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Abstract
Neurotoxicity is a main side effect of the anticancer drug oxaliplatin. The development of a

neuropathic syndrome impairs quality of life and potentially results in chemotherapy dose

reductions and/or early discontinuation. In the complex pattern of molecular and morpholog-

ical alterations induced by oxaliplatin in the nervous system, an important activation of glia

has been preclinically evidenced. N-Palmitoylethanolamine (PEA) modulates glial cells and

exerts antinociceptive effects in several animal models. In order to improve the therapeutic

chances for chemotherapy-dependent neuropathy management, the role of PEA was inves-

tigated in a rat model of oxaliplatin-induced neuropathy (2.4 mg kg-1 daily, intraperitoneally).

On day 21, a single administration of PEA (30 mg kg-1 i.p.) was able to reduce oxaliplatin-

dependent pain induced by mechanical and thermal stimuli. The repeated treatment with

PEA (30 mg kg-1 daily i.p. for 21 days, from the first oxaliplatin injection) prevented lowering

of pain threshold as well as increased pain on suprathreshold stimulation. Ex vivohistologi-
cal and molecular analysis of dorsal root ganglia, peripheral nerves and spinal cord

highlighted neuroprotective effects and glia-activation prevention induced by PEA repeated

administration. The protective effect of PEA resulted in the normalization of the electrophys-

iological activity of the spinal nociceptive neurons. Finally, PEA did not alter the oxaliplatin-

induced mortality of the human colon cancer cell line HT-29. The efficacy of PEA in neuro-

pathic pain control and in preventing nervous tissue alteration candidates this endogenous

compound as disease modifying agent. These characteristics, joined to the safety profile,

suggest the usefulness of PEA in chemotherapy-induced neuropathy.
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Introduction
Oxaliplatin is a chemotherapeutic agent effective in various solid tumours [1], [2], in particular,
it was introduced for the management of the advanced stages of colorectal cancer. Currently,
oxaliplatin is the regimen of choice for the adjuvant treatment of patients with curative resec-
tion of node-positive colon cancer [3], [4], [5]. The dose-limiting toxicity of this compound is
the development of peripheral neuropathy with glove-and-stocking distribution sensory loss,
combined with paresthesia, dysesthesia, and pain [6], [7]. Acute neurotoxicity of oxaliplatin
commonly reverses within a week [8], [9], on the contrary a chronic neurological syndrome,
related to the total cumulative dose as well as the dose-intensity of treatment [10] persists be-
tween and after treatments [11], [12], [13] negatively influencing patient’s quality of life.

There is no currently univocally-accepted proven therapy for oxaliplatin-induced neuropa-
thy [11], [14]. Most randomized controlled trials testing a variety of drugs with diverse mecha-
nisms of action failed to reveal an effective treatment [15], [16], [17]. Only symptomatic
adjuvant compounds, like duloxetine, demonstrated clinical benefit [18]. Neuroprotective,
safe, preventive agents as adjuvant to chemotherapy are a therapeutic need.

N-Palmitoylethanolamine (PEA), the endogenous amide between palmitic acid and etha-
nolamine, belongs to the family of fatty acid ethanolamides (FAEs), a class of lipid mediators.
PEA exerts antinociceptive and anti-hyperalgesic effects in several animal models [19], [20].
Moreover, PEA protects nervous tissue in neuropathic conditions [21], prevents neurotoxicity
and neurodegeneration [22], [23], and inhibits peripheral inflammation, mast cell degranula-
tion [24] and glial cell activation [25]. Its efficacy and safety were shown in a variety of clinical
trials focused on persistent pain treatment such as carpal tunnel syndrome, sciatic pain, low-
back pain, osteoarthritis, failed back surgery syndrome, diabetic neuropathy, neuropathic pain
in stroke and multiple sclerosis, chronic pelvic pain, and postherpetic neuralgia [26], [27], [28],
[29]. Recently, the efficacy of PEA in chemotherapy-induced painful neuropathy was suggested
since Truini et al. [30] demonstrated the efficacy of PEA in relieving pain and improving
neurophysiological functions in patients undergoing thalidomide and bortezomib treatment.

This evidence prompted us to investigate the role of PEA treatment in oxaliplatin-induced
neuropathic pain. The anti-neuropathic role of PEA was evaluated in oxaliplatin-treated ani-
mals by analyzing pain behavior in relation to molecular, morphological and functional protec-
tion of the nervous system.

Materials and Methods

Animals
For all the experiments described below, male Sprague-Dawley rats (Harlan, Varese, Italy)
weighing approximately 200–250 g at the beginning of the experimental procedure, were used.
Animals were housed in CeSAL (Centro Stabulazione Animali da Laboratorio, University of
Florence) and used at least one week after their arrival. Four rats were housed per cage (size
26 × 41 cm); animals were fed a standard laboratory diet and tap water ad libitum, and kept at
23 ± 1°C with a 12 h light/dark cycle, light at 7 a.m. All animal manipulations were carried out
according to the European Community guidelines for animal care (DL 116/92, application of
the European Communities Council Directive of 24 November 1986 (86/609/EEC). The ethical
policy of the University of Florence complies with the Guide for the Care and Use of Laborato-
ry Animals of the US National Institutes of Health (NIH Publication No. 85–23, revised 1996;
University of Florence assurance number: A5278-01). Formal approval to conduct the experi-
ments described was obtained from the Animal Subjects Review Board of the University of
Florence. Experiments involving animals have been reported according to ARRIVE guidelines
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[31]. All efforts were made to minimize animal suffering and to reduce the number of animals
used.

Oxaliplatin model and pharmacological treatments
Rats were treated with 2.4 mg kg-1 oxaliplatin (Sequoia Research Products, Pangbourne, UK),
administered intraperitoneally (i.p.) for 5 consecutive days every week for 3 weeks (15 i.p. in-
jections) [32]. Oxaliplatin was dissolved in a 5% glucose-water solution.

The model used for the present research is consistent with the clinical practice. 2.4 mg kg-1

oxaliplatin corresponds to the common human dosage (considering the Km factor 37 for the
conversion of animal doses to the Human Equivalent Dose; [33], [34]. The daily repeated ad-
ministration of 2.4 mg kg-1 performed in the animal model allows to obtain a cumulative dose
of 36 mg kg-1 corresponding to 1332 mg/m2. This dosage mimics the clinical cumulative oxali-
platin dose causing chronic neuropathy. Moreover, in our condition the inorganic platinum
plasmatic levels after 21 days of treatment is 3.573 ± 0.217 μg/mL in line to human plasma con-
centration [35].

Ultramicronized PEA (Epitech, Padova, Italy) was dissolved in PEG and Tween 80 2:1
(Sigma-Aldrich, Milan, Italy), and kept overnight under gentle agitation with a micro stirring
bar. Before injection, sterile saline was added so that the final concentrations of PEG and
Tween 80 were 20 and 10% v/v, respectively. PEA (10 or 30 mg kg-1) was administered acutely
i.p. on day 21 or daily starting from the first day of oxaliplatin administration up to day 20.
Control animals received equivalent volumes of vehicles. Behavioral tests were performed on
day 21. Morphological and biochemical tests were performed on day 21.

Paw-pressure test
The nociceptive threshold of rats was determined with an analgesimeter (Ugo Basile, Varese,
Italy), according to the method described by Leighton et al. [36]. Briefly, a constantly increasing
pressure was applied to a small area of the dorsal surface of the hind paw using a blunt conical
probe by a mechanical device. Mechanical pressure was increased until vocalization or a with-
drawal reflex occurred while rats were lightly restrained. Vocalization or withdrawal reflex
thresholds were expressed in grams. Rats scoring below 40 g or over 75 g during the test before
drug administration were rejected (25%). For analgesia measures, mechanical pressure applica-
tion was stopped at 120 g.

Von Frey test
The animals were placed in 20 cm × 20 cm Plexiglas boxes equipped with a metallic mesh
floor, 20 cm above the bench. Animals were allowed to habituate themselves to their enviro-
ment for 15 min before the test. An electronic Von Frey hair unit (Ugo Basile, Varese, Italy)
was used: the withdrawal threshold was evaluated by applying forces ranging from 0 to 50 g
with a 0.2 g accuracy. Punctuate stimulus was delivered to the mid-plantar area of each anterior
paw from below the mesh floor through a plastic tip and the withdrawal threshold was auto-
matically displayed on the screen. The paw sensitivity threshold was defined as the minimum
force required to elicit a robust and immediate withdrawal reflex of the paw. Measurements
were performed on the anterior paw since it shows the higher sensitivity to this test [37]. Vol-
untary movements associated with locomotion were not considered as a withdrawal response.
Stimuli were applied to each anterior paw at 5 s intervals. Measurements were repeated 5 times
and the final value was obtained by averaging the 5 measurements [38].
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Cold plate test
The animals were placed in a stainless box (12 cm × 20 cm × 10 cm) with a cold plate as floor.
The temperature of the cold plate was kept constant at 4°C ± 1°C. Pain-related behaviors (i.e.
lifting and licking of the hind paw) were observed and the time (s) of the first sign was re-
corded. The cut-off time of the latency of paw lifting or licking was set at 60 s.

Rota-rod test
The Rota-rod apparatus (Ugo Basile, Varese, Italy) consisted of a base platform and a rotating
rod with a diameter of 6 cm and a non-slippery surface. The rod was placed at a height of 25
cm from the base. The rod, 36 cm in length, was divided into 4 equal sections by 5 disks. Thus,
up to 4 rats were tested simultaneously on the apparatus, with a rod-rotating speed of 10 r.p.m.
The integrity of motor coordination was assessed on the basis of the time the animals kept
their balance on the rotating rod up to a maximum of 10 min (600 s). The number of falls from
the rod was also measured. After a maximum of 6 falls, the test was suspended and the time
was recorded.

Western blot evaluation
On day 21 sciatic nerves (1.5 cm segments were obtained at mid-thigh level approximately 1.0
cm proximal to the trifurcation), L4-L5 dorsal root ganglia (DRG) and the lumbar portion of
the spinal cord were dissected, frozen using liquid nitrogen and then homogenized on ice in
ice-cold hypotonic buffer A (10 mMHepes pH 7.9, 10 mM KCl, 0.1 mM EDTA, 0.1 mM
EGTA, 1 mMDTT, 0.5 mM PMSF with a protease inhibitor cocktail) using a Politron PT
13,000 D tissue homogenizer (Kinematica). After 15 min incubation on ice, the homogenates
were centrifuged at 1,000 g for 10 min at 4°C. Supernatants containing cytoplasm extracts were
stored at -80°C. Nuclear pellets were resuspended in ice-cold buffer B (1% Triton X-100, 150
mMNaCl, 10 mM TRIS-HCl pH 7.4, 1 mM EGTA, 1 mM EDTA, 0,2 mM PMSF, 20 mm leu-
peptin, 0,2 mM sodium orthovanadate) and the tubes were vigorously rocked at 4°C for 30 min
on a shaking platform. The nuclear extracts were centrifuged at 13,000 g for 15 min at 4°C. The
supernatants were frozen in aliquots at -80°C until use. Protein concentrations were deter-
mined by the Bradford method using bovine serum albumin (BSA) as standard. Proteins from
cytoplasm and nuclear fraction were added to sample buffer [0.125 M Tris-HCl, (pH 6.8), 4%
SDS, 20% glycerol, 10% β-mercaptoethanol, 0.004% bromphenol blue], and boiled in a water
bath for 5 min. Protein samples (40 μg per lane) were separated on denaturing 12% SDS poly-
acrylamide gel and transferred to a nitrocellulose membrane. Non-specific binding to the
membrane was blocked for 1 h at room temperature with 5% milk in PBS. Membranes were
then incubated at room temperature with primary antibody in milk-PBS- Tween 20 0.1%
(PMT) for IκB-α (1:1000; Santa Cruz Biotechnology) or for COX-2 (1:1500; Cayman Chemi-
cals), washed three times with PBS -0.1% Tween, and then incubated for 1 h at room tempera-
ture with a secondary antibody (peroxidase-conjugated goat anti-rabbit IgG, 1:2000; Jackson
ImmunoResearch, West Grove, PA). Polyclonal anti-actin antibody was used as an internal
standard for cytoplasm.

Signals were detected with enhanced chemiluminescence (ECL) detection system reagent
according to the manufacturer’s instructions (SuperSignal West Pico Chemiluminescent Sub-
strate, Thermo Fisher Scientific, Waltham, MA, USA). The relative expression of the protein
bands was quantified by densitometry with Gel Logic 2200 PRO software (Carestream Health,
Rochester, NY, USA) and standardized to β-actin levels. Images of blot signals (8 bit/600 dpi
resolution) were imported to analysis software (ImageQuant TL, v2003, Amersham Biosci-
ences, Piscataway, NJ, USA). A preparation of commercially available molecular weight
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markers (Precision Plus Protein Standard, Bio-Rad, Hercules, CA, USA), consisting of proteins
of molecular weight 10 to 250 kDa, was used to define molecular weight positions and as refer-
ence concentrations for each molecular weight.

Histologic and morphometric studies on dorsal root ganglia
On day 21, L4-L5 DRGs were excised from rats of each group, and fixed by immersion in 4%
neutral buffered formalin. The tissues were then washed with PBS, dehydrated with ascending
grades of reagent alcohol, cleared in two changes of xylene and infiltrated with paraffin (Dia-
path, Milan, Italy). DRGs were sliced to 5 μm, mounted on charged slides and stained with
Azan-Mallory method.

Cellular dimensions of L4-L5 DRGs were measured using a method adapted from Tomiwa
et al. [39] and Coggeshall et al. [40] and following previously established size criteria [41]. In
these sections, using a 100x oil immersion objective lens, the numbers of neurons with nuclei,
nucleoli, multiple nucleoli, and nucleolar eccentricity were counted. The nucleolus was consid-
ered eccentric when its center (or that of the largest one if there appeared to be more than one)
lay in the outer half of the radius of the nucleus. The results were expressed as percentage of
those cells with a visible nucleolus. Four consecutive sections for each animal were analyzed.
Soma areas were computed measuring between 50 and 100 cells for each animal from several
sections. The reported data were obtained by averaging the data of L4 and L5 ganglia. DRG
neurons with a soma area< 600 μm2 were classified as small, between 600 and 1200 μm2 as
medium and> 1200 μm2 as large.

Immunohistochemical evaluation of activating transcription factor 3
(ATF3) in the sciatic nerve and L4-L5 DRGs
On day 21, sciatic nerves and L4-L5 DRGs were rapidly dissected and paraffin-embedded.
10 μmDRGs sections and longitudinal sciatic nerve sections were obtained using a microtome
and mounted on Superfrost Plus slides. Sectioned tissues were incubated for 1 h at room tem-
perature in a blocking solution of 3% normal donkey serum in PBS with 0.3% Triton-X100 and
then incubated overnight at 4°C in primary antisera against the activating transcription factor
3 (rabbit anti-ATF3, 1:500; Santa Cruz Biotechnology, USA). Finally the sections were washed
in PBS and exposed to secondary antibodies and, in the sciatic nerve, visualized with VIP (Vec-
tor Laboratories, DBA Italia, Milan, Italy) in 0.1 M Tris buffer whereas in L4-L5 DRGs was re-
vealed with 3,3V-diaminobenzidine tetrachloride (DAB). For quantification of the number of
ATF3 positive cells within the sciatic nerve, a manual counting system was used as reported by
Peters et al. [42]. Four optic fields on individual sections were assessed and the results were ex-
pressed as number of ATF3 positive profiles/mm2 (data not shown).

Electrophysiological recordings
On day 21, rats were initially anaesthetized with sodium pentobarbital (50 mg/kg, i.p.). After
tracheal cannulation, a catheter was placed into the right external jugular vein, to allow contin-
uous infusion of propofol (5–10 mg/kg/h, i.v.) and spinal cord segments L4-L6 were exposed
by laminectomy, medially near the dorsal root entry zone up to a depth of 1200 μm [43]. An el-
liptic rubber ring (about 3 x 5 mm) was tightly sealed with silicone gel onto the surface of the
cord. This ring formed a trough with about 50 μl capacity over the spinal segments used for
topical spinal drug application and to gain access to spinal neurons. Animals were then secured
in a stereotaxic apparatus (David Kopf Instruments, Tujunga, CA, USA) supported by clamps
attached to the vertebral processes on either side of the exposure site [44], [45]. Body tempera-
ture was maintained at 37°C with a temperature-controlled heating pad. A glass-insulated
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tungsten filament electrode (3–5 MO) (FHC Frederick Haer & Co., ME, USA) was used to re-
cord single unit extracellular activity of dorsal horn nociceptive-specific (NS) neurons. NS neu-
rons were defined as those neurons responding only to high-intensity (noxious) stimulation
[46]. For control and treated animals, each neuron was characterized by giving a mechanical
stimulation to the injected paw by von Frey filament with a bending force of 5.8 N/20 mm2

(noxious stimulation) for 3 s with it slightly buckled [43] to confirm NS response patterns.
Only neurons that specifically responded to noxious hind paw stimulation, without responding
to stimulation of the surrounding skin/tissue, were considered for recordings. The recorded
signals were amplified and displayed on a digital storage oscilloscope to ensure that the unit
under study was unambiguously discriminated throughout the experiment. Signals were also
fed into a window discriminator, whose output was processed by an interface CED 1401 (Cam-
bridge Electronic Design Ltd., UK) connected to a Pentium III PC. Spike2 software (CED, ver-
sion 4) was used to create peristimulus rate histograms on-line and to store and analyze digital
records of single unit activity off-line. Configuration, shape, and height of the recorded action
potentials were monitored and recorded continuously using a window discriminator and
Spike2 software for on-line and off-line analysis. This study only included neurons whose spike
configuration remained constant and could clearly be discriminated from activity in the back-
ground throughout the experiment, indicating that the activity from one neuron only and from
the same neuron was measured. The neuronal activity was expressed Hz. At the end of the ex-
periment, each animal was killed with a lethal dose of pentobarbital. Groups of 3–6 rats have
been used and 2–3 NS neurons were recorded for each animal. The single extracellular record-
ings were performed on day 21 of treatment.

Immunohistochemistry of spinal cord and brain glia
On day 21, rats were sacrificed, the L4/L5 segments of the spinal cord were exposed from the
lumbovertebral column via laminectomy and identified by tracing the dorsal roots from their
respective DRG. The brains were removed, sliced in coronal sections and areas of interest were
identified using Paxinos and Watson’s atlas [47]. For all subsequent staining experiments,
three sections from each brain corresponding to 3.5, 4.5, and 5.5 mm caudal to the bregma
were selected for analysis.

Formalin-fixed cryostat sections (20 m) were incubated for 1 h in blocking solution (Bio-
Optica, Milan, Italy) at room temperature; and were then incubated for 24 h at 4°C in PBST
containing rabbit primary antisera diluted 1:1000 and 5% normal donkey serum. The primary
antibody was directed against Iba1 (rabbit, 1:1000; Wako Chemicals, Richmond, USA) for
microglial staining and against glial fibrillary acidic protein (GFAP; mouse, 1:5000; Chemicon,
Temecula, USA) for astrocyte staining. After rinsing in PBST, sections were incubated in don-
key anti-rabbit IgG secondary antibody labeled with Alexa Fluor 568 (1:1000, Invitrogen,
Carlsbad, USA) at room temperature for 1 h.

Negative control sections (no exposure to the primary antisera) were processed concurrent-
ly with the other sections for all immunohistochemical studies. We obtained a single optical
density value for the dorsal horns by averaging the two sides in each rat, and these values were
compared to the homologous average values from the vehicle-treated animals.

Images were acquired by a motorized Leica DM6000B microscope equipped with a
DFC350FX camera (Leica, Mannheim, Germany). Microglia and astrocyte morphology was as-
sessed by inspection of at least three fields (40X 0.75NA objective) in the dorsal horn and cere-
bral areas per section.

Quantitative analysis of GFAP and Iba1-positive cells was performed by collecting at least
three independent fields through a 20X 0.5NA objective. GFAP-positive cells were counted
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using the “cell counter” plugin of ImageJ, while Iba1-positive cells were quantified by means of
the automatic thresholding and segmentation features of ImageJ. The GFAP signal in immu-
nostained sections was quantified using FIJI software (distributed by ImageJ, NIH, Bethesda,
Maryland, USA) by automatic thresholding images with the aid of the "Moments" algorithm,
which we found to provide the most consistent pattern recognition across all acquired images.
Results (not shown), given as the area fraction (%) occupied by the thresholded GFAP signal,
revealed a common trend between GFAP expression and astrocyte cell number. Five spinal
cord sections and 5 sections for each brain area were analyzed for each animal.

Cell culture and treatments
The human colon cancer cell line HT-29 was obtained from American Type Culture Collection
(Rockville, MD). HT-29 were cultured in DMEM high glucose with 20% FBS in 5% CO2 atmo-
sphere at 37° C. Media contained 2 mM L-glutamine, 1% essential aminoacid mix, 100 IU ml-1

penicillin and 100 μg ml-1 streptomycin (Sigma, Milan, Italy). HT-29 cells were plated in
96-wells cell culture (1�104/well) plates, and after 48h they were treated with oxaliplatin (0–
100 μM) for 24 or 48h. PEA (10 μM) was used in the presence of oxaliplatin for 24 or 48h.
These concentrations were chosen according to previous published data [14], [48] and, as re-
gards oxaliplatin, with plasmatic concentration of treated rats.

Cell viability assay
HT-29 cell viability was evaluated by the reduction of 3-(4,5- dimethylthiozol-2-yl)-2,5-diphe-
nyltetrazolium bromide (MTT) as an index of mitochondrial compartment functionality. Cells
were plated into 96-well cell culture plates, and after 48h they were treated. Oxaliplatin, at vari-
ous concentrations, was incubated in DMEM in the presence of 10 μM PEA for 48 h and 5
days. After extensive washing, 1 mg/ml MTT was added into each well and incubated for 30
minutes at 37°C. After washing, the formazan crystals were dissolved in 150 μl dimethyl sulfox-
ide. The absorbance was measured at 550 nm. Experiments were performed in quadruplicate
on at least three different cell batches.

Statistical analysis
Behavioral measurements were performed on 12 rats for each treatment carried out in 2 dif-
ferent experimental sets. For behavioral experiments standard ANOVA followed by Fisher’s
protected least significant difference procedure were used. Repeated measures ANOVA fol-
lowed by Fisher’s protected least significant difference procedure were used for behavioral ex-
periments when two different time points were compared for the same group. For the
immunoblot quantitation a and the electrophysiological measurements One-way ANOVA
followed by Bonferroni post-test, for comparisons between groups were performed. Histolog-
ical, morphometric and immunohistochemical analyses were performed on 6 rats per group,
evaluating 6 sections each of sciatic nerve, L4-L5 DRG, spinal cord and S1 area for each ani-
mal. DRG values are reported as means of L4 and L5. One-way repeated measure ANOVA
followed by the Mann–Whitney test was used. Data from cell culture measurements are ex-
pressed as mean ± SEM and analysis of variance (ANOVA) was performed; a Bonferroni’s
significant difference procedure was used as post hoc comparison. All assessments were made
by researchers blinded to cell or rat treatments. Data were analyzed using the ‘‘Origin 8.1”
software (OriginLab, Northampton, USA). Differences were considered significant at a
P<0.05.
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Results

Effects of PEA on oxaliplatin-induced neuropathic pain
The daily treatment of rats with a clinically relevant dose of oxaliplatin (2.4 mg kg-1; [35]) in-
duces an increasing painful condition [37]. On day 21, oxaliplatin caused a lowering of the
threshold to cold stimuli which do not normally provoke pain (Cold plate test). The licking la-
tency decreased from 21.3 ± 0.8 s (Fig 1A; vehicle + vehicle) to 11.5 ± 0.6 s (oxaliplatin + vehi-
cle). Acute i.p. administration of PEA (30 mg kg-1) significantly relieved pain 30 min after
administration. The effect lasted for 60 min (Fig 1A). The doses of 1 and 10 mg kg-1 were inef-
fective. As shown in the S1 Table, PEA (30 mg kg-1 i.p.) did not alter the normal pain threshold
of vehicle-treated animals. The lack of antinociceptive properties in control rats was evaluated
by thermal (Hot plate and Cold plate tests) and mechanical (Paw pressure) stimuli (S1 Table).
The pain reliever effect of PEA (30 mg kg-1) was evaluated also after a daily repeated treatment
starting from day 1 to day 20 of the oxaliplatin protocol. In Fig 1B is shown the sensitivity to a
cold surface measured on day 21. Twenty-four hours after the last administration (pre), PEA-
treated rats showed a pain threshold increased by about 40%. A further PEA injection fully re-
verted oxaliplatin-induced alteration peaking 45 min after treatment (Fig 1B).

Oxaliplatin administration also altered the sensitivity to mechanical stimuli (Fig 2A and
2B). As measured with the electronic Von Frey apparatus, the withdrawal threshold to the
non-noxious mechanical stimulus was decreased in oxaliplatin-treated animals (day 21) from
32.1 ± 1.1 g, vehicle + vehicle, to 21.6 ± 1.1 g, oxaliplatin + vehicle (Fig 2A). On day 21, PEA
(30 mg kg-1 injected daily from day 0 to day 20) prevented pain threshold alteration by 55%
(pre). Sixty min after a further administration pain is fully reverted (Fig 2A; 60 min). The re-
sponse to a noxious mechanical stimulus revealed mechanical hypersensitivity: the weight tol-
erated on the posterior paw, measured by the Paw-pressure test, significantly decreased from
the control value of 69.2 ± 1.7 g (Fig 2B) to 40.5 ± 1.3 g for oxaliplatin-treated animals. PEA re-
peated treatment reduced oxaliplatin-induced hypersensitivity by about 62% (pre). In addition,
when tested 60 min after a new injection of PEA (30 mg kg-1), the weight tolerated is compara-
ble to that of control animals. On day 21, motor coordination was evaluated by Rota rod test
measuring the walking time and the number of falls in 600 s. In comparison with control rats
(time 600 s; number of falls 0.5 ± 0.2) oxaliplatin treated animals maintained the balance for
197.3 ± 43.2 s (Fig 2C) and fell down 5.1 ± 0.5 times (Fig 2D). On day 21, motor alteration was
significantly relieved (40% and 53% for time and number of falls, respectively) by repeated ad-
ministration of PEA (Fig 2C and 2D, pre). Sixty min after the new injection the relief increased
to 89% and 75%, respectively (Fig 2C and 2D, 60 min).

Effect of PEA on morphological and biomolecular derangement of the
peripheral and central nervous system
The histological determinations performed on lumbar DRGs from oxaliplatin-treated rats re-
vealed characteristic damage illustrated in Fig 3. PEA exerted a significant protective effect by
reducing the occurrence of multinucleolated neurons and the nucleolar eccentricity caused by
oxaliplatin by about 90% and 76%, respectively. PEA also prevented the decrease of the somatic
area of small and medium neurons highlighted in oxaliplatin-treated rats (Table 1).

To investigate the ATF3 expression profile in the sciatic nerve and lumbar 4–5 DRGs,
immunostaining analyses were performed in comparable sections of tissue from all treatment
groups. Fig 4 shows the significant ATF3 increase in both tissues after oxaliplatin treatment
compared to vehicle + vehicle treated rats. This difference in ATF3 protein expression levels
was drastically reduced in animals treated concurrently with oxaliplatin and PEA.
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Fig 1. Behavioral measures. Pain: thermal non-noxious stimuli. The Cold plate test was used to evaluate the pain threshold measuring the latency to pain-
related behavior (lifting or licking of the paw). a) Effect of PEA (1–30 mg kg-1 i.p.) after acute administration on day 21 of the oxaliplatin treatment (2.4 mg kg-1
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On day 21, IB- expression wasn’t modified by oxaliplatin treatment in DRGs and spinal
cord, while PEA repeated treatment (Fig 5 and S1 Fig; oxaliplatin + PEA) was able to increase
IB- expression by about 97% in both DRGs and spinal cord in comparison to oxaliplatin + vehi-
cle group. Moreover, PEA was able to decrease COX2 expression in the spinal cord by about
87% in comparison to oxaliplatin + vehicle group (Fig 5 and S1 Fig).

oxaliplatin daily i.p.); b) Effect of PEA (30 mg kg-1 i.p.) after repeated administrations performed daily starting from the first day of oxaliplatin administration.
Behavioral evaluations were performed on day 21, 24h after treatment (pre) and over time after a new injection. Control animals were treated with vehicles.
Each value represents the mean of 12 rats per group, performed in two different experimental sets. **P<0.01 versus vehicle + vehicle; ^P<0.05 and
^^P<0.01 versus oxaliplatin + vehicle.

doi:10.1371/journal.pone.0128080.g001

Fig 2. Behavioral measures. Pain:mechanical non-noxious and noxious stimuli. a) The Von Frey test was used to measure the pain threshold as a
response evoked by a non-noxious stimulus. b) Paw-pressure test was used to measure sensitivity to a mechanical noxious stimulus.Motor coordination.
The integrity of the animals’motor coordination was assessed using a Rota-rod apparatus measuring c) the time spent to keep the balance and d) the
number of falls, in 600 s. Animals were treated daily i.p. with 2.4 mg kg-1 oxaliplatin or vehicle. PEA (30 mg kg-1) was administered daily i.p. Behavioral
evaluations were performed on day 21, 24h after treatment (pre) and 60 min after a new injection. Control animals were treated with vehicles. Each value
represents the mean of 12 rats per group, performed in two different experimental sets. **P<0.01 versus vehicle + vehicle; ^P<0.05 and ^^P<0.01 versus
oxaliplatin + vehicle.

doi:10.1371/journal.pone.0128080.g002
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Effect of PEA treatment on NS neuron activity
The results are based on NS neurons at a depth of 1–3 mm from the surface of the spinal cord.
This cell population was characterized by a mean rate of spontaneous firing of 0.015 ± 0.002

Fig 3. Morphological aspects of the peripheral nervous system. The protective effect of repeated administrations of PEA was evaluated on oxaliplatin-
damaged DRGs on day 21. 5 μmDRG sections were stained by the Azan-Mallory method. Light micrographs (original magnification 20X) were analyzed by
measuring the incidence of eccentric nucleoli and multinucleolated neurons. Each value represents the mean of 12 rats per group, performed in two different
experimental sets. **P<0.01 versus vehicle + vehicle; ^^P<0.01 versus oxaliplatin + vehicle.

doi:10.1371/journal.pone.0128080.g003

Table 1. Morphometric determinations performed on the soma area of DRGNeurons.

Soma area (m2)

small neurons medium neurons large neurons
< 600 μm2 600–1200 μm2 > 1200 μm2

vehicle + vehicle 436.0 ± 6.8 966.9 ± 21.3 1346 ± 27.8

oxaliplatin + vehicle 358.6 ± 18.1** 825.2 ± 20.3** 1328.3 ± 23.7

oxaliplatin + PEA 401.2 ± 10.5^^ 894.3 ± 18.5^^ 1332.4 ± 26.1

**P<0.01 in comparison to vehicle + vehicle treated rats

^^P<0.01 vs oxaliplatin + vehicle group.

doi:10.1371/journal.pone.0128080.t001
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Hz. Thus, only cells showing this pattern of basal firing were chosen for the recordings. The
electrophysiological studies measured the onset of excitation (the time from the application of
the stimulus artefact to the first evoked spike exceeding the average baseline value + 2 standard
deviations), the frequency of the evoked excitatory responses and the duration of excitation
(the period in ms of the increased firing activity which exceeds the average baseline value + 2
standard deviations). No change in the spontaneous and evoked activity of NS neurons were
found in the control rats treated with vehicle (0.09 ± 0.002 Hz) (Fig 6) with respect to the naïve
(not shown). In contrast, we observed an overall NS neuron hyper-excitability in oxaliplatin
treated rats as compared to the control rats. In particular, we found a significant decrease in
the onset of the evoked activity (115 ± 18 ms, P<0.001) and an increase in the duration

Fig 4. ATF3 expression levels in sciatic nerve and L4-L5 DRGs. The protective effect of PEA was evaluated on the peripheral nervous tissue of treated
animals on day 21. A representative immunohistochemical staining for ATF3 in 10 μm longitudinal sciatic nerve sections is shown (original magnification
20X). Densitometric analysis was performed to obtain a quantitative measurement for sciatic nerve and DRG neurons. Each value represents the mean of 12
rats per group, performed in two different experimental sets. *P<0.05 and **P<0.01 versus vehicle + vehicle; ^P<0.05 and ^^P<0.01 versus oxaliplatin
+ vehicle.

doi:10.1371/journal.pone.0128080.g004
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(18 ± 1.8 s, P<0.001) and the frequency of the evoked activity (29.6 ± 2.3 Hz, P<0.001), n = 6,
(Fig 6).

Repeated PEA treatment, significant reverted the induced-oxaliplatin changes in the spinal
cord neuronal activity. In particular, PEA increased the onset (360 ± 18.36 ms, P<0.01) and re-
duced the frequency (16 ± 1.29 Hz, P<0.01) and the duration of the evoked activity (10 ± 0.9 s,
P<0.05), n = 6 21 days after the treatment as compared to oxaliplatin-treated rats (Fig 6).

Representative peri-stimulus time histograms show the activity of a single NS neuron in
control, oxaliplatin and oxaliplatin + PEA treated rats on day 21 (Fig 6A, 6B and 6C).

Effect of PEA treatment on glial cell activation profile
The central nervous system was analyzed to assess glial cells reorganization after PEA treat-
ment. In the spinal cord, repeated oxaliplatin injections (day 21) induced an increase in GFAP
staining (Fig 7), astrocyte density increased over the entire surface of the spinal cord,

Fig 5. Inflammation-related mediators.On day 21, protein expression levels of IκBα were quantified by immunoblot in a) DRG and b) spinal cord; c) protein
expression levels of COX2 were quantified by immunoblot in spinal cord Animals were treated daily i.p. with 2.4 mg kg-1 oxaliplatin or vehicle for 21 days.
PEA (30 mg kg-1) was repeatedly administered i.p. (daily for 20 days starting from the first day of oxaliplatin administration). Control animals were treated with
vehicles. Densitometric analysis is shown. β-actin normalization was performed for each sample. Each value represents the mean of 5 rats per group,
performed in two different experimental sets. ^P<0.05 and ^^P<0.01 versus oxaliplatin + vehicle.

doi:10.1371/journal.pone.0128080.g005

PEA Prevents Oxaliplatin Neurotoxicity

PLOS ONE | DOI:10.1371/journal.pone.0128080 June 3, 2015 13 / 24



particularly in the superficial laminae. PEA prevented the increase in the number of the dorsal
horn GFAP-positive cells by 66%. As depicted in S2 Fig, the microglial cell number in the spi-
nal cord (labeled immunohistochemically with antibodies against Iba1) was not altered on day
21 of the oxaliplatin protocol. On the contrary, at the supraspinal level, in somatosensory area
1 (S1) oxaliplatin increased the number of Iba1-positive cells (Fig 8) as well as astrocyte density
(Fig 9). PEA fully prevented the increase both in microglia and astrocyte cell number (Figs 8
and 9).

Effect of PEA on HT-29 cells in the presence of oxaliplatin
In order to evaluate the potential interaction between PEA treatment and the therapeutic prop-
erty of oxaliplatin, we measured the viability of the human colon cancer cell line HT-29.
Table 2 shows the lack of influence by PEA on the concentration-dependent (0.3–100 μM) oxa-
liplatin lethal effect after 24 and 48h incubation.

Fig 6. Electrophysiological recording of NS neuron activity. Representative peristimulus time histograms (PSTHs) show the responses of a single spinal
NS neuron to a mechanical noxious stimulation (von Frey filaments 5.8N/20mm2 for 3sec) in vehicle (A), oxaliplatin (B) and oxaliplatin + PEA (C) treated rats
on day 21 of treatment. The lower panels show the onset (E), the duration of excitation (F), and the frequency (G) of the evoked activity of NS neurons in the
three groups. Each point represents the mean ± S.E.M of 2–3 neurons recorded for each animal of different groups of rats (n = 3–6). ***P<0.001 indicates
significant differences versus vehicle + vehicle, #P<0.05 and ##P<0.01 indicate significant differences versus oxaliplatin + PEA.

doi:10.1371/journal.pone.0128080.g006
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Discussion
Painful chemotherapy-induced neuropathy can persist from months to years beyond chemo-
therapy completion, causing significant challenges for cancer survivors due to negative influ-
ence on function and quality of life [49], [50], [51], [52], [53]. Neurotoxicity may results in
chemotherapy dose reductions or early discontinuation. The overall incidence of CIPN is esti-
mated to be approximately 38% in patients treated with multiple agents [54]. Chemotherapy
combinations with higher incidences include those that involve platinum drugs, vinca alka-
loids, bortezomib, and/or taxanes [55]. The 2014 clinical practical guideline from the American
Society of Clinical Oncology states that there are no agents recommended for the prevention of
chemotherapy-induced neuropathic pain. High-quality, consistent evidence are insufficient,
the best available data support a moderate recommendation for treatment with duloxetine. Tri-
cyclic antidepressants, gabapentin, or topical gel containing baclofen, amitriptyline, and

Fig 7. Glial activation profile in the spinal cord. Astrocytes. The effect of repeated treatment with PEA (30 mg kg-1 daily i.p.) was evaluated in oxaliplatin-
treated rats on day 21. The number of GFAP-positive cells was measured in the dorsal horn of the spinal cord. Images (original magnification 20X) of
sections of lumbar spinal cord of oxaliplatin-treated animals (oxaliplatin + vehicle) are reproduced in comparison with control (vehicle + vehicle).
Representative immunohistochemical staining after PEA treatments is shown (20X). Each value represents the mean of 12 rats per group, performed in two
different experimental sets. *P<0.05 versus vehicle + vehicle; ^P<0.05 versus oxaliplatin + vehicle.

doi:10.1371/journal.pone.0128080.g007
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ketamine may be offered on the basis of data supporting their utility in other neuropathic pain
conditions given the limited other chemotherapy-induced neuropathic pain treatment options
[56]. In particular for oxaliplatin neurotoxicity, the most recent therapeutic advancement is the
combination of intermittent oxaliplatin administration and the use of concurrent calcium and
magnesium salts [57].

In the present research the efficacy of PEA, after acute or repeated treatment, was highlight-
ed in a preclinical model of oxaliplatin-induced neuropathy. PEA significantly reduced oxali-
platin-dependent pain, when evaluated as an increase upon suprathreshold stimulation
(hyperalgesia-related measurement) or as a decrease in pain threshold (allodynia-related mea-
surement). Furthermore, an improvement in motor coordination is evidenced. The pain relief
efficacy is maintained after repeated treatment excluding tolerance development. The repeated
administration protocol allows to maintain a controlled pain threshold, sensitive to the additive
effect of a new administration. Noteworthy, PEA is not analgesic since it does not modify the

Fig 8. Glial activation profile in the brain cortex.Microglia. The effect of repeated treatment with PEA (30 mg kg-1 daily i.p.) was evaluated in oxaliplatin-
treated rats on day 21. The number of Iba1-positive cells were measured in the somatosensory area 1. Representative immunohistochemical staining (20X)
and quantitative measurements are shown. Each value represents the mean of 12 rats per group, performed in two different experimental sets. *P<0.05
versus vehicle + vehicle; ^P<0.05 versus oxaliplatin + vehicle.

doi:10.1371/journal.pone.0128080.g008
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physiological pain threshold of control animals. The property to electively normalize condi-
tions of hypersensitivity is highlighted.

The pain reliever effect of PEA repeated administrations is accompanied by a protective ef-
fect from the alterations of the peripheral and central nervous system evoked by oxaliplatin
suggesting a disease modifying effect. In line with previous evidence [32], [37], [39], [58], [59],
detailed morphological analysis demonstrates that DRGs are a primary target for oxaliplatin
neurotoxicity. PEA prevents morphological derangements in DRGs as well as the significant
increase in ATF3 expression, a member of the ATF3/cAMP-responsive element binding pro-
tein (CREB) family [60] both in the DRG neurons and in the Schwann cells of the peripheral
nerve of oxaliplatin-treated-rats. The protective effects of PEA result in functional normaliza-
tion highlighted by the electrophysiological measurements performed in the spinal cord. Renn
and co-workers [34] observed an increased activity of wide dynamic range neurons in the spi-
nal dorsal horn of oxaliplatin-treated mice, the present data evidence an overall dorsal horn

Fig 9. Glial activation profile in the brain cortex. Astrocytes. The effect of repeated treatment with PEA (30 mg kg-1 daily i.p.) was evaluated in oxaliplatin-
treated rats on day 21. The number of GFAP-positive cells were measured in the somatosensory area 1. Representative immunohistochemical staining
(20X) and quantitative measurements are shown. Each value represents the mean of 12 rats per group, performed in two different experimental sets.
*P<0.05 versus vehicle + vehicle; ^P<0.05 versus oxaliplatin + vehicle.

doi:10.1371/journal.pone.0128080.g009
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nociceptive-specific neuron hyper-excitability. Consistently with the behavioral data, PEA i.p.
administered reduces the oxaliplatin-dependent changes in the spinal cord neuronal activity.
Accordingly, Luongo et al. [61] described the reduction of the formalin-dependent neuronal
activity induced by PEA when locally applied onto the dorsal horn.

Besides the neuronal damage and the neuronal maladaptive plasticity, glial cells have recent-
ly been recognized as a powerful modulator of pain. In models of trauma-induced neuropathy,
microglia appear to exert a key role in the initial phases of neuropathic pain whereas astrocytes
may be involved in its maintenance [62], [63]. In addition, glial inhibitors have been described
as pain relievers and glial cells are emerging as a new target for drug development [64], [65].
Despite the oxaliplatin limited ability to cross the blood brain barrier [66], [67], we previously
described the glial activation induced by oxaliplatin in spinal cord and brain areas, differently
according to cell type, anatomical region, and treatment time-points [37]. The increased cell
density of microglia and astrocyte is strongly related to pain hypersensitivity since the glial in-
hibitor minocycline and fluorocitrate fully prevent oxaliplatin-evoked pain [68]. The present
results reveal an inhibitory effect of PEA on microglia and astrocytes in the dorsal horn of the
spinal cord and in brain S1 with decreasing in the number of both cell types. Glial cells are a
target for PEA [25], accordingly PEA normalized spinal microglia and astrocyte activation in
the rat model of inflammatory pain induced by formalin [61] as well as after spinal cord trauma
in mice [69]. Moreover, we recently showed the property of PEA to attenuate morphine toler-
ance by a glia-mediated mechanism [70]. Interestingly, PEA seems to be able to modulate glial
cells instead to act as a general depressor of glial functions [71]. The homeostatic properties of
PEA may allow the inhibition of glial hyper-reactivity preserving neuroprotection (differently
from the glial blockers minocycline and fluorocitrate [68]), a housekeeping role of these cells
[72].

To this framework participates also the anti-inflammatory effects of PEA described in the
present results by increased IB- expression in both DRGs and spinal cord and decreased COX-
2 in the spinal cord. On the other hand, neither IκB-α, the protein that inactivates NF-κB pre-
venting its translocation to the nucleus and the transcription activation of κB-dependent genes
[73], nor COX-2, described together with its end product prostaglandin E2 involved in

Table 2. HT-29 cell viability after 24 and 48h incubation.

Cell viability %

24h incubation 48h incubation

Oxaliplatin concentration Control PEA Control PEA
(μM) (10 μM) (10μM)

0 100.0 ± 3.2 100.0 ± 3.2 100.0 ± 2.3 100.0 ± 2.3

0.3 98.9 ± 5.5 98.8 ± 5.3 92.3 ± 3.4 91.2 ± 4.2

1 98.4 ± 4.2 95.2 ± 4.8 92.9 ± 0.3 88.6 ± 5.1

3 94.4 ± 2.1 91.8 ± 3.2 91.0 ± 4.4 86.2 ± 6.3

10 92.2 ± 2.1* 87.2 ± 6.5* 83.5 ± 2.3** 84.8 ± 4.7**

30 86.5 ± 2.3** 83.5 ± 2.6** 83.4 ± 5.1** 79.4 ± 4.5**

100 74.9 ± 2.4** 71.7 ± 1.4** 57.4 ± 4.6** 56.5 ± 1.1**

HT-29 cells were treated with increasing concentrations of oxaliplatin (1–100 μM) in the presence or in the absence of PEA (10 μM). Incubation was

allowed for 24h or 48h. Cell viability was measured by MTT assay. Control condition was arbitrarily set as 100% and values are expressed as the

mean ± S.E.M. of three experiments.

*P<0.05

**P<0.01 in comparison to control (oxaliplatin 0 μM).

doi:10.1371/journal.pone.0128080.t002
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neuropathic pain development [74], are significantly modified by oxaliplatin. This evidence
confirms the limited role of inflammation in oxaliplatin neurotoxicity, as previously demon-
strated by a morphological analysis of the nervous system [37]. The predominance of the neu-
ropathic component in oxaliplatin-induced pain is suggested.

A complex panel of pharmacodynamic targets may account the present combination of ef-
fects on oxaliplatin-induced neuropathy. PEA increases the antioxidant defense reducing oxi-
dative stress [75], a characteristic feature of oxaliplatin neurotoxicity strongly related to pain
[76]. Moreover, the activation of the αsubtype of the peroxisome proliferator-activated recep-
tors (PPAR-α) has a pivotal role in PEA-mediated pain relief (after single [21] and repeated
[20] administrations) as well as in the neurorestorative properties after traumatic peripheral
nerve injury [21]. PPAR-α participates also to the PEA modulation of microglial cells [77].
PEA, through PPAR-α, induces allopregnanolone synthesis in astrocytes [78] and in the rat
spinal cord involving the de novo neurosteroid synthesis in the modulation of pain behavior
[79].

Nevertheless, PEA is known to mimic several endocannabinoid-driven actions even though
PEA does not bind CB1, CB2, and abn-CBD receptors [80]. An “entourage effect hypothesis”
has also been formulated on the basis of an activity enhancement of other endogenous com-
pounds (e.g. the endocannabinoid anandamide; Calignano et al., [19], by potentiating their af-
finity for a receptor or by inhibiting their metabolic degradation [81], PEA may indirectly
stimulate the transient receptor potential vanilloid type 1 (TRPV1) and the cannabinoid recep-
tors [25]. Interestingly, an alteration of spinal endocannabinoid (anandamide and 2-arachido-
noylglycerol) levels was demonstrated after cisplatin treatment in rat whereas the inhibition of
endocannabinoid hydrolysis alleviates chemotherapy-induced mechanical and cold allodynia
[82]. Anandamide, acutely injected, is effective against cisplatin-induced pain by a CB1-me-
diated mechanism [83].

Finally, it is important to highlight the absence of interaction between PEA and the lethal ef-
fect exerted by oxaliplatin on the human colon cancer cells HT-29, accordingly with the anti-
proliferative properties previously assessed in vitro [84], [85]. Moreover, the good tolerability
of PEA is described in several clinical studies [24], [86], [87].

Conclusions
PEA is able to control pain and prevent alterations of both the peripheral and central nervous
system induced in rat by oxaliplatin. Pea may offer a dual protective approach against etiologi-
cal factors and resulting maladaptative plasticity.

Supporting Information
S1 Fig. Inflammation-related mediators. On day 21, protein expression levels of IκBα were
quantified by immunoblot in a) DRG and b) spinal cord; c) protein expression levels of COX2
were quantified by immunoblot in spinal cord. Animals were treated daily i.p. with 2.4 mg kg-1

oxaliplatin or vehicle for 21 days. PEA (30 mg kg-1) was repeatedly administered i.p. (daily for
20 days starting from the first day of oxaliplatin administration). Control animals were treated
with vehicles. Representative blot of lysates are shown.
(TIF)

S2 Fig. Glial activation profile in the spinal cord.Microglia. The effect of repeated treatment
with PEA (30 mg kg-1 daily i.p.) was evaluated in oxaliplatin-treated rats on day 21. The num-
ber of Iba1-positive cells was measured in the dorsal horn of the spinal cord. Images (original
magnification 20X) of sections of lumbar spinal cord of oxaliplatin-treated animals (oxaliplatin
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+ vehicle) are reproduced in comparison with control (vehicle + vehicle). Representative
immunohistochemical staining after PEA treatments is shown (20X). Each value represents the
mean of 12 rats per group, performed in two different experimental sets. �P<0.01 versus vehi-
cle + vehicle; ^P<0.01 versus oxaliplatin + vehicle.
(TIF)

S1 Table. Evaluation of PEA effect on the normal pain threshold. PEA (30 mg kg-1 i.p.) was
acutely administered at vehicle-treated animals on day 21 to evaluate the effect on nociceptive
threshold of normal (non-hypersensitive) animals. The response to thermal stimuli was evalu-
ated both in the Hot and Cold Plate tests measuring the latency to pain-related behavior (lifting
or licking of the paw). The response to a mechanical stimulus was evaluated in the Paw pres-
sure test measuring the weight tolerated on the posterior paw. Each value represents the mean
of 12 rats per group, performed in two different experimental sets.
(DOCX)
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