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Abstract
Exposure to a predator elicits an innate fear response and mimics several behavioral disor-

ders related to post-traumatic stress disorder (PTSD). The protective role of an enriched

condition (EC) against psychogenic stressors in various animal models has been well docu-

mented. However, this condition has not been tested in field mice in the context of PTSD. In

this study, we show that field mice (Mus booduga) housed under EC exhibit predominantly

proactive and less reactive behavior compared with mice housed under standard conditions

(SC) during exposure to their natural predator (field rat Rattus rattus). Furthermore, we ob-

served that EC mice displayed less anxiety-like behavior in an elevated plus maze (EPM)

and light/dark-box after exposure to the predator (7 hrs/7 days). In EC mice, predator expo-

sure elevated the level of serotonin (5-Hydroxytrypamine, [5-HT]) in the amygdala as part of

the coping response. Subsequently, the serotonin transporter (SERT) and 5-HT1A receptor

were up-regulated significantly, but the same did not occur in the 5-HT2C receptor, which is

associated with the activation of calmodulin-dependent protein kinase-II (CaMKII) and a

transcription factor cAMP response element binding protein (CREB). Our results show that

predator exposure induced the activation of CaMKII/CREB, which is accompanied with in-

creased levels of histone acetylation (H3, H4) and decreased histone deacetylases

(HDAC1, 2). Subsequently, in the amygdala, the transcription of brain-derived neurotrophic

factor (BDNF), neuropeptide Y (NPY) and its Y1 receptor were up-regulated, whereas the

Y2 receptor was down-regulated. Therefore, EC facilitated a coping response against a fear

associated cue in a PTSD animal model and reduced anxiety by differentially activating se-

rotonergic and NPY-ergic systems.
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Introduction
Stressful life events are potent stressors that promote a fear response. The inability to extin-
guish memories associated with fear lead to the development of anxiety and post-traumatic
stress disorder (PTSD). PTSD is associated with functional changes in the amygdala, a region
that mediates fear responses [1–3]. Exposure to predator threats or cues (mouse and rat model/
rat and cat model) has been widely accepted as a model to study PTSD because it relates to in-
nate fear and mimics several behavioral disorders related to PTSD [4–6]. In rodents, earlier
studies have demonstrated that reduction in serotonergic transmission influences the develop-
ment of PTSD directly [7]. Serotonin [5-Hydroxytrypamine, (5-HT)] activity is exerted by
Na+/ Cl- dependent serotonin transporter (SERT) and 5-HT receptors (5-HT1- 5-HT7) [8–9].

Additional evidence associates the activation/inactivation of 5-HT receptors with the signal-
ing pathway, in which Ca2+-calmodulin-dependent-protein-kinase II (CaMKII) and the tran-
scription factor cyclic adenosine monophosphate (cAMP) response element binding protein
(CREB) are known to be involved [10–11]. The activation of the signaling pathway implicated
in the chromatin modification [acetylation of histones (H2A, H2B, H3, H4)/ deacetylation]
regulates the expression of specific genes [12–13]. Additionally, environmental and social cues
also play a role in chromatin modification which in turn initiate the transcription of neuropep-
tide Y (NPY) and distinct transcripts of brain-derived neurotrophic factor (BDNF) [14–17]. In
the amygdala, Y1 and Y2 receptors localize differentially in NPY neurons and thereby critically
mediate anxiolytic actions of NPY [18–19].

Interestingly, in animal models it has been shown that enriched condition (EC) improves
the development of anxiolytic effects against psychogenic stressors [20–22]. In this study, we
hypothesized that EC reduces the predator-threat induced stress. To test our hypothesis, Indian
field mouseMus booduga was exposed to their natural predator (field rat Rattus rattus) in the
rat exposure chamber after housing the individuals in standard condition (SC) or in EC and
tested for anxiety. Subsequently, we examined the influence of EC on the serotonergic system
(SERT, 5-HT1A, 5-HT2C) and its pathway-associated signaling molecules, including CaMKII,
the transcription factor CREB, molecules involved in chromatin modifications (H3, H4 and
HDACs1, 2), the neurotrophin BDNF (exon IV) and the neuropeptide NPY (Y1, Y2 receptor).

Materials and Methods

Study Animals
Male field miceMus booduga (Bwt. 7.50 ± 1.44 g; 3 months of age; [23]) and male field rats
(Rattus rattus; Bwt. 243.66 ± 3.18 g) were trapped using rodent trappers in agricultural land
(India, Tiruchirappalli, 10°16’N, 78°15’E). Animals (M. booduga n = 102 in total; R. rattus n =
3) were transported to an animal house facility, housed in a standard condition (SC; cage: 43 X
27 X 15 cm) and maintained at controlled environmental conditions (12 h light/dark cycle;
23°C ± 1°C; 50% ± 5% RH) for seven days. Food (Pearl millet Pennisetum glaucum) and water
were provided ad libitum except during brief behavioral test periods. According to the Indian
Wildlife Protection Act 1972,Mus booduga is classified as vermin and listed in schedule V.
Therefore, no specific permission was required to capture them from agricultural land. All the
experiments were approved by the Institutional Animal Ethical Committee (BDU/IAEC/2012/
73/28.03.2012) in accordance with the guidelines of "Committee for the Purpose of Control
and Supervision of Experiments of Animals" of the Government of India. All efforts were made
to minimize animal suffering, reduce the number of animals used, and utilize alternatives to in
vivo techniques, if available.
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Housing Conditions and Experimental Procedures
For the standard conditions, standard laboratory cage (43 X 27 X 15 cm) with saw dust was
used as bedding (2 animals/ cage). The cage (120 X 100 X 60 cm) for enriched conditions (EC)
was constructed based on the specifications described by Mora et al. [24]. The EC cage (12 ani-
mals per cage) contained an assortment of objects varying in shapes, textures and sizes, includ-
ing running wheels, ladders and hollow plastic pipes with different bends, which were changed
twice per week for novelty. To stimulate exploratory activity, the location of toys was changed
every day without disturbing the animals, with cleaning once per week. Food and water were
kept in a separate polycarbonate cage (43 X 27 X 15 cm) and connected to the EC cage through
a transparent plastic pipe (diameter 4.5 cm).

Fig 1 shows the schematic diagram of the experimental procedure. On day 8, animals were
randomly divided into three groups (n = 34 for each). Group I raised under SC were used as
the control group and referred to as short term at standard condition (STSC). One set of ani-
mals (n = 12) were considered STSC control and immediately euthanized (for neurotransmitter
and molecular analysis) without exposure to predators. The second set of animals (n = 22)
were exposed to the predator (R. rattus). Their behavior was recorded, and after an hour, one
group (n = 12) was euthanized (for neurotransmitter and molecular analysis). Remaining ani-
mals (n = 10) were housed at STSC, and then they were subjected to elevated plus maze (EPM)
and light/ dark-box test 7 hrs and 7 days after exposure to test their level of anxiety. Group-II
was kept at SC for another 30 days and considered long-term at standard condition (LTSC).
Group III animals were transferred to the EC and maintained for another 30 days. On the 31st

day, animals from both LTSC (n = 12) and EC (n = 12) were euthanized without being exposed
to the predator, and they were considered as control for LTSC and EC. Subsequently, one set of
animals (n = 12; for each group) from each housing condition (LTSC/ EC) were exposed to
predators individually, and their behavior was recorded. Remaining animals (n = 10) from
each group were tested for anxiety in EPM and light/ dark-box, 7 hrs and 7 days after exposure

Fig 1. Schematic representation of the experimental procedure used to test the effects of housing
condition on predator exposure induced anxiety. After housed in a standard condition (SC; for 7 days),
mice were randomly separated to short-term at standard condition (STSC) or long-term at standard condition
(LTSC) or enriched condition (EC) and kept in the animal facility until to complete all behavior.

doi:10.1371/journal.pone.0127945.g001
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to the predator. An hour after being exposed to the predator stimuli, animals were euthanized
for neurotransmitter and gene expression analysis.

Predator Exposure
Field mice (M. booduga) were exposed to field rat (R. rattus) in the rat exposure chamber to in-
duce a fear associated anxiogenic effect, and subsequent behavioral and neuronal manifesta-
tions are related to PTSD [25]. Briefly, the rat exposure chamber consists of four clear Plexiglas
sides covered with a black Plexiglas lid. The exposure chamber was divided by wire mesh into
two equal-sized compartments (23 X 12 X 11 cm) as surface area (i.e., mice exploration area)
and predator compartment (i.e., rat chamber). The exposure chamber was fitted with a home
chamber (7 X 7 X 12 cm; three sides with black and one side transparent Plexiglas) through a
clear tube (length: 13 cm; diameter: 4.4 cm). The apparatus is a "visible burrow system" model
[26] that consists of a home chamber as a place for retreat, a tunnel and a surface area in close
contact to the predator exposure chamber (open area).

All the behavioral experiments were conducted at the animal house facility during the light
phase (8:00 to 12:00) of the light/ dark cycle in semi-sound proof conditions under red light
(100 W). Initially, mice were allowed to explore the surface area for three days (10 min/day)
consecutively. On day 4, the mouse was placed in the center of the surface area facing the pred-
ator compartment, and then, the rat was released immediately into the predator compartment.
The experimental mice were exposed to predators individually for 10 min for one day. When
the mouse was exposed to the predator, the mouse entered the home chamber, moved into the
tunnel to assess risk by olfactory and visual cues or entered the surface area and then exhibited
a range of behaviors (free movement/ defensive). The behavior was recorded using a video
camera placed at the horizontal position of the apparatus. The apparatus was cleaned with 70%
alcohol and dried with paper towels; respective individual’s cage bedding was poured into the
home cage as well as in the surface area for each exposure. The recorded behavior of each
mouse was scored as spatiotemporal measures (individual’s time spent in the home chamber,
tunnel, on the surface area and in contact with the wire mesh, climbing on the mesh) and etho-
logical measures [freezing (rapid cessation of any body movement during active exploration),
stretch attend posture (an exploratory movement in which the body is stretched forward but
the animal’s hind paws remains in position), grooming (washing or mouthing of fore limbs,
hind paws, face, body and genital) and risk assessment behavior (animal kept its head and two
paws facing the predator chamber but the rest of its body in the tunnel)] as described earlier
[25,27,28].

Elevated Plus Maze Test
Elevated-plus-maze (EPM) was constructed with a thin (10 mm) wooden sheet as described
earlier [29] [two open arms (30 x 5 x 0.25 cm3) and two closed arms (30 x 5 x 15 cm3)]. The
open and closed arms connected by common central platform (5 x 5 cm3) [29]. Animals were
transported to the experimental room (luminosity at the level of the EPM was 30 W) an hour
before starting the experiment and were left undisturbed. Animals were allowed to explore the
maze for 5 min by placing it at the center square facing an open arm. Individual behavior
(number of entries into open and closed arms, time spent in open and closed arm, head-dip-
ping, jump attempt and freezing behaviors) was analyzed from the video recordings [30,31].
The animal was transferred to the home cage after the completion of the trail and the maze was
cleaned with wet and dry cloths, respectively.
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Light/ dark-box Test
Light/ dark-box was designed based on the previous report [32], and the apparatus (44 x 21 x
21 cm) consisted of a 10 mm wooden sheet box divided into two compartments with a parti-
tion of rectangular opening (12 x 5 cm) at the floor level. The larger white painted compart-
ment (28 x 21 cm length) was open-trooped and brightly illuminated (900 lux). The smaller
compartment (14 x 21 cm length) was painted black and covered at the top. Animals were
transported to the experiment room an hour before starting the experiment and left undis-
turbed. Animals were allowed to explore the apparatus individually for 5 min by placing the in-
dividuals in the light compartment facing away from the partition. The video camera was
mounted on the ceiling above the apparatus and facilitated recording of all behaviors (time
spent in the light compartment, light-dark transition between compartment and risk assess-
ment) for each individual. To remove any olfactory cues, the apparatus was cleaned with 70%
ethanol after the completion of the trial.

Neurotransmitter analysis
Animals representing each group (n = 6) [control (STSC, LTSC and EC), Rat (STSC, LTSC and
EC)] were euthanized, and the amygdala region was dissected as described elsewhere [33] and
frozen on dry ice. The samples were prepared as reported earlier [34] and the level of 5-HT
(Bio-source ELISA Kit) was estimated according to the manufacturer’s instructions.

Tissue Collection, RNA isolation, and cDNA synthesis
Individuals representing each group (n = 6) were euthanized, and the amygdala tissue was dis-
sected for the preparation of total RNA and protein. Total RNA was isolated using TRIzol
(Merck Specialties Pvt. Ltd., India), according to the manufacturer’s instructions and stored
with RNase inhibitor (GeNei, Merck Specialties Pvt. Ltd., India) at -70°C. Total RNA (2.0 μg/
sample) was reverse transcribed into cDNA using random/ oligo-dT primers (iScript cDNA
Synthesis Kit, Bio-Rad Laboratories Inc.).

Quantitative Real-time PCR
Expression levels of specific genes were quantified by quantitative real-time PCR (qRT-PCR)
in a total volume of 10 μl containing an aliquot of RT mixture (SSoAdvanced SYBR green
SuperMix, Bio-Rad Laboratories Inc.), specific primers (10 μM) and cDNA (0.1 μg). The
qRT-PCR reactions were performed using CFX-96 Touch Real-time PCR Detection System
(Bio-Rad Laboratories Inc.) using standard conditions. The following specific primers were
used for each gene: 5-HT1A (for 5’-GACTACGTGAACAAGAGGAC-3’ and rev primer 5’-
TATAGAAAGCGCCGAAAGTG-3’), 5-HT2C (for 5’-AAACTGCAC AATGCTACCAA-3’
and rev primer 5’-TGATGGACGCAGTTGAAAAT -3’), NPY (for 5’-GGACATGGCCAGA
TACTACT-3’ and rev primer 5’-CTTCAAGCCTTGTTCTGGG-3’), NPY Y1 (for 5’-TGAA
CCTCTCCTTCTCAGAC-3’ and rev primer 5’-TTGATGATTAGC TGATGCCG-3’), NPY Y2
(for 5’-ATCGTTGCATTGTCTACCAC-3’ and rev primer 5’- TACACACTCTTCTCTTCCCC
-3’), BDNF exon IV (for 5’-GTAAACGTCCACGGACAA G-3’ and rev primer 5’-TAT
GGTTTTCTTCGTTGGGC-3’) and GAPDH (glyceraldehydes-3-phosphate dehydrogenase)
(for 5’-AACATCATCCCTGCATCCAC-3’ and rev primer 5’-AGGAACACGGAAGGCCAT
GC-3’). The amplification of the single PCR product was confirmed by monitoring the dissoci-
ation curve followed by melting curve analysis. Each reaction was performed in triplicate with
threefold serial dilution of cDNA with normalizing internal control GAPDH. The data are
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presented as the mean fold change of the relative expression (CFX Manager version 2 software;
CFX-96 Touch Real-time PCR Detection System Bio-Rad Laboratories Inc., USA).

Protein Isolation andWestern Blot Analysis
Total cellular protein extract from different samples were prepared following the standard pro-
cedures and stored as aliquots at -80°C [35]. The histone proteins were extracted from amygdala
tissue following the method described previously [36]. The concentration of each protein sample
was quantified by measuring the absorbance at 595 nm using Biophotometer plus (Eppendorf
Inc). Equal concentrations (60 μg) of proteins were resolved on SDS-polyacrylamide gel. The
separated proteins were transferred electrophoretically onto polyvinylidene difluoride (PVDF)
membrane (Millipore India) using a semi-dry western apparatus (SD 20; Cleaver Scientific Ltd,
UK). The membranes were blocked and incubated at 4°C for 9 h with one of the following spe-
cific primary antibodies (Santa-Cruz Biotechnology, Germany and Upstate, Cell signaling solu-
tions, USA): affinity purified rabbit polyclonal antibody anti-total-CREB1 [t-CREB 1 (SC-186; 1:
300], rabbit polyclonal anti-phosphorylated-CREB1 antibody [p-CREB 1; Ser133(SC-101663; 1:
500)], mouse monoclonal anti-total-αCaMKII antibody [t-αCaMKII SC-32288; 1: 200], rabbit
polyclonal anti-phosphorylated- αCaMKII antibody [p-αCaMKII; Thr286 SC-12886-R; 1: 200],
goat polyclonal antibody SERT [ST; SC-1458; 1: 200], rabbit polyclonal acetylated histone H3
antibody [Ac-Histone H3, (Cell Signaling—# 06–599; 1:5000)], rabbit polyclonal acetylated his-
tone H4 antibody [Ac-Histone H4 (Ser1/Lys5/Lys8/Lys12), (SC-34263; 1:400)], mouse mono-
clonal Anti-HDAC-1 antibody [Anti-HDAC-1, clone 2E10, (Cell Signaling # 05–614; 1:5000)],
mouse monoclonal Anti-HDAC-2 antibody [Anti-HDAC-2, clone 3F3, (Cell Signaling # 05–
814; 1:5000)] and rabbit polyclonal anti-β-actin antibody (SC-130656; 1: 200) as internal control
for each sample. The membrane-bound antibodies were detected by alkaline phosphatase (ALP)
conjugated either with goat anti-rabbit (Cat # 621100180011730; 1: 2000; MERCK, Bangalore,
India), goat anti-mouse (Cat # 621100480011730; 1:2000; MERCK, Bangalore, India) or rabbit
anti-goat (Cat # 621100680011730; 1:2000; MERCK, Bangalore, India) secondary antibody incu-
bating for 4 h. Images were acquired with a Molecular Imager ChemiDoc XRS System (Bio-Rad
Laboratories, Inc, USA), and optical density of trace quantity for each band was measured using
Image Lab 2 software (Bio-Rad Laboratories, Inc.).

Statistical Analysis
Data were presented as a mean ± standard error of the mean (SEM) and plotted with KyPlot
(ver 1.0) for graphical representation. For fear response One-way analysis of variance
(ANOVA) was used to test the effect of housing condition. For expression data Two-way anal-
ysis of variance (Two-way ANOVA) was used to assess the effect of ‘exposure’ and ‘housing
condition’ and their interactions. For the behavioural analysis (EPM, Light/dark-box) multi-
variate ANOVA was performed to test the effect of factors (exposure, time, housing condition)
and their interactions. Post hoc Bonferroni test was used to examine the difference between
groups (SPSS, ver.15).

Results

Effect of environmental enrichment to a predator exposure
Fear response behavior. Mice housed under various environmental conditions were ex-

posed to a predator in rat exposure chamber. The location and time spent in a specific area of
the test chamber in response to a predator was determined. Spatiotemporal measures showed
that predator exposure rapidly elicited innate fear response in STSC and LTSC mice but not in
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EC mice (Fig 2). The One-way ANOVA analysis revealed a significant effect of housing condi-
tion in exploratory behaviour on surface area (F2, 65 = 521.21, P<0.001). Further, the Bonfer-
roni test confirmed that EC mice spent a significantly longer duration on surface area
compared with STSC (P<0.001) and LTSC mice (P<0.001). As shown in Fig 2A, STSC mice
showed more exploratory behavior on surface area and spent more time in surface area than
LTSC mice (P<0.001). Similarly, we found significant effect of housing condition in individu-
als spent time in tunnel (F2, 65 = 52.20, P<0.001). In comparison, EC mice spent significantly
less time than LTSC (P<0.001), but the difference was not significant in STSC mice (P<0.084).
Interestingly, STSC mice spent significantly less time in the tunnel than LTSC mice (P<0.01).
The housing condition had significant effect on time spent by mice in the home chamber (F2,
65 = 807.23, P<0.001). Furthermore, the EC mice preferred to spend significantly less time in
the home chamber than STSC (P<0.001) and LTSC mice (P<0.001). Compared with STSC
mice, time spent by STSC mice in the home chamber was significantly less than LTSC
mice (P<0.001). Additionally, we observed effect of housing condition on grooming behavior

Fig 2. Effect of environmental enrichment on the behavioral responses of mice that were exposed to
the predator. The exposure chamber is an area for mice to explore and investigate about the predator but
the mesh partition prevents interactions. The behavioral activities of mice during exposure to a rat were
shown. The columns in the graph represent duration of mice activity in respective region during predator
exposure session. Data were shown as mean ± SEM, * indicates significant difference (*P < 0.05;
**P < 0.01; ***P < 0.001). The letters indicates groups were compared for statistical analysis (a: STSC
verses LTSC; b LTSC verses EC; c: STSC verses EC). Raw data is provided in S1 Data.

doi:10.1371/journal.pone.0127945.g002
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(F2, 65 = 133.66, P<0.001), burying (F2, 65 = 167.18, P<0.001) and freezing (F2, 65 = 633.08,
P<0.001). EC mice displayed significantly more grooming behavior than the STSC (P<0.001)
and LTSC (P<0.001) mice. Interestingly, EC mice showed less reactive behaviors, such as de-
fensive behavior (burying) and freezing than STSC (burying: P<0.001; freezing: P<0.001) and
LTSC mice (burying: P<0.001; freezing: P<0.001). However, STSC mice showed less reactive
behaviors than LTSC mice (burying: P<0.001; freezing: P<0.001). Taken together, the EC and
STSC mice displayed less fear response during the predator exposure than LTSC mice as indi-
cated by staying more in surface area by exploring the exposure chamber than the tunnel/
home chamber.

Anxiety-like behavior
Elevated plus maze (EPM). Multivariate ANOVA analysis showed that the mice exhibited

behaviors 7hrs and 7 days (time) after rat exposure was significantly different (Wilks’ λ =
0.447; F = 4.95; P<0.01). Similarly, the housing condition (Wilks’ λ = 0.011; F = 33.76;
P<0.001) and interaction of time × housing condition (Wilks’ λ = 0.091; F = 9.28; P<0.001)
showed significant effects on behavior. However, the independent analysis showed that time
influence only few behaviors but not all. Whereas the interaction of time × housing condition
effect was significant in all observed behavior except the time spent in central square (Table 1).

Light/ dark-box test. The effect of predator exposure on anxiety in individuals housed
in various conditions was tested using a light/ dark-box test. Multivariate ANOVA analysis
revealed that individuals behavior significantly affected by time (Wilks’ λ = 0.789; F = 4.64;
P<0.01), housing condition (Wilks’ λ = 0.07; F = 46.03; P<0.001) and interaction of time ×
housing condition (Wilks’ λ = 0.41; F = 9.70; P<0.001) (Fig 3). Furthermore, our analysis re-
vealed significant effect of time (F1,59 = 7.69; P<0.01), housing condition (F2,59 = 58.54;
P<0.001) and interaction of time × housing condition (F2,59 = 8.20; P<0.01) in mice made en-
tries to the light chamber. Follow-up post hoc Bonferroni test confirmed that EC mice made
more entries to the light chamber than STSC (P<0.001) and LTSC mice (P<0.001). In compar-
ison, STSC made more entries into the light zone than LTSC mice (P = 0.021). Our analysis re-
vealed that the time spent in the light zone did not affected by time (F1,59 = 0.001; P = 0.97).
However, we found significant effect by housing condition (F2,59 = 268.47; P<0.001) and inter-
action of time × housing condition (F2,59 = 23.67; P<0.001). Bonferroni test showed that EC
mice spent more time in the light zone compared with STSC (P<0.001) and LTSC mice
(P< 0.001). In addition, STSC mice spent more time in the light zone compared with LTSC
(P<0.001). Interestingly, the time of testing (F1,59 = 7.87; P<0.01), housing condition (F2,59 =
31.18; P<0.001) and interaction of time × housing condition (F2,59 = 4.60; P<0.05) effectively
alter the risk assessment behavior. Bonferroni test confirmed that EC mice spent significantly
less time in risk assessment than STSC (P<0.001) and LTSC mice (P<0.001). However, STSC
mice displayed less risk assessment behavior than LTSC mice (P< 0.05).

Effect of environmental enrichment on the activation of serotonergic
system in mice exposed to a predator
We determined the level of 5-HT, expression level of SERT, 5-HT1A and 5-HT2C in the mice
housed in various environmental conditions and exposed to a predator. As shown in Fig 4A,
basal levels of 5-HT were significantly affected by exposure (F1,35 = 1811.16; P<0.001), housing
condition (F2,35 = 431.95; P<0.001) and interaction of exposure × housing condition (F2,35 =
147.85; P<0.001). Further, Bonferroni test revealed that the 5-HT level was significantly higher
in EC mice (P<0.001) and STSC mice (P<0.001) than LTSC mice. In comparison, elevated lev-
els of 5-HT were significantly higher in STSC mice than LTSC mice (P<0.001).
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Interestingly, SERT level was significantly up-regulated after rat exposure in all the mice ir-
respective of their housing condition. The analysis revealed a significant effect of exposure
(F1,35 = 35.60; P<0.001), housing condition (F2,35 = 18.89; P<0.001) and interaction of
exposure × housing condition (F2,35 = 16.17; P<0.001) in the level of SERT (Fig 4A and 4C).
Further, Bonferroni test showed that level of SERT significantly increased in EC mice com-
pared with LTSC (P<0.001), but not different from STSC mice (P = 0.296). However, the dif-
ference between LTSC and STSC was significantly different (P<0.001).

Quantitative RT-PCR analysis was used to examine the variations in the expression of 5-HT
receptor mRNA levels in the amygdala (Fig 5). The level of 5-HT1A mRNA level was

Table 1. Elevated plus-maze test profile of male field mouseMus booduga.

Parameters Housing
Conditions

Time Statistics (F value) Bonferroni
test

7hrs 7days Between
Time

Between
Groups

Interaction: Time X
Housing Conditions

No. of open arm
entries

STSC 14.00 ± 1.62 8.30 ± 1.21 0.426NS 56.923*** 8.283** a: P = 0.139

LTSC 7.60 ± 0.96 7.30 ± 1.67 b: P<0.001

EC 21.30 ± 2.45 30.20 ± 2.42 c: P<0.001

Time spent in open
arm (s)

STSC 156.90 ± 5.73 81.80 ± 4.78 20.802*** 256.334*** 60.928*** a: P<0.001

LTSC 76.90 ± 3.78 80.20 ± 5.69 b: P<0.001

EC 172.00 ± 4.46 192.30 ± 2.27 c: P<0.001

Freezing in open arm
(s)

STSC 29.50 ± 2.43 52.30 ± 4.62 3.850* 79.874*** 11.112*** a: P<0.01

LTSC 52.10 ± 4.13 51.70 ± 4.26 b: P<0.001

EC 15.00 ± 0.94 8.40 ± 1.19 c: P<0.001

No. of closed arm
entries

STSC 15.50 ± 1.76 19.90 ± 1.58 0.568NS 41.676*** 5.596* a: P<0.01

LTSC 25.10 ± 1.72 19.40 ± 1.44 b: P<0.001

EC 9.40 ± 1.24 7.90 ± 1.13 c: P<0.001

Time spent in closed
arm (s)

STSC 100.30 ± 3.45 166.20 ± 6.13 13.885*** 174.571*** 41.768*** a: P<0.001

LTSC 169.90 ± 6.89 168.80 ± 5.72 b: P<0.001

EC 87.80 ± 2.43 68.00 ± 3.17 c: P<0.001

Freezing in closed
arm (s)

STSC 20.40 ± 2.82 31.20 ± 2.08 0.748NS 50.916*** 8.596** a: P<0.01

LTSC 34.00 ± 2.78 35.50 ± 2.51 b: P<0.001

EC 16.30 ± 1.27 8.70 ± 1.25 c: P<0.001

Head-dipping in
closed arm (s)

STSC 57.60 ± 3.67 82.20 ± 1.84 13.562** 141.185*** 5.653* a: P<0.001

LTSC 80.40 ± 3.95 81.20 ± 1.92 b: P<0.001

EC 29.10 ± 2.44 19.70 ± 2.60 c: P<0.001

Time spent in central
square (s)

STSC 42.60 ± 5.60 52.30 ± 8.04 0.179NS 1.652NS 0.455NS a: P = 1.000

LTSC 53.20 ± 7.56 51.00 ± 9.01 b: P = 0.232

EC 40.20 ± 4.10 39.70 ± 4.68 c: P = 0.813

No. of jump attempts STSC 10.70 ± 0.94 2.50 ± 0.50 1.171NS 91.067*** 16.602*** a: P<0.01

LTSC 2.50 ± 0.92 1.80 ± 0.59 b: P<0.001

EC 15.10 ± 1.40 20.80 ± 2.10 c: P<0.001

Data are presented as means ± SEM n = 10 mice/group (STSC—short-term standard cage, LTSC—long term-standard cage, EC—enriched condition).

Data were subjected to MANOVA for multiple comparisons.

(***P<0.001

**P<0.01

*P<0.05
NS, not significant).

Bonferroni test (a: STSC vs LTSC, b: LTSC vs EC, c: STSC vs EC). Raw data is provided in S1 Data.

doi:10.1371/journal.pone.0127945.t001
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Fig 3. Behavioural profile of mice in light/dark-box test after housed in environmental enrichment
exposed to predator. (a) EC mademore entries to light chamber after seven hours and seven days of
predator exposure and exert anxiolytic effect compared to STSC and LTSCmice. (b) EC mice spent more
time in light zone compared to STSC and LTSCmice. (c) EC mice exhibit few risk assessment behaviour
than other groups of mice. Data are presented as means ± SEM, * indicates significant difference
(***P < 0.001; **P < 0.01; *P < 0.05), respect to comparison between groups a = STSC versus LTSC:
b = LTSC verses EC: c = STSC verses EC. Raw data is provided in S1 Data.

doi:10.1371/journal.pone.0127945.g003

Fig 4. Effect of environmental enrichment on activation of SERT and 5-HT level in mice exposed to predator. (a) Representative western blots shows the
level of SERT (70 kDa) and β-actin (43 kDa). (b) There was a significant increase in 5-HT level after exposure to predator in STSC, LTSC and ECmice. (C)
SERT protein level was significantly increased in EC following predator exposure than STSC and LTSCmice. Data were shown asmean ± SEM, * indicates
significant difference (*P < 0.05; **P < 0.01; ***P < 0.001), respect to comparison between groups (a = STSC verses LTSC; b = LTSC verses EC; c = STSC
verses EC). Raw data is provided in S2 Data.

doi:10.1371/journal.pone.0127945.g004
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significantly affected by exposure (F1,35 = 872.30; P<0.001), housing condition (F2,35 = 219.74;
P<0.001) and interaction of exposure × housing condition (F2,35 = 204.17; P<0.001). Predator
exposure up-regulated 5-HT1A mRNA level in STSC mice and EC mice compared with their
respective controls, but did not alter the level of 5-HT1A expression in LTSC mice (Fig 5A).
Further Bonferroni test confirmed that the estimated level was significantly higher in EC mice

Fig 5. Effect of environmental enrichment on activation of 5-HT1A and 5-HT2C receptors in mice
exposed to predator. (a) 5-HT1A receptor mRNA level significantly increased in STSC and ECmice, an
effect were not noticed in LTSCmice. (b) 5-HT2C receptor mRNA level was significantly altered in STSC, EC
mice but it was significantly high in LTSCmice. Data were shown as mean ± SEM, * indicates significant
difference (*P < 0.05; **P < 0.01; ***P < 0.001), respect to comparison between groups (a = STSC verses
LTSC; b = LTSC verses EC; c = STSC verses EC). Raw data is provided in S2 Data.

doi:10.1371/journal.pone.0127945.g005
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(P< 0.001) and STSC mice (P<0.001) than LTSC mice. However, the up-regulated 5-HT1A

mRNA level was significantly higher in EC mice (P<0.001) than STSC mice.
Similar to that of 5-HT1A expression, the level of 5-HT2C expression was significantly affect-

ed by exposure (F1,35 = 322.18; P<0.001), housing condition (F2,35 = 78.50; P<0.001) and inter-
action of exposure × housing condition (F2,35 = 74.19; P<0.001). Significant difference between
the group was confirmed by Bonferroni test, we found that the level of 5-HT2C expression was
significantly lower in EC mice compared with LTSC mice (P< 0.001) and STSC mice (F1,11 =
1056.25, P<0.001). Interestingly, 5-HT2C receptor expression was significantly low in STSC
mice (P< 0.001) compared with LTSC mice (Fig 5B).

Our analysis suggests that predator exposure increased extracellular levels of 5-HT and
SERT and 5HT1A transcription rapidly in the amygdala of mice housed in the STSC and EC
conditions. In contrast, 5-HT2C transcript level was reduced in EC mice, which suggests that
housing condition influenced 5-HT signaling in the amygdala.

Effect of environmental enrichment on the activation of CaMKII/ CREB in
mice exposed to a predator
As previously mentioned, the activation of CaMKII/ CREB signaling is associated with 5-HT
transmission [11] and PTSD [37]. We examined the variation in the level by phosphorylation
level of CaMKII/ CREB (Fig 6A). The relative ratios of p-CaMKII/ CaMKII reflected the level
of activation (Fig 6B). We found that the exposure showed significant effect on phosphoryla-
tion of CaMKII (F1,35 = 107.97; P<0.001) and housing condition (F2,35 = 33.53; P<0.001). In
addition, significant effect was observed in exposure × housing condition interaction (F2,35 =
24.41; P<0.001). Bonferroni test confirmed that the estimated relative p-CaMKII level was sig-
nificantly higher in predator exposed group housed in EC mice than LTSC mice (P<0.001)
and STSC mice (P<0.05). Moreover, the predator stimuli induced p-CaMKII level was signifi-
cantly higher in STSC mice (P<0.001) than LTSC mice. Accordingly, the exposure to a preda-
tor (F1,35 = 150.40; P<0.001) and housing condition (F2,35 = 55.35; P<0.001) significantly
enhanced the level of p-CREB (Fig 6C). Further, our analysis revealed significant effect by in-
teraction of exposure × housing condition (F2,35 = 34.18; P<0.001). When the comparisons
were made using Bonferroni test between groups, we found that p-CREB level was significantly
higher in EC mice (F1,11 = P<0.001) than LTSC mice but not different from STSC mice
(P = 0.09). However, predator stimuli induced enhancement of p-CREB was significantly
higher in STSC mice (P<0.001) compared with LTSC mice. Observed the activation of CaMKII
and CREB suggests that long term stay in the standard housing condition moderately sup-
pressed the activation of CaMKII/ CREB in STSC mice.

Effect of environmental enrichment on chromatin modification in mice
exposed to a predator
We tested whether the housing condition altered the histone acetylation/ deacetylation. We
found that housing condition alone had no effect on either the acetylation of H3/ H4 or level of
HDAC1 and HDAC2 (Fig 7A). Our analysis revealed that acetylation of H3 significantly affect-
ed by exposure (F1,35 = 131.64; P<0.001), housing condition (F2,35 = 19.78; P<0.001) and inter-
action of exposure × housing condition (F2,35 = 15.58; P<0.001). Furthermore, Bonferrroni test
confirmed that acetylated H3 level was significantly higher in EC mice (P<0.001) and STSC
mice (P<0.001) than LTSC mice. There were no significant difference between EC and STSC
mice (P = 0.265) (Fig 7B). Similarly, exposure (F1,35 = 61.42; P<0.001), housing condition
(F2,35 = 17.65; P<0.001) and interaction of exposure × housing condition (F2,35 = 23.09;
P<0.001) led to significant effect on level of H4 acetylation. In comparing groups, post hoc
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Bonferroni test confirmed that acetylated H4 level was significantly higher in EC mice
(P<0.001) and STSC mice (P<0.01) than LTSC mice (Fig 7C). However, there were no signifi-
cant difference in the acetylated H4 level (P = 0.079) was not significantly higher in EC mice
than STSC mice.

Furthermore, our analysis (Fig 7A) showed variation in the HDAC1 level. We found signifi-
cant effect of exposure (F1,35 = 188.50; P<0.001), housing condition (F2,35 = 56.59; P<0.001)
and interaction of exposure × housing condition (F2,35 = 60.82; P<0.001) in the HDAC1 level.
Bonferroni test confirmed that after exposure to the predator the estimated relative HDAC1
level was significantly higher in LTSC mice (P<0.001) than EC mice and STSC mice
(P<0.001), but there were no significant difference between EC and STSC mice (P = 0.273)

Fig 6. Effect environmental enrichment on activation of CaMKII/CREB in mice exposed to predator. (a) Representative western blots showing the
activation (measured as phosphorylated level) of CaMKII (50 kDa) and CREB (43 kDa) after exposed to predator. Phosporylation of (b) CaMKII, (c) CREB
increased after predator exposure in STSC, LTSC and ECmice The fold variation shown as mean ± SEM. * Indicates significant difference (*P < 0.05;
**P < 0.01; ***P < 0.001) respect to comparison between groups (a = STSC verses LTSC; b = LTSC verses EC; c = STSC verses EC). Raw data is
provided in S2 Data.

doi:10.1371/journal.pone.0127945.g006
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(Fig 7D). Similarly, HDAC2 level was also significantly altered by exposure (F1,35 = 90.36;
P<0.001), housing condition (F2,35 = 18.34; P<0.001) and interaction of exposure × housing
condition (F2,35 = 8.3; P<0.01). Interestingly, Bonferroni test confirmed that the estimated
HDAC2 level was significantly higher in LTSC mice than EC mice (P<0.001) and STSC mice
(P<0.01) (Fig 7E). We found that HDAC2 level was significantly low in EC mice (P<0.05)
compared with STSC mice. Our results suggest that EC enhances the histone acetyltransferase
activity, which enhances the acetylation of H3 and H4 levels. On the other hand, EC possibly
inhibited HDAC1 and 2 activities than the other housing condition.

Effect of environmental enrichment on the activation of neuropeptide Y
(NPY)-ergic in mice exposed to a predator
To determine whether the housing and predator exposure alters the neuropeptide transcript
expression, we measured the NPY mRNA using quantitative real time PCR (Fig 8A). The anal-
ysis showed that there was a significant effect in the expression of NPY in exposure (F1,35 =
64.03; P<0.001), housing condition (F2,35 = 65.61; P<0.001) and an exposure × housing condi-
tion interaction (F2,35 = 62.62; P<0.001). When the groups were compared, Bonferroni test re-
vealed that up-regulated NPY mRNA level was higher in EC mice (P<0.001) and STSC mice
(P<0.001) than LTSC mice. However, the estimated up-regulation was not significantly higher
in STSC mice (P = 0.207) than LTSC mice.

Subsequently, differential expression pattern of the Y1 receptor (Fig 8B) was observed. The
expression of Y1 receptor was significantly affected by exposure (F1,35 = 3301.03; P<0.001),
housing condition (F2,35 = 907.64; P<0.001) and interaction of exposure × housing condition
(F2,35 = 811.06; P<0.001). Further, the Bonferroni test confirmed the difference between
groups. The analysis showed that up-regulated Y1 receptor mRNA level was significantly
higher in EC mice than STSC mice (P<0.001) and LTSC mice (P<0.001). Notably, Y1 receptor
expression was significantly higher in STSC than LTSC mice (P<0.001).

As shown in Fig 8C, difference was found in Y2 receptor expression between the groups rep-
resenting different housing conditions. We found that Y2 receptor expression was significantly
affected by exposure (F1,35 = 1555.17; P<0.001), housing condition (F2,35 = 1377.95; P<0.001)
and interaction of exposure × housing condition (F2,35 = 1316.89; P<0.001). Bonferroni test con-
firmed that the Y2 receptor expression was significantly lower in ECmice than LTSC
(P< 0.001), and STSCmice (P<0.01). In comparison, the estimated level was significantly
lower in STSCmice than LTSCmice (P<0.001). This result indicates that the EC facilitated the
elevation of NPY level in the amygdala and differentially activated the NPY Y1 and Y2 receptor.

Effect of environmental enrichment on the activation of BDNF
expression in mice exposed to a predator
Relative BDNF mRNA level was significantly affected by exposure (F1,35 = 31.30; P<0.001),
housing condition (F2,35 = 109.39; P<0.001) and interaction of exposure × housing condition
(F2,35 = 45.93; P<0.001). In addition, Bonferroni test confirmed that when they were exposed
to predator stimuli, BDNF expression was significantly up-regulated in EC mice (P<0.001)

Fig 7. Effect of environmental enrichment on chromatin modifications (alternation in histone acetylation and deacetylation) in mice exposed to
predator. (a) Representative western blots shows the levels of H3 (17 kDa), H4 (11 kDa), HDAC-1(60 kDa) and HDAC-2(60 kDa) and β-actin (43 kDa). (b)
H3 (c) H4 acetylation was significantly increased in STSC and ECmice but not in LTSCmice. While, histone deactylase (d) HDAC1 (e) HDAC2 significantly
altered in STSC and LTSCmice but not in ECmice. The fold variation shown as mean ± SEM. * Indicates significant difference (*P < 0.05; **P < 0.01;
***P < 0.001) respect to comparison between groups (a = STSC verses LTSC; b = LTSC verses EC; c = STSC verses EC). Raw data is provided in S2 Data.

doi:10.1371/journal.pone.0127945.g007
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and STSC mice (P<0.05) than LTSC mice. Interestingly, the expression was significantly
higher in EC mice than STSC mice (P<0.05).

Discussion
In the present study, we first tested whether an enriched housing condition reduced anxiety in
field mice. Mice housed in STSC and LTSC showed less proactive (preference to stay on surface
area, grooming, contact and climb on mesh) and more reactive behaviors (i.e., burying, freez-
ing, stretch attend posture) compared with EC mice that were exposed to a predator. The be-
havioral profile in the EPM and light/ dark-box test showed that individuals housed in STSC,
LTSC and EC displayed anxiogenic behavior after a single predator exposure, which supports
earlier reports [26,38]. However, housing for 7 days in EC significantly reduced the predator
exposure induced anxiogenic effect. The observed behaviors infer that EC can help animals de-
velop a coping response to stress [3,25,39] and reverse the effect of stress.

Fig 8. Effect of environmental enrichment on anxiolytic/anxiety related markers in neuropeptide—Y (NPY) ergic system and BDNF in mice
exposed to predator.Real-time qPCR showing increase in (a) NPY and (b) NPY Y1 receptor mRNA level in STSC, ECmice but not in LTSCmice.
Whereas, NPY Y2 receptor (c) mRNA increased only in LTSCmice but not in STSC and ECmice. (e) BDNF (exon IV) mRNA level increased in STSC and
ECmice but not in LTSCmice. The fold variation shown as mean ± SEM. * Indicates significant difference (*P < 0.05; **P < 0.01; ***P < 0.001) respect to
comparison between groups (a = STSC verses LTSC; b = LTSC verses EC; c = STSC verses EC). Raw data is provided in S2 Data.

doi:10.1371/journal.pone.0127945.g008
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In order to assess the interaction between the serotonergic system and the anxiety-like be-
havior, the levels of 5-HT, SERT, 5-HT1A and 2C receptors were measured. We found that ex-
posure to a predator elevated 5-HT levels in the amygdala from the basal level, and the EC
mice particularly showed a significantly high 5-HT level compared with STSC or LTSC mice.
The enhancement of extracellular 5-HT in the amygdala is associated with coping responses to
stress and fear and the elicit endocrine system [40,41], which is the key anxiolytic mechanism
in rodents and humans. Predator exposure is expected to enhance 5-HT which might be com-
pensated by effective 5-HT reuptake to regulate serotonergic transmission and counteract the
predator stimuli induced stress [42], which plays an important role in the coping response to
stress [43]. After exposure to a predator, the EC mice demonstrated up-regulated SERT expres-
sion, which suggests that SERT could be a target for PTSD treatment. Conversely, the LTSC
mice displayed more reactive behavior during predator exposure and anxiety-like behavior in
the EPM and light/ dark-box test, which is possibly by the reduced level of SERT. This finding
is consistent with previous studies that found that genetically manipulated Sert rodents showed
reduced SERT expression and development of anxiety [44] and mimicked PTSD related behav-
iors [45].

The 5-HT1A receptor is part of the neural circuit in the basolateral amygdala (BLA), and its
activation reduces fear related anxiety [46–47]. Our results suggest that the up-regulated ex-
pression of 5-HT1A receptor in EC mice facilitated 5-HT transmission and prevented the
anxiogenic effect produced by a predator threat [48], which is similar to antidepressant drug ef-
fects in PTSD animal models [49]. However, the lower level of 5-HT1A receptor expression in
LTSC mice could reflect the reactive anxiety-like behavior [50]. Interestingly, we found that
predator exposure induced the expression of 5-HT2C receptors in EC and STSC mice was sig-
nificantly lower compared with LTSC mice that showed less reactive behavior during predator
exposure. These data are consistent with previous reports in 5-HT2C antagonist and agonist ef-
fects on PTSD [51–52]. These results suggest that EC differentially facilitated the activation of
5-HT1A and 5-HT2C receptors and reduced the predator threat induced anxiety.

Independent studies have shown a reciprocal interaction between the HPA axis and seroto-
nergic system through 5-HT1A and 5-HT2C receptors [53–54]. The activation/ inhibition of
5-HT1A and 5-HT2C receptors possibly promote the adenyl cyclase (AC) mediated cAMP-
CaMKII-PKA-CREB signaling pathway [11,55]. We found that the level of p-αCaMKII was
significantly increased in EC and STSC mice following predator exposure. These findings sug-
gest that the stress coping response is developed by the activation of CaMKII, as evidenced by
more proactive, less reactive and less anxiety-like behaviors in EC and STSC mice. In contrast,
LTSC mice exhibited more reactive, anxiety-like behavior accompanied by decreased p-αCaM-
KII levels. The observed elevated level of p-αCaMKII in EC/ STSC mice supports the role of
αCaMKII in fear extinction [56]. Subsequently, we tested whether the observed changes in
αCaMKII altered the expression and phosphorylation of CREB, which is known to control the
expression of a target gene [57]. The observed behavioral response in addition to the elevated
level of p-CREB suggests that EC facilitated the activation of CREB [58–59]. The lower level of
p-CREB in LTSC mice and its behavior could be associated with the development of anxiety
[59,60]. If the CREB activity is decreased/ increased, concomitant changes in the CREB target
gene expression and functional consequences would be expected. However, CREB requires his-
tone modification and subsequent chromatin remodeling for effective transcription of target
genes. The acetylation of histones (H3, H4) by histone acetyltransferases (HATs) and deacety-
lation of histone by HDACs are known to alter chromatin structure [61–62] and eventually
alter the expression of target genes [63–64]. Elevated levels of Ac-H3 and Ac-H4 in STSC and
EC mice and their behavioral responses are similar to the effect of antidepressant treatment
[65] and fear extinction in the PTSD animal model [56]. Lower levels of Ac-H3 and Ac-H4 in
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LTSC mice could be the reason for their reactive style behavior [13]. Consistent with these re-
ports, our results showed that predator exposure leads to reactive/ anxiety-like behavior in ad-
dition to the up-regulation of HDACs (1, 2) expression in LTSC mice. The observed behavioral
phenotype and expression pattern of HDACs (1, 2) support the notion that EC facilitated the
chromatin modification by inhibiting HDACs, which has been implicated in transcription reg-
ulation of target genes involved in the development of the stress coping response [63–64]. In
this study, we showed that EC regulated the deregulation of chromatin modification that oc-
curs during stressful events by modulating Ac-H3 and Ac-H4 and inhibiting HDACs (1,2).

Recently, studies in clinical investigations and rodent models have demonstrated the role of
NPY and its receptors in mediating fear, anxiety and PTSD [66–69]. In our study, STSC and
EC mice show up-regulated the expression of NPY, which is similar to previous reports in ro-
dent models that confirm the role of NPY in coping with stress after being treated with antide-
pressant medication for depression [66,69] and PTSD [70]. In contrast, a lower level of NPY
failed to prevent the development of predator induced stress which is related to the clinical re-
port of PTSD [67–68].

Furthermore, in the amygdala, we tested mRNA levels of the NPY Y1 and Y2 receptors,
which are known to mediate NPY effects [71–72]. We found that the NPY Y1 receptor mRNA
level was up-regulated in STSC and EC mice after predator exposure, and this finding is consis-
tent with previous pharmacological studies that demonstrate NPY Y1 receptor-mediated anxi-
ety and fear reducing effects of NPY [71–72] in a PTSD model [73]. In contrast, Y2 receptor
expression was not altered in STSC or EC mice but was up-regulated in LTSC mice after preda-
tor exposure. These results suggest that EC reduced Y2 mRNA levels, and therefore, EC mice
showed proactive behavior and less anxiety. Earlier studies reported that animal models gener-
ated by the inactivation and genetic ablation of Y2 receptors have showed an anxiolytic effect
[18,71], which strengthens our findings of a significant association of lower level of Y2 mRNA
and anxiolytic behaviour of EC mice. Observed the up-regulation of Y2 receptor mRNA and
reactive behavior during predator exposure and anxiety-like behavior of LTSC mice are consis-
tent with the Y2 receptor-mediated anxiogenic action of NPY [74–75]. Notably, NPY-ergic sys-
tem may directly interact with the HPA axis leading to resilience of stress. It has been reported
that NPY stimulates the release of corticotrophin-releasing hormone (CRH) through Y1 recep-
tor [76] and the suppression/ inactivation of Y2 receptors induces the release of NPY to return
to homeostasis [77], thereby exhibiting stress coping-related behavior.

Interestingly, previous studies have demonstrated that in addition to NPY-ergic system,
BDNF also interacts with the HPA axis, and therefore, it has been implicated in the etiology of
anxiety disorders [78] and PTSD [16,79]. In this regard, it is reasonable to examine how EC im-
pacts BDNF expression in predator exposure induced stress. Our results suggest that EC facili-
tated the up-regulation of BDNF expression and mimics the action of antidepressant drugs in
PTSD [80]. The observed reduction in the BDNF level in LTSC mice and their behavior rein-
force the previous reports in rodents [81] and PTSD patients [79] demonstrating anxiety-like
behavior with varied levels of BDNF. The up-regulated neurotrophin BDNF possibly enhances
the cellular process and synaptic plasticity in EC mice to develop the stress coping response,
which is suppressed in LTSC mice that failed to develop the coping response during predator
exposure. Moreover, the regulatory interactions of BDNF with the serotonergic and NPY-ergic
systems are other possible mechanisms for the observed anxiolytic behavior [69,82].

The present study demonstrated that EC reduced the predator exposure induced anxiogenic
effect by enhancing the level of 5-HT in the amygdala. Furthermore, 5-HT neurotransmission
could be enhanced by up-regulated SERT, 5-HT1A and decreased 5-HT2C expression. The in-
duction of 5-HT1A receptors tightly regulates the 5-HT associated signaling pathway that acti-
vates CaMKII/ CREB and regulates chromatin modification and transcription of genes (BDNF,
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NPY and NPY-Y1 receptor). Therefore, the enriched housing condition helped coping with
the stress and reduced the anxiety in a PTSD animal model. Our results provide an insight into
the molecular mechanism underlying the therapeutic effect of environmental enrichment for
behavioral therapy in the animal model for PTSD.
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