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Abstract

Adult bed bugs were exposed to the sublethal temperatures 34.0°C, 35.5°C, 37.0°C,
38.5°C, or 40.0°C for 3, 6, or 9 days. The two uppermost temperatures induced 100% mor-
tality within 9 and 2 days, respectively, whereas 34.0°C had no observable effect. The inter-
mediate temperatures interacted with time to induce a limited level of mortality but had
distinct effects on fecundity, reflected by decreases in the number of eggs produced and
hatching success. Adult fecundity remained low for up to 40 days after heat exposure, and
the time until fertility was restored correlated with the temperature-sum experienced during
heat exposure. Three or 6 days of parental exposure to 38.5°C significantly lowered their
offspring’s feeding and moulting ability, which consequently led to a failure to continue be-
yond the third instar. Eggs that were deposited at 22.0°C before being exposed to 37.0°C
for 3 or 6 days died, whereas eggs that were exposed to lower temperatures were not signif-
icantly affected. Eggs that were deposited during heat treatment exhibited high levels of
mortality also at 34.0°C and 35.5°C. The observed negative effects of temperatures be-
tween 34.0°C and 40.0°C may be utilized in pest management, and sublethal temperature
exposure ought to be further investigated as an additional tool to decimate or potentially
eradicate bed bug populations. The effect of parental heat exposure on progeny demon-
strates the importance of including maternal considerations when studying bed bug environ-
mental stress reactions.

Introduction

Bed bugs, Cimex lectularius (Hemiptera: Cimicidae), have made a considerable comeback as a
nuisance pest over the last 15 years [1]. These ectoparasites are blood-feeders on humans and
induce both negative physical and mental reactions [2,3]. Recently, bed bugs have been shown
to harbour Trypanosoma cruzi to potentially transmit Chagas disease [4]. Their resurgence is
based on pesticide resistance, increased globalization, and insufficient knowledge of necessary
actions to prevent and control infestations [5]. Several methods are currently used to control
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bed bugs, and an integrated pest management strategy is considered necessary in the majority
of cases [2,6]. Heat treatment is an important management approach that can be combined
with most other traditional control methods. To control bed bugs with heat, high temperatures
are utilized through the localized heat treatment of objects, surfaces, and harbourages [7-9] or
as whole-compartment management using larger heat generator systems [10]. The goal for all
bed bug treatments is to kill bed bugs instantly or within a few hours by exposing them to high
temperatures. The use of sublethal temperatures for longer periods of time has not yet been
considered an option against bed bugs, although such thermal stress may induce mortality and
reproductive abnormalities [11-13].

Physiological mechanisms that improve tolerance to fluctuating abiotic conditions are es-
sential in an organism’s biology and ensure proper function in a variable ecosystem [14,15]. At
high temperatures, death, behavioural impairment, or developmental instability may in insects
result from such factors as denaturation of proteins, accumulation of toxic products, DNA
damage, pH changes, loss of membrane function, nutrient deprivation, or desiccation [15,16].
Heat stress can be countered behaviourally by moving to more favourable microclimatic condi-
tions or physiologically by heat tolerance through acclimation or rapid heat hardening [15].
Improvements in heat tolerance often involve heat shock proteins that act as chaperones to
protect other proteins from denaturing, or that bind to the surface of an aggregate of proteins
and promote their dissolution causing the proteins to refold [17,18]. However, sustained high
levels of these proteins may also induce detrimental effects by indirectly affecting development,
fecundity, and survival [19-21]. Bed bugs have the capacity to handle desiccation stress, and
rapid changes in body temperature and water content during blood feeding [22-25]. On the
other hand, as they originate from stable temperature conditions in temperate bat caves
[26,27], adaptions to persistently high temperatures are unlikely. This potential lack of exten-
sive temperature tolerance may be utilized to control bed bugs because human-made habitats
can be strictly temperature regulated.

No bed bug study has yet investigated both the stage- and generation-dependent influence
of heat stress to reveal the potentially detrimental effects of reduced survival and fecundity on
the population. The present study tested how sublethal temperatures affect bed bugs and their
offspring. We focused on adult survival in combination with fecundity measures and progeny
success. The reported findings suggest a broader role for heat treatment in bed bug control by
adding sublethal temperatures as a potential component in future management approaches.

Material and Methods
Bed bug cultures

Bed bugs in stock cultures were sampled from two hotels in Oslo, Norway, in 2009. Permission
to sample bed bugs was given by the hotel owners. The initial population consisted of approxi-
mately 40 adults from each hotel. The stock cultures were maintained in a 16 h/8 h light/dark
cycle at 22°C and 65% relative humidity. All of the experimental animals were fed heated
human blood through a Parafilm membrane [28]. Small samples of blood were donated volun-
tary by two of the authors, after written consent. Approval from an institutional review board
or ethics committee was not required. We used a mixture of approximately equal amounts of
animals from each of the two stock cultures. To produce standardized experimental animals of
equal age, fifth-instar nymphs were selected from the stock cultures, transferred to a new box,
and fed. Newly hatched adults emerged after 10-14 days. These adults were fed, and fully en-
gorged bed bugs were rested 1 day and allowed to mate, before distribution into the experimen-
tal units.
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Test chambers and experimental units

Abiotic conditions. The experiments were performed in climate chambers (Sanyo—
MLR-351H, Medinor ASA, Oslo, Norway) with a 16 h/8 h light/dark cycle and 65% (64.5% *
0.08% [SE]) relative humidity. Temperatures were maintained at 22.0°C (22.1°C + 0.02°C),
34.0°C (33.7°C £ 0.00°C), 35.5°C (35.4°C + 0.01°C), 37.0°C (36.9°C £ 0.00°C), 38.5°C (38.4°-

C £0.01°C), or 40.0°C (39.6°C £ 0.02°C) according to the needs of the experiments. We used
desiccators (VWR Desiccator 250, VWR, Oslo, Norway) that contained a humidity absorber
(Damp Eater Torrbollen 500 g, Séljtema, Link6ping) to attain 5% (6.9% + 0.02%) relative hu-
midity in one of experiments. A temperature of 22.0°C combined with 65% relative humidity
was considered our standard climatic conditions and hereafter denoted only as room tempera-
ture. Unless otherwise stated, each climate chamber was held at 65% relative humidity.

Bed bug boxes. In all the experiments, animals were placed in140 ml polyethylene boxes
(VWR straight sample container, VWR, Oslo, Norway) that contained a 2 x 2 cm piece of filter
paper (VWR qualitative filter paper, VWR, Oslo, Norway). The plastic lids of the boxes had cir-
cular openings (40 mm diameter) into which metal mesh screens (0.25 mm openings; Burmeis-
ter AS, Oslo, Norway) were inserted to facilitate the passage of air and to allow bed bugs to feed
through it. To ease recording of bed bug survival and feeding, each polyethylene box contained
three males and three females in the experiments with adults. Successful feeding was scored if
the abdomen of the bed bug was extended. For cohort studies, each box initially contained
10 nymphs.

Experimental design

Heat tolerance screening. Temperatures of 34.0°C, 35.5°C, 37.0°C, 38.5°C, and 40.0°C
were combined with either 5% or 65% relative humidity. Thirty adult bed bugs were tested at
each of the 10 temperature-humidity combinations. The control was maintained at room tem-
perature. Individual mortality, the number of eggs, and the number of emerged nymphs were
recorded after 3, 6, 12, and 24 h and daily thereafter for the next 8 days of elevated temperature.
On day 9, all of the surviving adults were moved to room temperature, fed, and relocated into
one box per treatment. Eggs that were laid during the 9 days of heat treatment were maintained
at room temperature and allowed to hatch in the original boxes for another 14 days. After 14
days, the adults were again moved to a new box, and survival, egg production, and emerged
nymphs were recorded. The adults were not fed at this point. This procedure was repeated
once more to provide a total of 6 weeks of recording after heat treatment and feeding.

Sublethal heat treatment of adults. Based on the screening results, we exposed the adults
to 38.5°C or 37.0°C for 1, 3, or 6 days and 35.5°C for 3 or 6 days. Each of the eight temperature-
day combinations was tested on 60 adult bed bugs and compared with 60 control bed bugs that
were kept at room temperature. After the assigned time of temperature exposure, the boxes
were moved to room temperature, and mortality was recorded on day 9. Dead bed bugs were
removed, and survivors were relocated to obtain as many boxes with six living bed bugs as pos-
sible. For 8 weeks, adults were moved to new boxes every 7 days, and survival, egg production,
and emerged nymphs were recorded. Additionally, on day 9 and every 14 days thereafter, the
adults were fed, and the proportion that took a blood meal was recorded.

Offspring effects. Fifty newly hatched first-instar nymphs, which originated from parents
that experienced high temperatures 7 weeks earlier (35.5°C or 37.0°C for 6 days or 38.5°C for 1,
3, or 6 days), were followed for up to 16 weeks. Additionally, 50 newly hatched first-instar
nymphs with parents that had been kept at room temperature were used as controls. All 300
nymphs that originated from the six different treatments showed a normal appearance and
movement when transferred to the experimental boxes. They were fed every 14 days, and
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mortality and the number of nymphs that fed were recorded. After four feeding events, the suc-
cess of each cohort was evaluated by counting exuviae. Each series was terminated upon the ap-
pearance of the first adult or when all 50 individuals were dead.

Heat treatment of eggs. Untreated, newly emerged adults were fed and allowed to lay eggs
on filter paper in the experimental boxes. After 3 days, they were transferred to new boxes to
lay eggs for three additional days. After these 6 days of egg laying, the adults were killed. As
soon as the adults were removed, the boxes that contained only the eggs and filter paper were
assigned to room temperature (control), 34.0°C, 35.5°C, or 37.0°C for 3 or 6 days. The boxes
contained 3-18 eggs each, providing 626 eggs that were distributed between the seven treat-
ments. The eggs were 1-3 days old when exposed to heat stress. After heat exposure, the boxes
were returned to room temperature for 14 days before hatching success was scored.

Statistical analyses

The data were analysed using SigmaPlot 12.3 (Systat Software, San Jose, CA, USA) and JMP
Pro 11.1.1 (SAS institute, Cary, NC, USA). The data were checked for normality, and multiple
comparisons were performed using analysis of variance (ANOVA). Pairwise comparisons were
performed using t-tests. Differences between multiple comparisons were identified using Dun-
nett’s test for comparisons with a control group. The level of significance was set to 0.05. If
tests for normality failed, then we used the nonparametric alternatives Wilcoxon signed-rank
and Kruskal-Wallis ANOVA with Dunn’s pairwise comparisons. We used the Kaplan-Meier
product limit method with the log-rank test between groups to analyse survival. To identify the
time-temperature effect on fecundity, linear regression was used with the day-degrees experi-
enced above a bed bug optimum temperature of 28°C [29] as the predictor variable and the
time until fertility recovery as the response.

Results
Heat tolerance screening

No differences in survival were found between sexes when exposed to 22.0°C, 34.0°C, 35.5°C,
37.0°C, 38.5°C, and 40.0°C (Kaplan-Meier; females vs. males at each temperature and humidity
combination, p > 0.1 in all tests). High humidity increased mortality only at 40.0°C and 38.5°C
(Kaplan-Meier; 65% vs. 5% relative humidity at 40.0°C: y° = 10.24, df = 1, p = 0.001; and at
38.5°C: y° = 8.01, df = 1, p = 0.005). Mortality significantly increased with increasing tempera-
tures (Kaplan-Meier; 34.0°C vs. 35.5°C: y° = 6.26, df = 1, p = 0.02, with lower p values for the re-
maining consecutive pairwise comparisons; Fig 1). Dead bed bugs also appeared first at the
highest temperatures, and 38.5°C and 40.0°C induced 100% mortality within 9 and 2 days, re-
spectively. Egg production and hatching success decreased with increasing temperature

(Table 1). Even at 34.0°C, hatching success was only 50% compared with the control. This fe-
cundity remained low at 37.0°C, but it was restored at 34.0°C and 35.5°C after 24-37 days. No
viable eggs were produced 28 days after the last feeding.

Sublethal heat treatment of adults

Egg hatching success was not influenced by 1-day temperature treatments, but prolonged heat
exposure of the adults temporarily impaired hatching success (Fig 2, summarized statistics in
Table 2). Three days of exposure to 38.5°C resulted in fecundity that was significantly lower
than the control, whereas 3 days of exposure to 35.5°C and 37.0°C had no long-term effect. Six
days of exposure significantly reduced fecundity at all three temperatures compared with the
control. Both the length of treatment and temperature influenced the time until fecundity
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Fig 1. Survival of heat treated adult Cimex lectularius. The proportion of adults alive during different heat treatments for 9 days is shown.
Control =22.0°C. Different letters denote significant differences in survival between treatments (p < 0.05).

doi:10.1371/journal.pone.0127555.g001

recovered. This combined effect was best described by a correlation between the day-degrees
experienced above the bed bug optimum temperature and the time until fertility recovered
(Linear Regression; R” = 0.827, p = 0.002; Fig 3).

Table 1. Eggs hatched and laid per female Cimex lectularius.

During Treatment After treatment Cumulative
Day 1-9 Day 10-23 Day 24-37 Day 38-51 Day 1-51
Hatching Eggs per Hatching Eggs per Hatching Eggs per  Hatching Eggs per  Hatching
success female success female success female success female success
Control e 98.4% 41 ® 99.2% 8.3 93.3% 1.0 - 0.0 98.5
34.0°C o 54.4% 3.7 ® 43.1% 8.7 73.5% 1.1 - 0.0 48.5
355°C o 0.5% 6.1 * 19.8% 8.9 81.8% 1.6 - 0.0 18.1
37.0°C e 0.0% 1.2 ® 6.7% 0.8 0% 1.3 0% 0.2 1.5
385°C e 0.0% 0.1 - - - - 0
40.0°C o 0.0% 0.0 - - - - 0

Percentage of eggs hatched and eggs laid per female exposed to different temperatures for 9 days and then evaluated 10-23, 24-37, and 38-51 days
after heat treatment while maintained at 22°C. The last column denotes the average percentage of eggs hatched over all periods.
e = feeding event.

doi:10.1371/journal.pone.0127555.1001
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Fig 2. Restoration of fecundity in heat treated adult Cimex lectularius. The restoration of fecundity in
adults after 1, 3 or 6 days of heat treatment is reflected by egg hatching success (mean + SE) in successive
weeks after day 9 of the experiment. Control = 22.0°C. After heat exposure, the adults were kept at 22.0°C
and fed every 14 days.

doi:10.1371/journal.pone.0127555.g002

Bed bugs that experienced 3 and 6 days of exposure to the highest temperature (38.5°C) also
suffered from a significantly reduced ability to feed compared with the control (paired -test; 3
days: t; = 3.846, p = 0.031; 6 days: t; = 3.459, p = 0.041), whereas the other treatments did not
exert such an effect (Wilcoxon signed-rank; 37.0°C for 6 days vs. control: Z = 1.841, p < 0.125
[only the test for the lowest average feeding proportion is shown]; Fig 4). The low proportion
of adults that took a blood meal among the affected individuals increased with time after heat
treatment and nearly normalized at the fourth feeding.

Offspring effects

Heat treatment of the parents negatively influenced the development of their offspring. This ef-
fect was reflected by decreases in feeding, moulting ability, and survival. Offspring that origi-
nated from parents that were exposed to 38.5°C for 3 and 6 days exhibited a persistently and
significantly reduced ability to feed compared with the control (paired t-test; 3 days: ¢5 = 3.104,
p =0.027; 6 days: t5 = 2.828, p = 0.037). The effect was most evident from the fourth feeding
event (Fig 5A). The remaining treatments did not differ significantly from the control in their
feeding habits (paired t-test; 35.5°C for 6 days: t, = 0.667, p = 0.541; 37.0°C for 6 days: t5 =
0.518, p = 0.627; 38.5°C for 1 day: t5 = -1.557, p = 0.180).

Nympbhs that originated from different heat treatments also differed in the number of
moults (ANOVA: F5 54 = 119.760, p < 0.001). Dunnett’s comparison to the control revealed
that nymphs that originated from parents that were exposed to 38.5°C for 3 and 6 days exhib-
ited a lower number of moults compared with the control, whereas no such effect was observed
with the other treatments (Fig 6). No nymphs from parents that were exposed to 38.5°C for 3
and 6 days, made it past the third nymphal stage, whereas the nymphs from parents that were
exposed to the other treatments reached the adult stage after five or six feedings.

Nymphs that originated from parents that were exposed to 38.5°C for 6 days, had lower sur-
vival than those that were exposed to the same temperature for 3 days (Kaplan-Meier; y° =
4.51,df =1, p = 0.033; Fig 5B), and both differed significantly from the control and the other

Table 2. Comparisons of fertility of female Cimex lectularius.

1 day 3 days 6 days
Relative to control:
Room temperature vs. 35.5°C X ns 0.008
Room temperature vs. 37.0°C ns ns 0.039
Room temperature vs. 38.5°C ns 0.039 0.010
Between treatments:
35.5°C vs. 37.0°C X ns ns
37.0°C vs. 38.5°C ns ns 0.022
35.5°C vs. 38.5°C X 0.037 0.016

Pairwise comparisons of fertility (proportion of eggs hatched during 8 weeks of egg production after heat
exposure) between females exposed to different heat treatments. The table shows p values from paired t-
tests or Wilcoxon signed rank tests. ns = not significant. x = not tested experimentally.

doi:10.1371/journal.pone.0127555.t002
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Fig 3. Day degrees experienced and recovered fertility in heat treated adult Cimex lectularius. The correlation between day-degrees above the
optimum developmental temperature for Cimex lectularius (28°C) experienced by adults under heat treatment and the time until their fertility recovered is
described. Line equation: weeks = 0.142 + (0.099 x day degrees).

doi:10.1371/journal.pone.0127555.g003

treatments (Kaplan-Meier; 38.5°C for 3 days vs. 35.5°C for 6 days: y° = 35.67, df = 1, p < 0.001,
with lower p values for the remaining pairwise comparisons).

Heat treatment of eggs

Heat treatment significantly affected hatching success (Kruskal-Wallis: H = 50.507, df = 6,

p < 0.001; Fig 7), and only 1.0% of the eggs hatched after treatment at 37.0°C. The extended
treatment time of 6 days had no apparent additional effect on hatching success at either of the
tested temperatures.

Discussion

The present study showed that sublethal temperatures, well below those that are traditionally
used in bed bug control, can be detrimental to essential life history traits. First, adult survival
was strongly reduced at temperatures close to 40.0°C for an extended period of time. Second,
fecundity was temporarily reduced, and the effect increased with increased temperature and ex-
posure time. Third, the heat treatment of adults also affected their offspring through feeding
and moulting arrest, followed by death. Fourth, the eggs showed relatively low heat tolerance
when developed and laid under heat stress. These effects may influence total population perfor-
mance and are all relevant for bed bug establishment, population growth, and recovery after
control efforts.
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Fig 4. Feeding in heat treated adult Cimex lectularius. The proportion of adults feeding (mean + SE) that had been subjected to different heat treatments
is shown. Control = 22.0°C and d = days. * denotes significant difference relative to control (p < 0.05).

doi:10.1371/journal.pone.0127555.g004

Based on this study and previous reports, there appears to be a critical temperature range
between 37.0°C and 40.0°C for bed bugs [23]. We also observed an increase in mortality under
moist conditions, but this effect was marginal. The bed bugs in our experimental setting may
have experienced a somewhat reduced ability to cool through evaporation under moist condi-
tions [16,18], or they may have suffered more damage through the thermophysical properties
of humid air [30]. The time-temperature dependency is clearly important, and even subtle
changes of 1.5°C produced large differences in mortality over time. Short-term, manageable
temperatures for insects may become lethal if the exposure time is extended [15,31], and suble-
thal heat stress appears to have the potential to completely knock out or strongly limit bed bug
populations. Eggs have previously been found to endure longer than adults when exposed to
upper temperature extremes for a short time [10], but our observations indicate that the eggs
actually experienced higher mortality than adults at long exposure to sublethal temperatures.
High mortality of eggs after prolonged exposure to 35°C—37.0°C has also been previously
shown [32,33]. This was confirmed by our study, but we observed egg mortality at even lower
temperatures, such as 34.0°C for 9 days, which resulted in hatching success < 50%. We did not
investigate the mechanisms that underlie these effects, but the strongly reduced hatching suc-
cess of eggs deposited at high temperature suggests detrimental effects during oogenesis [34].

The maternal effect that was observed in nymphs with a normal appearance and behaviour,
indicates no dysfunction in the insects themselves but instead points to the obligate mutualistic
Wolbachia bacteria. Bed bugs and Wolbachia are integrated into a biological unit, in which the
partners are unable to survive independently [35,36]. Many other insects, such as aphids, ants,
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Fig 5. Feeding and survival of Cimex lectularius nymphs. The proportion feeding (A) and survival (B) of Cimex lectularius nymphs from previously heat
treated parents are shown. Each cohort began with 50 nymphs, and all were given the opportunity to feed every 14 days. Feeding (mean + SE) and survival
were recorded until an adult appeared in all boxes in a treatment or all nymphs in a cohort were dead. Control = 22.0°C and d = days. Different letters denote
significant differences in feeding or survival between treatments (p < 0.05).

doi:10.1371/journal.pone.0127555.g005

weevils, and cockroaches, are also associated with bacteria that provide them with essential nutri-
ents [37]. The balance of such associations may be disrupted when the host is exposed to heat
stress [38-40]. The complete elimination of these internal symbiotic bacteria is unlikely, but tem-
porary Wolbachia knockdown in bed bugs may explain temporary sterilization through a limited
supply of essential nutrients that are needed to produce viable eggs [35]. The rebounding of fer-
tility may consequently result from the recovery of the microbial balance in the bacteriomes that
normally contain the majority of symbionts. Wolbachia is also vertically transmitted from moth-
er to nymphs through oogenesis [36]. If too few symbionts infect the ovaries, for instance follow-
ing parental heat exposure, then this relationship between generations may be broken. We did
not measure the presence of Wolbachia, but our findings indicate the involvement of this symbi-
ont. Preventing the transfer across generations may be a key to novel control approaches that
target bed bugs. It has also earlier been reported that sublethal heat significantly reduces the re-
productive rate of bed bugs and simultaneously renders the mycetomes symbiont-free [41,42].
Even older studies point at potential offspring and population effects of sublethal exposure
[32,43,44]. More recently, retarded growth and sterility were found when the Wolbachia symbi-
ont was eliminated by antibiotics [36]. This is interesting when considered in light of the present
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Fig 6. Number of moults completed in Cimex lectularius nymphs. The number of moults (mean + SE) completed after four feeding events by nymphs of
parents that had been subjected to different heat treatments is shown. Each cohort began with 50 nymphs, and all were given the opportunity to feed every
14 days. Control = 22.0°C. * denotes significant difference from control (p < 0.05).

doi:10.1371/journal.pone.0127555.g006
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Fig 7. Hatching success of heat treated Cimex lectularius eggs. The proportion of Cimex lectularius eggs that hatched (mean + SE) after different heat
treatment, is shown. Control = 22.0°C. * denotes significant difference from control (p < 0.05).

doi:10.1371/journal.pone.0127555.9g007

results. If Wolbachia can be knocked out with antibiotics and is unable to recover in these crucial
organs, then medicinal treatment might be evaluated as a possible bed bug control method to en-
sure no sustainable population growth. Concerns regarding antibiotic use must be strictly con-
sidered, but laboratory population studies are warranted.

The quantification of fecundity and maternal effects is probably the most appropriate re-
sponse measure for severe conditions, and long-term investigations of sublethal temperatures
are essential when considering ecological demands and population-limiting characteristics
[15]. As shown herein for bed bugs, the effects of sublethal heat stress might interact with other
life history traits, carry over to other stages, or even flow across generations to prolong or en-
hance the consequences. Mortality is one measurable factor, but progeny success may be equal-
ly important in the long term. The temperature-induced sterility lasted for weeks at several of
the tested time-temperature combinations, and 3-day exposure to 38.5°C resulted in no viable
offspring for more than 2 months. These sterility effects are also likely to combine with general
senescence and an age-dependent decline in stress resistance to reduce overall population per-
formance [45-47]. The growth and dispersal potential of bed bugs is tremendous in human
habitats, but the effect of a reduced growth rate should not be underestimated [48,49]. In par-
ticular not in the fragile situation found during pest control, when the population is targeted
with an arsenal of different methods.

Heat treatment targeting temperatures between 45 and 52°C to achieve rapid mortality is a
part of commercial integrated pest management approaches against bed bugs [6,10,50].
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However, in such treatments temperature may reach 65°C [10] to damage objects and also be
highly energy-demanding. The present study indicates that long exposure to sublethal temper-
atures may be an alternative or supplemental approach. The gap between temperature regi-
mens that are currently used in bed bug control and our experimental approach is large and
has both challenges and advantages. One apparent challenge is the necessity of a longer dura-
tion of treatment. The present study indicates the lower limits of temperature treatments. The
time demand may likely be reduced by elevating temperatures slightly, thus ensuring a more
practical approach. The challenge of a long duration may also be met by attaining the desired
temperatures in hidden harbourages through the long duration itself and conductive heat
transfer within or between objects. A second problem is that both psychological and physiolog-
ical nuisance must be tolerated by inhabitants for a given time after treatment. This may be
solved by properly handling hot spots, such as beds, mattresses, chairs, and sofas, which may
easily kill and remove 90-95% of the population [51].

Anecdotal reports also indicate that bed bugs may disperse to other rooms as a result of ele-
vated temperatures, but the precise temperature levels that induce avoidance behaviour have
not been thoroughly investigated. How bed bugs behaviourally respond to sublethal heat treat-
ment should be explored to determine the consequences of different heat regimens. Sublethal
temperatures may possibly be advantageous by not triggering the escape response, thus ensuring
that individuals remain in place for the duration of treatment. Several aspects must be investi-
gated and clarified before proper understanding of sublethal temperature effects can be utilized,
but the obvious advantage of lower temperatures is the reduced demand for expensive equip-
ment. The required heating capacity will depend on construction, but in well-insulated bed-
rooms (which are typical of temperate-to-cold climate areas), 37-38°C temperatures may be
easily reached using two to three 1500-2000 W electrical ovens and a fan. The energy cost of a
14-day treatment will consequently not exceed 2000 KWh, thus enabling treatments at an ac-
ceptable cost. The use of sublethal temperatures may be included as a part of future multi-meth-
od approaches where bed bugs can be targeted by combinations of pesticides, desiccant dusts,
essential oils, entomopathogenic fungi, traps, barriers, and alarm- or host signals for activation,
[5,52-66]. Support from sublethal heat may contribute to increased mortality and, more impor-
tantly, sterilisation, egg mortality, and maternal effects to prevent rebounding populations.

Conclusions

The present results highlight the importance of life-long measures, including maternal effects
when evaluating pest management methods. Short-term investigations may only cover a frac-
tion of the story. Cohort studies and long-term observations may reveal the current and future
consequences for population growth. Our study provides more questions than answers, but the
management potential of sublethal temperatures should be followed up by studies that investi-
gate temperature regimens that are both practical and suitable for field applications. We only
evaluated a few temperature-time combinations. Nothing is known about the potential effects
of repeated exposure, strongly fluctuating temperatures, or longer exposure times. Based on
the present results, we believe that sublethal heat treatment may be a potential element of fu-
ture integrated pest management strategies against bed bugs.
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