searching by microRNA name on the
search page.

Selecting the ID DM00812 leads to the annotation page shown in Fig 3 and Fig 4. In the top
panel of Fig 3, it gives the basic sequence information along with its precursor sequence, struc-
ture, and coordinates. The panel labeled “Clusters” shows a list of homologs that have at least
95% sequence similarity in other species. In this case it shows the mir-29b homologs for chick-
en, human, and pig. This panel also shows the number of targets for each homolog as well as
associated diseases, if available. The top panel labeled “Targets” in Fig 4 shows experimentally
validated and computationally predicted gene targets. Users have the option to run gene set en-
richment analysis on the selected targets as well as visualize the protein-protein network.

Fig 2. Illustration of searching "bta-mir-29b" and the search results.

doi:10.1371/journal.pone.0128089.g002
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To use bta-mir-29b in a data mining capacity, users may then copy the microRNA sequence
and navigate to the feature page and calculate up to 411 features (Fig 5). Users may also submit
a fasta file to generate features. Clicking on “Generate Features” will begin the process of com-
putationally generating the features listed in Table 2. Once complete, a page containing tab-
separated values is presented to the user to copy and paste. The first line contains a header file
describing the features generated.

Concluding Remarks
Here, we introduce the Dietary MicroRNA Database (DMD) that distributes all published
microRNA sequence from dietary resources, for browsing and searching by sequence and key-
words, through a web interface (http://sbbi.unl.edu/dmd/). In addition, we have provided se-
quence comparison, target prediction and feature generation functionality on the websites.

Future Development
We will continue the literature search for newly published data in other dietary species to up-
date the database. We also plan to integrate the real-time analytical pipeline so users can sub-
mit their sequences and evaluate the results from their side. Another plan for this database is to
let user upload paired microRNA and gene expression profiles where both mRNA expression

Fig 3. The DMD entry for 'bta-mir-29b,' which contains sequence information, precursor annotation, and homologous sequences and their
associated targets and diseases.

doi:10.1371/journal.pone.0128089.g003
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Fig 4. Clockwise from top: "bta-mir-29b” shows 645 targets; the protein-protein network visualization; and the gene enrichment analysis and
pathway information.

doi:10.1371/journal.pone.0128089.g004

Fig 5. The feature generation page showing the entry of “bta-mir-29b” in fasta format and its output in a tab separated values format.

doi:10.1371/journal.pone.0128089.g005
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changes and microRNA expression alterations under the same conditions can be captured, so
that one can employ dynamic modeling [54] to infer the conditional-dependent dynamic
regulation network.

Supporting Information
S1 Fig. DMD Database Schema.
(TIFF)
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