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Abstract
“Far-West” Africa is known to be a secondary contact zone between the twomajor malaria

vectors Anopheles coluzzii and A. gambiae. We investigated gene-flow and potentially adap-

tive introgression between these species along a west-to-east transect in Guinea Bissau, the

putative core of this hybrid zone. To evaluate the extent and direction of gene flow, we geno-

typed site 702 in Intron-1 of the para Voltage-Gated SodiumChannel gene, a species-diagnos-

tic nucleotide position throughout most of A. coluzzii andA. gambiae sympatric range. We also

analyzed polymorphism in the thioester-binding domain (TED) of the innate immunity-linked

thioester-containing protein 1 (TEP1) to investigate whether elevated hybridization might facili-

tate the exchange of variants linked to adaptive immunity and Plasmodium refractoriness. Our

results confirm asymmetric introgression of genetic material from A. coluzzii toA. gambiae and
disruption of linkage between the centromeric "genomic islands" of inter-specific divergence.

We report that A. gambiae from the Guinean hybrid zone possesses an introgressed TEP1 re-

sistant allelic class, found exclusively in A. coluzzii elsewhere and apparently swept to fixation

inWest Africa (i.e. Mali and Burkina Faso). However, no detectable fixation of this allele was

found in Guinea Bissau, which may suggest that ecological pressures driving segregation be-

tween the two species in larval habitats in this region may be different from those experienced

in northern and more arid parts of the species’ range. Finally, our results also suggest a genet-

ic subdivision between coastal and inland A. gambiaeGuinean populations and provide clues

on the importance of ecological factors in intra-specific differentiation processes.
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Introduction
Anopheles gambiae (Giles) and A. coluzzii (Coetzee &Wilkerson sp. n.) (formerly defined as A.
gambiae s.s. M and S molecular forms based on X-linked SNPs in ribosomal DNA [1] are argu-
ably the most important cryptic species of mosquitoes transmitting human malaria in sub-Sa-
haran Africa. Restricted gene flow between A. gambiae and A. coluzzii in natural populations
from sympatric areas of West and Central Africa is attributed to pre-mating mechanisms of re-
productive isolation, selection against hybrids and ecologically-driven divergent selection [2, 3,
4, 5, 6]. Variation in larval habitats strongly influences species segregation: A. gambiae is asso-
ciated with small ephemeral puddles, whereas A. coluzzii breeds in larger and more stable
ponds, often created by agriculture, urbanization, or other human activities [7, 8, 9].

Genetic divergence between A. gambiae and A. coluzzii appears to be concentrated in "geno-
mic islands of divergence" located in peri-centromeric regions of chromosome-X, -2 and -3
[10, 11], but it is also detectable in other smaller areas across the genome, some outside of cen-
tromeres [12, 13, 14, 15, 16]. A comparative genome-wide scan identified a significant area of
inter-specific divergence on chromosome-3L, including five known or suspected immune re-
sponse genes [17]. Of these, the thioester-containing protein 1 (TEP1) encodes a complement-
like opsonin, binding of which triggers killing of gram-negative bacteria and protozoa via
phagocytosis [18]. TEP1 is highly polymorphic [19] and shows amino acid substitutions in the
thioester-binding domain (TED) associated with pathogen resistance phenotypes [18]. In fact,
experimental infections demonstrated that laboratory-reared A. gambiae individuals homozy-
gous or heterozygous for TEP1�R1 [18] and TEP1rB [17] alleles are significantly more resistant
to Plasmodium and bacterial infections than mosquitoes carrying other TEP1 alleles. In con-
trast individuals carrying TEP1�R2 [18] and TEP1rA [17] alleles show less resistant phenotypes.
TEP1 genotyping of natural populations indicates that TEP1rB is absent or very rare in A. gam-
biae, but is fixed in A. coluzzii fromWest Africa (i.e. Mali and Burkina Faso) [17]. Given the
relatively low rates and intensities of natural Plasmodium infection in both mosquito species, it
was speculated that the most likely source of pathogen-mediated selection for resistance came
from larval habitat [17]. Specifically, the longer-lasting and more biotically diverse aquatic mi-
lieu exploited by A. coluzzii, presumably harboring richer pathogen populations than tempo-
rary breeding sites exploited by A. gambiae, would exert higher selective pressures on the
immune system of the former species [17, 20].

Although recent analyses suggest that hybridization between A. gambiae and A. coluzzii
may be more dynamic than previously appreciated [6], the “Far-West” African region likely
represents the most stable hybridization zone. High frequencies of A. gambiae x A. coluzzii hy-
brids have been repeatedly recorded in The Gambia (up to 7%) [21] and Guinea Bissau
(>20%) [22, 23] leading to the hypothesis that these “Far-West” areas of the species’ range
may represent a secondary contact zone in which local ecological settings have significantly
disrupted reproductive barriers [21].

Hybrid zones offer an excellent opportunity to examine the outcome of genetic exchange of
traits responsible for species segregation and to identify possible changes in ecological condi-
tions inducing relaxation of the reproductive isolation found elsewhere in the sympatric range
of their distribution [24]. Data collected so far on the genetic background of parental and hy-
brid individuals from the A. gambiae/A. coluzzii secondary contact zone indicate a preferential
acquisition by A. gambiae of A. coluzzii alleles suggesting asymmetric introgression from A.
coluzzii to A. gambiae [6, 23, 25].

In this paper we surveyed parental and hybrid mosquitoes from aWest-to-East transect in
Guinea Bissau to investigate gene-flow and potentially adaptive introgression between A. coluz-
zii and A. gambiae in their secondary contact zone. First, we evaluated the extent and direction
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of gene flow, using the species-informative site 702 in Intron-1 (Int-1702) of the Voltage-Gated
Sodium Channel (VGSC) gene, located within the chromosome-2L "genomic island". This site
is characterized by species-specific alleles in West and Central Africa (A. coluzzii = Int-1C; A.
gambiae = Int-1T), which define species-specific Intron-1 haplogroups in strong linkage dis-
equilibrium with the species-diagnostic X-linked rDNA SNPs [26, 27]. Second, we investigated
the effect of hybridization on the exchange of adaptive alleles in the secondary contact zone by
analyzing polymorphism in the catalytic TED domain of the TEP1 gene on chromosome-3.

Materials and Methods

Field collected samples and species identification
Anopheles gambiae s.l. adult females were selected from a larger sample collected in the rainy
season of 2010 (October) in five villages located along a West-to-East geographical transect in
Guinea Bissau: Antula (11° 53’ 49” N—15° 35’ 29”W), Safim (11° 57’ 00” N—15° 39’ 00”W),
Mansoa (12° 04' 00'' N—15° 19' 00'' W), Ga-Mbana (12° 03' 00'' N—14° 55' 00'' W) and Leibala
(11° 52' 53.96'' N—15° 37' 4.06'' W) (Fig 1). Field collections (not conducted in protected areas,
nor involving endangered or protected species) were approved by and carried out under the

Fig 1. Int-1702 and TEP1 allele frequencies along a west-to-east geographic transect in Guinea Bissau.
Relative frequencies of Int-1702 VGSC (above) and TEP1 (below) alleles are reported overall and in each of
the five sampled villages for A. coluzzii, A. gambiae and hybrids. Numbers refer to relative frequencies of
Int-1C and of TEP1r1 and TEP1r2 alleles in Guinean sample. Overall allele frequencies in Guinea Bissau for
both markers (this study) and fromWest-Africa and Cameroon (data from Gentile et al., 2004 andWhite et al.,
2011) are reported on the right for comparison. GPS coordinates (UTM) of sampled Guinean villages are as
follows: Antula (11° 53’ 49” N—15° 35’ 29”W), Safim (11° 57’ 00” N—15° 39’ 00”W), Mansoa (12° 04' 00'' N
—15° 19' 00'' W), Ga-Mbana (12° 03' 00'' N—14° 55' 00'' W) and Leibala (11° 52' 53.96'' N—15° 37' 4.06'' W).
Geographic map modified from Guinea Bissau sm03.png (Wikipedia image in public domain)

doi:10.1371/journal.pone.0127804.g001
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guidance of the Guinea Bissau National Institute of Public Health (INASA). Indoor sampling
was performed in private houses after permission by owners (informed on research aims) with
CDC light traps in Antula and Ga-Mbana and with mechanical aspirators (Indoor Resting Col-
lection, IRC) in Safim, Mansoa and Leibala.

Morphological identification was performed using the available taxonomic keys [28, 29, 30].
Specimens were stored in silica gel-filled tubes until DNA extraction using DNAzol (Life Tech-
nologies) or DNeasy Blood & Tissue Kit (Qiagen) was carried out. Identification of A. gambiae
s.s. and A. coluzzii was carried out using two methods: SINE-PCR based on SINE insertion [31]
and IMP-PCR based on IGS mutations [32]. We chose samples to be genotyped from within
each sample site to increase the number of specimens of the less-frequent species and of the hy-
brid category. The latter includes all individuals heterozygous for both diagnostic markers (i.e.
MSSINE/MSIGS, N = 31) and specimens showing discordant SINE and IGS PCR patterns (i.e.
MMSINE/MSIGS, N = 4; SSSINE/MSIGS, N = 4; MSSINE/MMIGS, N = 2; from Safim and Mansoa),
interpreted as being advanced generation hybrids (see [6, 11, 33, 34] for further details on spe-
cies and hybrid identification in the secondary contact area).

Genotyping of Int-1702 SNP
We genotyped Int-1702 using a primer-introduced restriction analysis assay (PIRA-PCR) de-
signed on available Int-1 alignments [26, 27]. A forward primer, INTeco-f (5'-ATTATGCTC
TTTACAATGCCAACGgAAT-3'), was designed to incorporate a C-to-G mismatch at the 4th

base from the 3'-end. In the presence of a ‘T’ at site 702 and of a fixed ‘C’ at site 703 (as ob-
served in West Africa [26, 27 35]), the -3’ gAAT sequence of INTeco-f creates a recognition
site for the EcoRI restriction enzyme (i.e. G’AATTC) within the PCR product amplified with
INTeco-f and reverse primer INTa-r (5’-GGAATCTATCCACATTATCTG-3’). The restriction
produces a 265 bp or a 240 bp band for Int-1C/C and Int-1T/T homozygotes, respectively; het-
erozygotes display both bands. PCR reactions were carried out in a 10 μl reaction which con-
tained 1x Buffer, 1 pmol of each primer, 0.2 mM of each dNTP, 1.5 mMMgCl2, 2.5 U Taq
DNA polymerase, and 8–10 ng of template DNA extracted from a single mosquito. Thermocy-
cler conditions were 94°C for 10 min followed by thirty-five cycles of 94°C for 30 sec, 54°C for
30 sec and 72°C for 1 min, with a final elongation at 72°C for 10 min. Five microliters of each
PCR product were digested with 10 U of EcoRI enzyme (New England Biolabs, UK) with 1×
buffer in a final volume of 15 μl incubated at 37°C for 1 hour. The restriction products were
run on 3% agarose gels stained with ethidium bromide. To obtain stronger bands on templates
that proved difficult, a semi-nested PCR protocol was employed: on a first round of amplifica-
tion, PCR products were obtained using INTeco-f and INTb-r (5’-ATCTTGGCAGATC
ATGGTCGG-3’), then diluted 1:100 and used as template for a second round of amplification
under the PCR conditions described above.

TEP1 amplification and sequencing
A 456 bp fragment of the TEP1-TED domain was amplified with primers OB2996F (5'-CAC
GGTCATCAAGAACCTGGAC-3') [19] and EMTep1R (5’-TCCAGCAATGCCATCAACAC
AT-3'), the latter specifically designed for the aim of this work in order to avoid co-amplifica-
tion of other TEP-related paralogs, which were instead pervasively co-amplified with other
primer couples available in literature. Amplifications were performed in a 15 μl reaction-mix
using 0.5–1.0 μl of template DNA using the High Fidelity AccuPrime Taq DNA Polymerase kit
(Life Technologies) following manufacturer's guidelines. Thermocycler conditions were as fol-
lows: initial denaturation at 94°C for 2 min followed by 35 cycles of 94°C for 30 sec, 54°C for
30 sec, 68°C for 1 min, with a final elongation at 68°C for 7 min. The resulting products were
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analysed on 1–2% agarose gels stained with GelRed (Biotium), purified with the SureClean Kit
(Bioline) and sequenced at the BMR Genomics s.r.l. (Padua, Italy). Sequences are available in
GenBank under Accession Numbers KR091079—KR091309.

Sequence and population genetic analysis
TEP1 chromatograms were edited and trimmed to remove low-quality base calls with Staden
Package ver. 2003.1.6 [36]. A final 387 bp alignment of genotype sequences was produced
using MAFFT ver. 7 [37] and alleles phased using the PHASE algorithm [38]. Resulting TEP1
alleles were identified as susceptible or resistant based on key residues in the catalytic loop and
pre-α- loop found in the TED portion [39]. The sequenced TED fragment did not allow us to
discriminate among previously described variants within susceptible and resistant TEP1 allelic
classes, because such distinction is also based on residues outside the catalytic and pre-α- loop
region [17, 18]. So, for the purpose of this study, we chose to name allelic classes as follows:
TEP1s = 'susceptible' class, comparable to TEP1�S1, TEP1�S2, TEP1�S3 [18] and TEP1s [17];
TEP1r1 = 'resistant' allele comparable to TEP1�R1 [18] and TEP1rB [17]; TEP1r2 = TEP1 'resis-
tant' allele plausibly corresponding to TEP1�R2 [18] and TEP1rA [17]. A median-joining net-
work was built for TEP1s and TEP1r allelic classes with NETWORK ver. 4.510 [40]. TEP1
genotyping data obtained by B. White and collaborators [17] were used for comparison.

DnaSP v5.10.1 [41] was used to estimate genetic polymorphism and to perform neutrality
tests, i.e. Tajima's D, Fu & Li D� andWall's Q statistics. F-statistics (FST and FIS) [42], depar-
tures from Hardy-Weinberg Equilibrium (HWE) and linkage disequilibrium (LD) were esti-
mated for TEP1 and Int-1702 genotyping data using ARLEQUIN 3.5 [43] and GENEPOP ‘007
[44].

Results and Discussion
The westernmost extreme of the sympatric range of Anopheles coluzzii and A. gambiae is be-
lieved to be the core of a secondary contact region where disruption of genetic association is
observed among "genomic islands" of divergence on centromeres of chromosome-X, -2 and -3,
and a preferential transfer of genetic material from A. coluzzii to A. gambiae occurs (i.e., asym-
metric introgression) [21, 23, 25, 34]. These phenomena are confirmed by our results from the
genotyping of the Int-1702 SNP of the VGSC gene in Guinean populations (Fig 1). Results show
that, as in the rest of the species range, Int-1C allele is almost fixed in Guinean A. coluzzii. How-
ever, in contrast to other areas, it is also found at high frequencies (up to 94%) in sympatric A.
gambiae populations from the coastal/cropland areas of Antula, Safim and Mansoa. Thus, the
association between Int-1702 and species-specific markers on chromosome-X (i.e. IGS, SINE)
observed elsewhere [26, 27] is lost in these populations (S1 Table). It is worth noting that the
very low frequency of kdr-associated mutations in these three A. gambiae sample sites (Vicente
JL, personal communication) precludes the explanation that this unprecedented Int-1702 pat-
tern might result from hitchhiking driven by insecticide selective pressure acting on kdr locus,
as shown to occur in other African regions [35, 45].

Previously, no data were available from the “Far-West” secondary contact region on func-
tional polymorphisms of potential adaptive significance (such as in immune-related genes)
that differentiate A. coluzzii and A. gambiae in the rest of their sympatric range. Our genetic
analysis of TEP1-TED—whose TEP1r1 allele confers high resistance to pathogens and is con-
fined to A. coluzzii in West and Central Africa [17] (Fig 1)—provides the first insights on the
exchange and polymorphism of this potentially adaptive protein in the “Far-West” region.
First, susceptible (TEP1s) and resistant (TEP1r1 and TEP1r2) alleles are shown to be shared by
the two species (Fig 1). Indeed, the occurrence of the TEP1r1 allele in A. gambiae at frequencies
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up to 11% contrasts with the virtual absence of this allele in the rest of the species range. Lack
of TEP1r1 private haplotypes in Guinean A. gambiae suggest that this allele was acquired from
A. coluzzii (Fig 2).

Yet, despite evidence of inter-specific gene-flow, significant genetic differentiation between
A. coluzzii and A. gambiae remains (FST = 0.19, S2 Table), probably reflecting past segregation
of TEP1 resistant alleles in the hybridizing parental species. TEP1r1 is more frequent in A.
coluzzii than in A. gambiae (χ2 = 46.9; p<0.001), whereas the opposite is observed for TEP1r2
(χ2 = 20.8; p<0.001) (Fig 1, Table 1). Second, our data highlights that TEP1r1 allele frequency
varies from 0.1% to 0.5% in Guinean A. coluzzii but never reach fixation (Table 2, Fig 3) as it
occurs in co-specific populations from northern savanna areas of West Africa [17].

Polymorphism analysis shows that the TEP1-TED portion analyzed is well-conserved with-
in each allelic class (TEP1s: πS = 1.0, πA = 0.1; TEP1r1: πS = 0.5, πA = 0.2; Table 2), likely retain-
ing functionally-relevant residues known to confer resistance or susceptibility to pathogens
[18, 39] (Fig 4). The four most common TEP1s haplotypes (-hap1,-hap2,-hap4 and-hap5) are
those found in the rest of Africa [17, 19] and are shared between species (Fig 2). Of the resistant
alleles (Figs 2 and 4), the most frequent TEP1r1 haplotype found is related to a functional vari-
ant found exclusively in West-Africa (i.e. TEP1rB) [17], and a single TEP1r2 haplotype is ob-
served along the entire transect, corresponding to Tep1�R2 [18] and TEP1rA, which has a
broad distribution [17]. Some novel TEP1r1 protein variants (i.e.-hap7,-hap8) are also ob-
served; the phenotypic consequences of these are currently unknown.

Fig 2. TEP1median-joining networks depicting relationships among TEP1s (left) and TEP1r (right)
related haplotypes. Haplotype frequencies are proportional to pie sizes. Site numbering of synonymous and
non-synonymous (underlined) mutations along branches follows our 387 bp TEP1 alignment, those of
replaced amino acids (in brackets) follows Blandin et al., 2009. TEP1s and TEP1r networks are separated by
a total of 32 fixed mutations, 12 at synonymous and 20 non-synonymous sites, respectively.

doi:10.1371/journal.pone.0127804.g002
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Finally, our analysis suggests intra-specific genetic subdivision within A. gambiae from
coastal areas of Guinea Bissau eastwards (Fig 1). Firstly, A. gambiae populations fromWestern
coastal/flooded cropland areas (i.e. Safim, Antula and Mansoa) show higher frequencies of
Int-1C (mean = 85.2%) than those from drier savanna-like areas in the eastern part of the geo-
graphical transect (i.e. Ga-Mbana and Leibala; mean Int-1C frequency = 29.2%) (χ2 = 20.1;
p<<0.001). These coastal A. gambiae populations are also significantly differentiated from
the easternmost population examined for the TEP1 locus (i.e. Leibala; FST = 0.34–0.45, p<0.05;
S2 Table). Moreover, TEP1r2 frequency does not exceed 9.0% in the A. gambiae coastal popula-
tions, but is significantly higher (21%) in Leibala (χ2 = 6.855; p<0.01) (Fig 1, Table 1). In addi-
tion, A. gambiae from Leibala also differs from coastal populations via near-exclusivity of the
TEP1r1-hap3 haplotype (shared with only one A. coluzzii from Ga-Mbana, Fig 2), whose cod-
ing sequence contains two residues ('K' and 'M') related to the phenotypically-resistant
TEP1�R1 [18], a possible recombinant TEP1r B/�R2 allele [17] (Fig 4). Notably, this West-to-
East genetic discontinuity is also revealed by the analysis of chromosome-3 microsatellite poly-
morphisms along the same geographic transect in Guinea Bissau (Pinto J., personal communi-
cation). This pattern may be due either to a different origin of “coastal” and “inland” A.
gambiae populations, or to natural selection promoting niche partitioning and, hence, genetic
splitting at a local scale within this species. It is worth noting that intra-specific genetic diver-
gence between geographically close populations of A. gambiae belonging to different ecological

Table 1. Int-1702 and TEP1 genotype frequencies and FIS.

Int-1702genotype frequencies (%) TEP1 genotype frequencies (%)

N Int-1C/C Int-1C/T Int-1T/T FIS s/s s/r1 r1/r1 s/r2 r2/r2 FIS

Overall A. coluzzii 85 97.7 2.3 - -0.01 28.2 51.8 17.7 2.3 - -0.07

hybrids 41 65.8 22.0 12.2 0.39* 68.3 26.9 2.4 2.4 - -0.01

A. gambiae 105 43.8 20.0 36.2 0.60** 59.0 12.4 - 24.8 3.8 -0.01

Total 231 67.5 13.9 18.6 0.64** 49.3 29.4 6.9 12.6 1.7 0.07**

Antula A. coluzzii 5 100.0 - - n.a. 80.0 20.0 - - - n.a.

hybrids 10 70.0 10.0 20.0 0.76* 100.0 - - - - n.a.

A. gambiae 10 60.0 40.0 - -0.20 100.0 - - - - n.a.

Safim A. coluzzii 14 85.7 14.3 - -0.04 21.4 50.0 28.6 - - -0.04

hybrids 20 60.0 35.0 5.0 0.02 70.0 25.0 - 5.0 - -0.12

A. gambiae 17 64.7 29.4 5.9 0.13 70.6 11.8 - 17.6 - -0.10

Mansoa A. coluzzii 23 100.0 0.0 - n.a. 34.8 65.2 - - - -0.47*

hybrids 8 62.5 12.5 25.0 0.74 50.0 50.0 - - - -0.27

A. gambiae 17 94.1 - 5.9 1.00** 76.5 17.6 - 5.9 - -0.08

Ga-Mbana A. coluzzii 43 100.0 - - n.a. 20.9 48.8 25.6 4.6 - -0.01

hybrids 3 100.0 - - n.a. - 66.7 33.3 - - -0.33

A. gambiae 4 25.0 - 75.0 1.00 50.0 - - 50.0 - -0.20

Leibala A. gambiae 57 21.1 21.1 57.8 0.52** 43.9 14.0 - 35.1 7.0 -0.04

Genotype frequencies of Int-1702 and TEP1 in A. gambiae s.s. (i.e. SSSINE/SSIGS), A. coluzzii (i.e. MMSINE/MMIGS) and hybrids (i.e. 31 MSSINE/MSIGS, 4

MMSINE/MSIGS, 4 SSSINE/MSIGS and 2 MSSINE/MMIGS) are reported as percentages (%). N = sample size, FIS = inbreeding coefficient. Significant FIS
indicating deviations from HWE are reported in bold:

*p< 0.05

**p<0.001.

doi:10.1371/journal.pone.0127804.t001
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settings has already been reported from the “Far-West” region (i.e. from The Gambia), where a
potential role of introgressive hybridization in triggering this divergence at a meso-geographi-
cal scale has been hypothesized [46].

Table 2. TEP1 polymorphism and neutrality tests.

n H Hd S Eta π θ N-SYN SYN πA πS Dsyn D* Q

By allelic classes (all) TEP1s 325 22 0.75 21 21 0.3 0.9 9 12 0.1 1.0 -1.27 -5.16* 0.09

TEP1r1 100 8 0.59 6 6 0.3 0.0 3 3 0.2 0.5 -0.55 1.12 0.00

TEP1r2 37 1 - - - - - - - - - n.a. n.a. n.a.

TEP1s (by groups) A. coluzzii 94 12 0.73 12 12 0.3 0.6 5 7 0.2 0.9 -1.03 -3.49* 0.17

A. gambiae 163 11 0.77 9 9 0.3 0.4 3 6 0.1 1.1 -0.27 -1.13 0.00

hybrids 68 9 0.72 8 8 0.3 0.4 3 5 0.1 0.9 -0.62 -1.75 0.00

TEP1r1 (by groups) A. coluzzii 74 8 0.56 6 6 0.3 0.3 3 3 0.2 0.5 -0.50 0.23 0.00

A. gambiae 13 3 0.56 3 3 0.3 0.2 2 1 0.3 0.2 -1.15 0.05 0.67

hybrids 13 3 0.41 2 2 0.1 0.2 1 1 0.1 0.3 -0.27 -0.41 0.00

In each locality (all allelic classes) Antula 50 8 0.69 46 46 0.7 2.7 n.a. n.a. 0.4 1.7 -2.15* -5.51* 0.76***

Safim 102 16 0.85 52 52 4.4 2.6 n.a. n.a. 3.3 8.3 2.34* 1.11 0.50***

Mansoa 96 16 0.79 50 51 4.3 2.5 n.a. n.a. 3.3 7.8 1.67 1.06 0.53**

Ga-Mbana 100 14 0.80 48 48 5.7 5.7 n.a. n.a. 4.3 10.2 3.49*** 1.69* 0.58***

Leibala 114 10 0.83 45 45 4.5 4.5 n.a. n.a. 3.2 9.0 3.09** 1.91* 0.67***

Overall 462 31 0.85 60 61 4.7 2.3 n.a. n.a. 3.5 8.8 2.61* -0.58 0.34***

Summary statistics for TEP1 sequence polymorphism are reported a) within each TEP1 allelic class in the whole sample, b) within TEP1s and TEP1r1 in A.

gambiae, A. coluzzii and hybrids, c) for the whole Guinean sample and within each locality (all TEP1 allelic classes). n = n° of alleles, H = n° of haplotypes,

Hd = haplotype diversity, S = n° of segregating sites, Eta = total n° of mutations, π = nucleotide diversity (at non-synonymous = πa or at synonymous = πs

sites), θ = Watterson's estimator, N-SYN = n° of non-synonymous mutations, SYN = n° synonymous mutations, Tajima Dsyn = Tajima's D test based on

synonymous substitutions only. n.a. = not applicable. Deviations from neutrality tests are in bold:

* p< 0.05

** p< 0.01

*** p< 0.001.

doi:10.1371/journal.pone.0127804.t002

Fig 3. Comparison of TEP1 genotype distribution in West/Central Africa and Guinea Bissau.Relative
frequencies of TEP1 genotypes in Guinea Bissau are reported in Table 1 and those fromWest and Central
Africa are fromWhite et al. (2011).

doi:10.1371/journal.pone.0127804.g003
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Conclusions
The introgression of the TEP1r1 allele from A. coluzzii to A. gambiae in Guinea Bissau (Fig 1)
shows that hybridization can promote the transfer of potentially adaptive immune-resistant al-
leles from a 'donor' (A. coluzzii) to a 'recipient' (A. gambiae) vector species. Introgressive hy-
bridization may favor the rapid acquisition of advantageous traits from one species to another,
but the adaptive significance (or fitness effects) of the genetic variant entering the 'recipient'
species should be ascertained [47]. It is tempting to speculate that the observed absence of fixa-
tion and/or relatively low frequency of the ‘novel’ TEP1r1 acquired by A. gambiae in Guinea
Bissau could be due to a lower adaptive benefit of this allele to the 'recipient' species in this re-
gion, where hybridization between A. gambiae and A. coluzzii is highest and stable. It would be
interesting to monitor TEP1 allele exchange also in other African regions where assortative
mating was shown to occasionally break down [6] and to assess whether introgressed resistant-
alleles increase in frequency in A. gambiae: this could enhance the immune responsiveness of
this species and, thus, its ability to compete with A. coluzzii in permanent larval sites, with po-
tential repercussions on vector ecology, distribution and, eventually, malaria transmission es-
pecially in those areas where larval habitats are strongly segregated. In fact, it has been
hypothesized that the more biotically diverse aquatic milieu and the higher bacterial load in lar-
val sites typical of A. coluzzii in dry savannah areas are the most likely selective forces driving
fixation of TEP1r1 in these northern populations [17, 20]. The observed lack of fixation of
TEP1r1 in Guinea Bissau might be related to a greater availability of water resources due to a
relatively higher annual rainfall regime in this westernmost region when compared to northern
savanna areas [48]. The more humid ecological context of Guinea Bissau is likely to cause

Fig 4. Amino acid variability in TEP1-TED region in Guinea Bissau. Protein alignment showing variable
positions in the 387 bp of TED region of TEP1 analyzed is shown. Positions are numbered following Blandin
et al., 2009. Shading highlights amino acid differences within and between TEP1s, TEP1r1 and TEP1r2 allelic
classes. TEP1 allele designations refer to sequences from laboratory strains (Mali L3-5, Mali-NIH, PEST,
4Arr, and G3). TEP1 haplotypes (based on nucleotide sequences and named as in Fig 2) reported in the left
side of each row code for the same protein variant.

doi:10.1371/journal.pone.0127804.g004
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frequent replenishment of A. coluzzii larval habitats with clean-water all-year round, thus dilut-
ing the bacterial load in permanent ponds and possibly reducing immune stress for mosquito
larvae. Indeed, mean annual precipitation in Guinea Bissau (e.g. ~1500 mm/yr in Leibala to
2000 mm/yr in Antula) is considerably higher than in northern regions (e.g., Mali: Bamako,
1100 mm/yr; Burkina Faso: Ouagadougo, 800 mm/yr; Bobo Dioulasso, 1100 mm/yr) [25, 49].
The present data on TEP1 allele distributions in Guinea Bissau could indirectly support the
role of pathogens in potentially driving and maintaining fixation of TEP1r1 in A. coluzzii larvae
in Mali and Burkina Faso, where a lower and seasonal precipitation regime may increase water
stagnation and concentration of organic matter in permanent breeding sites, thereby increasing
pathogen density and diversity. This might also explain the lower frequency or absence of the
TEP1r1 allele in A. coluzzii collected close to coastal areas of Ghana and Cameroon [17]. Fur-
ther studies testing correlations among TEP1 genotype frequencies, chromosomal inversion
polymorphisms (known to be highly differentiated between coastal Guinea Bissau and inland/
northern savannah areas [50]), climatic/ecological conditions and pathogen loads in breeding
sites are needed to confirm these hypotheses.

Supporting Information
S1 Table. Linkage disequilibrium (LD) between Int-1702 (2L chromosome) and IGS species-
specific SNPs (X chromosome). LnLHood LD = likelihood of linkage disequilibrium;
LnLHood LE = likelihood of linkage equilibrium; p (LD) = probabilities from likelihood ratio
tests (significant LD are in bold).
(DOC)

S2 Table. Pairwise comparisons of FST based on TEP1 (above diagonal) and Int-1702 (below
diagonal) allele frequencies. Pairwise comparisons of FST between species (co. = A. coluzzii,
ga = A. gambiae) and hybrids (= hyb.) are reported either overall in Guinea Bissau, or within/
among populations. Significance of FST was assessed by performing 500 replicates with a non-
parametric permutation test; significant p<0.05 are in bold.
(DOC)
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