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Abstract

Many cell types can bias their direction of locomotion by coupling to external cues. Charac-
teristics such as how fast a cell migrates and the directedness of its migration path can be
quantified to provide metrics that determine which biochemical and biomechanical factors
affect directional cell migration, and by how much. To be useful, these metrics must be re-
producible from one experimental setting to another. However, most are not reproducible
because their numerical values depend on technical parameters like sampling interval and
measurement error. To address the need for a reproducible metric, we analytically derive a
metric called directionality time, the minimum observation time required to identify motion
as directionally biased. We show that the corresponding fit function is applicable to a variety
of ergodic, directionally biased motions. A motion is ergodic when the underlying dynamical
properties such as speed or directional bias do not change over time. Measuring the direc-
tionality of nonergodic motion is less straightforward but we also show how this class of mo-
tion can be analyzed. Simulations are used to show the robustness of directionality time
measurements and its decoupling from measurement errors. As a practical example, we
demonstrate the measurement of directionality time, step-by-step, on noisy, nonergodic tra-
jectories of chemotactic neutrophils. Because of its inherent generality, directionality time
ought to be useful for characterizing a broad range of motions including intracellular trans-
port, cell motility, and animal migration.

Introduction

Directional cell migration is the process in which a single cell or a group of cells bias their direc-
tion of locomotion by coupling to an external cue. External cues may be soluble in nature such
as during chemotaxis [1], insoluble such as during haptotaxis [2], or mechanical such as during
durotaxis [3] and gravitaxis [4]. Processes involving directional cell migration are ubiquitous
in nature and essential for many fundamental biological processes facilitating the innate and
adaptive immune systems [5, 6], sexual reproduction [7], embryonic development [8], cancer
metastasis [9, 10], and more. The efficacy to which cells are able to carry out these functions is
often tied to the characteristics of their migration, including migration speed, persistence, and
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tortuosity [11]. These characteristics can be quantified to determine which biochemical and
biomechanical factors affect cell migration, and by how much, but choosing the right metric is
important. To introduce this work, we briefly review several commonly used metrics for char-
acterizing cell migration to show that the current paradigm is good for characterizing persistent
motion in the absence of an external cue, but does not reproducibly characterize directional
motion. The main goal of this work is to derive an intuitive metric for reproducibly quantifying
the directional bias of motion, independent of persistence.

Commonly Used Analytical Tools For Characterizing Migration

Mean squared displacement (MSD) is a common metric for measuring migration speed and
distance traveled because it is easily interpretable and readily derived from mathematical mod-
els of motion. Numerous studies that characterize directional migration use MSD in conjunc-
tion with at least one other metric for quantifying path persistence or tortuosity [11-17]. Three
examples of such metrics used are: the distribution of turning angles between discrete measure-
ments of centroid displacements (turning angle distribution, TAD); tortuosity (also known as
straightness index [18, 19], chemotactic index [15, 20], or directionality ratio [21]) defined as
the end-to-end distance traveled divided by the total migration path length; and tangent-tan-
gent correlation, which describes the correlation in migration path orientation over a specified
length or time interval.

Sampling Interval Dependence

In order to gain insight from quantitative characterizations of the migration path, the numeri-
cal values of the metrics applied must be reproducible from one set of experiments to another.
Such values should also reflect the true kinematic properties of migration by decoupling from
pseudo random kinematics induced by measurement error along the migration path. One
common shortcoming of TAD, tortuosity, and tangent-tangent correlation is that they each
implicitly depend on sampling interval, At, which is the time interval between position mea-
surements. Sampling interval can be chosen arbitrarily, implying that TAD, tortuosity, and tan-
gent-tangent correlation curves are not generally reproducible without using an equivalent
sampling interval across all experiments. Even when sampling intervals are accounted for, a
sampling interval dependent metric only characterizes migration at an arbitrarily chosen time
scale at which the observable may or may not decouple from measurement error.

To visualize sampling interval dependence, consider two experimental measurements of a
migration path, one using a “long” sampling interval, Af = At and the other using a “short”
sampling interval, At = At_ (Fig 1A, top and bottom, respectively). Circles are centroid posi-
tions and the corresponding perceived migration paths (red line segments connecting circles)
are juxtaposed against the true migration path (thick grey curve). The deviation between cen-
troid positions (r, = r(t,), where t, = nAt,n =1, 2, ..., N, At = At_ or At.) and the true migra-
tion path represents centroid measurement error, which depends on factors such as image
resolution and cell boundary detection accuracy. Angles between successive red line segments,
¢.,» are turning angles (- < ¢ < ). Taking into account all turning angles, the normalized
TAD, pg (¢; At), is calculated for both sampling intervals (Fig 1B). As the sampling interval in-
creases towards the total duration of the migration path, the TAD curve becomes sharply peak-
ed at ¢ = 0. Conversely, as the sampling interval decreases towards zero, the effects of diffusive
motion and centroid measurement error flatten the TAD curve. Hence, TAD depends notably
on sampling interval. One measure of persistence is the so-called turning angle persistence
(TAD persistence), the fraction of all turning angles between + 7 (shaded area under TAD
curves in Fig 1B). TAD persistence depends on the sampling interval just as TAD does.
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Fig 1. The effects of sampling interval on measurements and characterization of migration
trajectories. (A) A migration path sampled with a long sampling interval, At = At. (top, outlined yellow
circles), and a short sampling interval, At = At. (bottom, outlined white circles). Using the long sampling
interval diagram, the observed migration path is formed by connecting measurements of centroid positions,
ry, ra, ..., with lines (in red). Unit tangent vectors are shown as v, v,, ... while turning angles, ¢+, ¢, . . ., are
defined as the angle between successive tangent vectors. Differences in centroid position from the true
migration path (thick grey curve) represent measurement error. (B) Turning angle distributions (TAD),

Py, (¢;At), based on both the long (top) and short (bottom) sampling intervals. A measure of migration
persistence known as TAD persistence is the area under the TAD curve between + 7 (shaded). TAD
persistence depends notably on sampling interval. Similar diagrams can be used to show the sampling
interval dependence of metrics such as tortuosity and tangent-tangent correlation. (C) A diagram visually
defining terms necessary to analytically derive the directionality time model. A cell is depicted as a random
walker with steps (R4, Ra, . . ., Ry, . . .) located in a 2-D coordinate system defined by the unit vectors €, and
éy. Capital letters correspond to random variables. For each step, there is a corresponding step length L, and
polar angle @, The latter is defined with respect to unit vector €, and should not be confused with the
corresponding turning angle, ®, =0, - 0,_;.

doi:10.1371/journal.pone.0127425.g001

The dependence of tortuosity on sampling interval is apparent when considering the limit
that the sampling interval approaches the total duration of the migration path. In this limit,
total path length is the end-to-end length resulting in a tortuosity of 1. When the sampling in-
terval decreases, the total path length increases due to centroid measurement error and the un-
derlying fractal nature of the migration path itself [19, 22, 23].

Sampling Interval Independent Metrics

Tangent-tangent correlation, V(¢ + 7) - ¥(¢), is the time averaged cosine of the angle between
tangent vectors V(¢ + 7) and v (¢) that are separated by a time interval 7. The overline denotes
an average over all time . When applied to discrete experimental data captured at a specific
sampling interval, v (¢) is replaced by ¥, (Fig 1A). Tangent-tangent curves are sampling inter-
val dependent because the difference between the true instantaneous tangent vector and the
measured tangent vector generally increases as the sampling interval increases. However, there
is a sampling interval independent measure called persistence time that derives from the tan-
gent-tangent correlation curve. Persistence time, ¢, is the time scale below which directional
orientation of the migration path remains correlated. In general, persistence time is measured
as a fit parameter in a model that fits the tangent-tangent correlation curve over all time scales.
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Therefore, measurements of persistence time are sampling interval independent so long as the
sampling interval is small enough to provide enough data points for a good fit.

Persistence time and migration speed together are sufficient to characterize non-directional
motion but an additional metric is needed when motion is directional (biased by an external
cue). This third metric should be sampling interval independent, like persistence time, and de-
couple from measurement error. Such a metric is derived in this article.

Sampling interval independence implies an integration of data over all time intervals rather
than choosing to make a measurement based on one specific sampling interval. One approach
to achieving a sampling interval independent metric of directionality could entail fitting data
such as TAD persistence or tortuosity to a model, thereby measuring a set of fit parameters.
However, TAD persistence and tortuosity models are difficult to calculate and interpret. MSD
models are easier to calculate and interpret and several models have already been analytically
derived [19, 24, 25]. Nevertheless, this approach of fitting to a model only works if the underly-
ing kinematics of the migration are understood a priori such that a model can be chosen.
While one can attempt to fit more than one model to determine which fits best, changes to
MSD from one model to the next can be small with respect to the error bars on an experimental
MSD curve. Hence, there is the possibility of a causality loop—one cannot accurately under-
stand a set of migration paths without knowledge of the underlying process and corresponding
random walk model, but one is unsure of the corresponding random walk model without un-
derstanding the migration paths.

To circumvent this causality loop, we take a bottom up approach to derive a generalized
sampling interval independent metric called directionality time. Whereas persistence time is
the time scale below which the orientation of the migration path remains correlated, direction-
ality time is defined as the time scale above which the orientation of the migration path be-
comes correlated due to an external directional bias. Directionality time supplements
persistence time when characterizing directional random walk-like motion. We derive a direc-
tionality time fit model that is broadly applicable to many types of ergodic directional motion
and decouples from measurement error. We also discuss how the directionality time fit model
can be adapted to handle heterogeneous populations of random walkers and nonergodic mo-
tion. Finally, we demonstrate its implementation on data of chemotactic neutrophils that mi-
grate directionally with non uniform speed.

Methods

This section contains three subsections reviewing ensemble averaged squared displacement,
mean squared displacement (MSD), and ergodicity, followed by two subsections with general
methods information. The concepts reviewed here are necessary to conceptually derive direc-
tionality time. The models contained within this article are derived in full mathematical detail
in the supporting information (Appendices A and B in S1 File).

Mean Squared Displacement

We begin with the assertion that ensemble averaged squared displacement follows a power law
(ri(1) ~ ¢ (1)

wherei=1,2,3,...is the index of one migration path in an ensemble, and the angle brackets
() denote the ensemble average over squared displacements measured at time ¢. To be precise
about the type of averaging, we call this quantity the ensemble averaged squared displacement
(EASD) instead of MSD. The exponent & characterizes the motion. A constant value of o = 1
indicates diffusive (random) motion whereas a = 2 indicates ballistic (directional) motion.
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Other values represent subdiffusive motion (0 < a < 1), superdiffusive motion (1 < o < 2), or
no motion at all (o = 0).

When few sets of trajectories are available for the ensemble average, time averaged squared
displacement (TASD) can be calculated to reduce statistical noise. The TASD of the ith migra-
tion path is given by

(1) = [r,(t + 1) — () (2)

where the overline denotes an average over time t, leaving TASD a function of the time interval,
7. Squared displacement that is first time averaged and then ensemble averaged, (r? (7)), is
hereby referred to as MSD as this is how it is often defined in other studies [14, 17, 26].

Ergodicity

Ergodicity, &, is the proportionality factor between time averaged squared displacement of the
ith migration path (TASD) and ensemble averaged squared displacement (EASD):

7 =&(r’) (3)

A motion is ergodic when the underlying dynamical properties such as cell speed or directional
bias do not change over time. Mathematically, this corresponds to £ = 1 over all time, indicating
no difference between the TASD and EASD. This equivalence is useful because TASD measure-
ments can be used to represent EASD measurements when the latter is statistically noisy. In
general, time averaging smooths out complexities in the squared displacement caused by vari-
ables that change over time (and space), such as instantaneous speed. When such factors
change significantly as is often the case with collective and cooperative motion, and motion
through confined, spatially heterogeneous topologies (e.g. nonuniform substrates where envi-
ronmental factors such as adhesiveness vary over time and space), (£) # 1 and the migration
paths are said to be nonergodic. Nonergodic motion is mathematically more difficult to charac-
terize and this has implications on directionality time measurements.

Characterizing Motion using the Slope of Mean Squared Displacement
in log-log Coordinates

The slope of EASD plotted in log-log coordinates is an approximate measure of the EASD expo-
nent a (Eq 1) and therefore a measure that characterizes trajectory diffusivity and/or directed-
ness. Using Eq 1, and noting that o can change with time ¢, one can define the log-log EASD
slope: f(t) =% t1nt + «. When EASD exponent a is constant, 3 = a. Otherwise, B(t) is an esti-
mator of a(t), and therefore an estimator of how diffusive or ballistic the motion is at a particular
time, ¢. In the case where the migration paths are ergodic, EASD and MSD are interchangeable
and the log-log MSD slope B(7) can also be calculated to characterize motion as a function of
time interval 7. In this work, the functional form of 5(f) is mathematically derived and used to de-

termine a sampling interval independent measurement that characterizes directionality.

2D Persistent Biased Random Walk Simulations and Data Fits

All simulation data were generated in MATLAB. They were fit using custom MATLAB soft-
ware. This code is available for download online [27]. Data fits were calculated using the Leven-
burg-Marquardt least squared fitting algorithm [28] built into MATLAB.
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Migration Paths and Centroid Measurement Error

Differential interference contrast (DIC) image sequences capturing directionally migrating
Polymorphonuclear Human Neutrophils were obtained from Ref. [17] along with cell centroid
positions, r(t,,), where i is the migration path index and ¢, is the time measured in multiples of
the sampling interval, ¢, = nAt (n =1, 2, . . .). Centroid measurement error was estimated as fol-
lows. A cell was chosen at random and manually outlined five times. The five corresponding
centroid positions were determined using the regionprops algorithm in MATLAB (the Math-
Works; Natick, MA). The centroid measurement error of that cell, o,,,, was calculated as the
RMS displacement from the mean centroid position.

Results
Deriving the Directionality Time Model

When observing an ergodic, directionally biased random walk, there exists a sufficiently large
sampling interval such that the motion will appear to be ballistic. Put in terms of log-log MSD
slope, (1) transitions towards 2 as T — oo for a directionally biased random walk. The idea of
using log-log MSD slope to measure the transition time was recently proposed in a preceding
article about neutrophil chemotaxis [17]. We suggested an empirical fit function for (¢) to
quantify this time interval that we called directionality time. Here in this article, we rigorously
develop the concept of directionality time from the bottom up by analytically deriving a A(¢) fit
function (without free parameters) and using biased and persistent random walk models to
characterize its robustness. Directionality time is defined as the time scale above which motion
appears ballistic (directional) and can be loosely interpreted as the time it takes for a random
walker to orient towards an external cue.

To determine the mathematical meaning and robustness of directionality time, we analyti-
cally derive the log-log EASD slope, (1), for three ergodic directionally biased random walk
models:

1. Drift Diffusion (DD)
2. 2D Stepping Biased Random Walk (2D-SBRW)
3. 1D Persistent Biased Random Walk in Continuous Time (1D-PBRW)

These calculations are shown in detail in the supporting information (Appendix A in S1 File).
The high level results are described here.

DD (model 1) was a suitable starting point because these processes are readily understood.
For DD in d dimensions, with a diffusion constant D, and a drift speed u, the log-log EASD
slope is shown in the supporting information (Eq. A2 in S1 File) to be

1+
Boo(t) = 1+ ¢

t

(4)

where t, = 242 defines directionality time. Note that A(f) begins at 5(0) = 1 and asymptotes to-
wards 2. This is the signature of a directionally biased random walk. Directionality time is the
time at which = 2 where the migration transitions from diffusive to directional. As D in-
creases and/or u decreases, more observation time is required to determine that the motion is
directionally biased.

Directional cell migration, though, is not a drift diffusion process. While drift may be an im-
portant factor when measuring the directionality of swimming cells, the process of cellular pro-
pulsion itself is better described kinematically by a 2D-SBRW (model 2). In a 2D-SBRW
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process, an object steps from one discrete position, R, to the next, R,;; (=0, 1,2, ...), such
that the displacements between successive steps are biased towards a particular direction, €,
(Fig 1C). Notationally, all random variables are assigned capital letters. Using L, and ©,, to de-
note step lengths and polar angles (orientation with respect to € ) respectively, the stepwise
EASD can be shown to be (see Ref. [25] for the derivation, and Eq. A5 in S1 File)

(R2) = n(L?) + n(n — 1)(L cos ®)*.

The important information conveyed by this equation is that the motion is diffusive ((R?) ~ n)
when 7 is small and directional ((R?) ~ n?) when n is large. As before, the goal is to derive the
directionality time (or number of steps) at which the motion transitions from diffusive to direc-
tional. By defining a constant instantaneous speed v, the approximation n ~ <VL—’> can be used to
derive EASD as a function of time ¢ instead of step number #. In the time representation, this is
amodel of a biased random walk (BRW) instead of an SBRW. Differentiating in log-log coordi-
nates gives the log-log EASD slope (Eq. A8 in S1 File)

1+ i
ﬁBRW(t; td) = ré (5)
which is functionally identical to Spp (Eq 4), now with directionality time given by (Eq. A9 in
S1 File)

(6)

t, =7
Ty (L cos ®)°

() <<L2> — (L cos®)2>

The functional form of EASD slope is no different between models 1 and 2, except that the
mathematical constants that constitute directionality time have changed. With Eq 5 holding
true for all composite step length and directional bias distributions, this function can be used
to measure the directionality time of many types of directionally biased motion. The equiva-
lence between this form of directionality time and that derived for DD (below Eq 4) is shown
in Appendix A (Eq. A12 in S1 File).

The generalized directionality time given in Eq 6 can be understood by considering the fol-
lowing example. Consider the case where the probability that a cell changes direction is con-
stant from one moment to the next and that orientation angles © are chosen from a biased
distribution independent of step lengths L. Then directionality time simplifies to (Eq. A13 in

S1 File)
2-¢
w=1(227) )

where ¢ = (cos®), and t, represents the reorientation time, the average time of each ballistic
step. The term c is tangent-bias correlation (analogous to tangent-tangent correlation). Values
of ¢® range from 0, corresponding to no orientation bias (PDF pg,(0) = L, where - < 6 < m),

to 1, corresponding to maximal orientation or anti-orientation bias (PDF pg(6) = 6(60) or 6(0 -
7), where ¢ is the Dirac delta function). Directionality time depends only on the reorientation
time and the extent to which the orientation is biased when a reorientation event occurs, in-

creasing with the former and decreasing with the latter. In particular, the term 2:;2 ranges from

1 at maximal bias, to oo at no bias. It may appear odd that t; — ¢, (the equivalent of an average
step duration) when the system is perfectly directional (¢* — 1). However, this is no more than
a subtlety of stepping random walks. There is no change in position defined at ¢ < t, because of
the way continuous time was substituted in for discrete stepping number (¢ ~ nt,). Therefore,
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the minimum time to determine that movement is directionally biased will always be greater
than or equal to t,. No information can be gained from a random walker that has not yet taken
any steps.

In the general case where p; is not a Poissonian PDF but stepping time and directional bias
are independent of one another, the constant 2 in the numerator of Eq 7 is replaced by %

Thus, the directionality time increases with increasing stepping time variance, as one would ex-
pect. This is relevant to processes such as Lévy Flights which correspond to a step length distri-
bution with a long tail [29].

Since each step in the SBRW is accompanied by a memoryless reorientation, this model can-
not be used to derive a log-log EASD slope equation that accounts for persistence. In order to
consider the relation between directionality time and persistence, a continuous time random
walk model must be derived, noted as the PBRW (model 3). This model is derived in 1D for
simplicity using the biased telegrapher equation (Eq. A14 in S1 File) [24, 30]. To put this
model in context, the unbiased telegrapher equation has been used to derive the dynamics and
EASD of persistent random walks that describe the kinematics of chemokinesis [16, 31], as well
as the motion of grasshoppers and kangaroos [24]. In the 1D-PBRW, an object moves with
constant speed v, either left (—x direction) or right (+x direction) for some random run time
(T or T, respectively) before switching directions. Bias is induced by drawing left and right
run times from nonequivalent distributions and characterized using tangent-bias correlation

¢ = (cos®) = M (c.f. Eq 7). The log-log EASD slope of the PBRW (Eq. A21 in S1 File) is

ATy (1)

more complicated than that for the BRW and DD because directionality over short time scales
caused by persistence induces a zero-time log-log EASD slope fpprw(0) = 2. As t increases and
the orientational correlation of persistent motion is lost, Bpprw/(#) dips towards 1. Except when
¢ =0, Bpgrw(t) — 2 as t — 00, as is the signature of directionally biased motion.

These Bpprw(t) curves are plotted Fig 2A for multiple values of the tangent-bias correlation
¢* (solid curves). In this plot, time is in units of );1, which is related to the average run time
(persistence time). At sufficiently large time scales (Eq. A22 in S1 File)

2

Bosrw (t > tagw) = Brw (6 ) = 1+ tf (8)

t

where fpryw is the convergence time above which the difference between Bpprw and fSgrw is
less than 5% (Fig 2B). Therefore, directionality time can be measured by fitting 8 to Bgrw/(%; t4)
at time scales larger than ¢ = tgrw. The resulting measurement of ¢; from this fit is given by
(Eq. A23 in S1 File)

2(1 — 2¢%)
C?

: (©)

+>)| =

As with the BRW, t; — oo for a random walk that is unbiased. When the bias is sufficient
( < ¢ < 1), the gap between short time scale persistence and long time scale directionality
vanishes such that the random walk appears directional at all time scales. By construction, we
redefine negative values of directionality time to 0 in this domain to be consistent with the in-
terpretation that directionality time is the observation time necessary to determine that motion
is directional (Fig 2C).

The result Spp(#) = Berw(t) =~ Beerw(?) at large time scales implies that one unique fit func-
tion can be used to measure f; from any set of idealized migration path measurements. For
brevity, we refer to this fit function as the Sgrw-model. The Sgrw-model is independent of the
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Fig 2. Log-log EASD slopes of the 1D-PBRW and its correspondence to the directionality time model.
(A) Log-log EASD slopes of the 1D-PBRW model (Bpsrw(t), solid curves) asymptotically approach the
directionality time model (Bgrw(t; ts), dashed curves) given a specific value of directionality time t;. These
slopes are plotted against time for different values of the squared tangent-bias correlation, ¢® = (cos®)2. In
these plots, time is nondimensionalized by the persistence time-like parameter, ;. Correlated orientation
over short time scales gives §(0) = 2 regardless of directional bias. Except in the absence of directional bias
(i.e.c®=0), Bpgrw(t) dips from 2 to 1, before asymptoting back toward 2 as t — co. (B) The convergence
times above which the difference between Bpgrw(t) and Berw(t; ty) is less than 10, 5, and 1% are shown in
gray scales plotted against ¢®. The 5% convergence time, denoted tzgw (black solid curve), is used for
calculations in this work. (C) The corresponding directionality time plotted against c2. The transition from
random motion to directional motion (B (t,) = 2) does not occur in the domain, 0.5 < c? < 1. In this domain,
directionality time is defined to be zero because the motion appears directional at all time scales.

doi:10.1371/journal.pone.0127425.9002

type of random walk process, returning values of ¢, ranging from 0 when all time scales appear
directional, to co when motion is completely unbiased.

2D-PBRW and the Decoupling of Measurement Error

In the previous section, we calculated the log-log MSD slope for a 1D-PBRW (model 3) and
showed that it was asymptotically equal to the Sprw-model. Here, we use computational
Monte Carlo simulations to test if the Sgrw-model holds in 2D in the same form that it was de-
rived in 1D. We also demonstrate the robustness of the fgrw-model by adding 2D Gaussian
noise (measurement error) to each sample of the centroid position and deriving a rule to de-
couple measurements of directionality time from this form of measurement error.

A diagram of the 2D-PBRW with measurement error is shown in Fig 3A. Continuous time
was simulated in time steps of 8¢. Run times, T,, (times between reorientations), were drawn
from Poisson distributions corresponding to persistence times ¢, ranging from 0.4 to 3.6 s (Fig
3B). At the end of each run time, a reorientation occurred. Polar angles, ©,,, were drawn from
von Mises distributions [32] centered about 8 = 0 in the €  direction. The von Mises distribu-
tion width, set by parameter x (Fig 3C), was selected from values between 0 (uniform
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Fig 3. Measuring directionality time from simulated 2D-PBRW migration paths that resemble
experimental data. (A) A schematic of the 2D-PBRW model and its corresponding random variables. A
simulated random walker travels with constant speed v in a straight line with polar angle ©,,. After traveling in
one direction for a run time T,,, the random walker reorients and continues in a new direction, ©,,,1. For each
random walk, positions were sampled in increments of sampling interval At. Measurement error g,,, was
added to each sampled position coordinate to generate migration paths resembling experimental data. (B)
Run times, T,,, were randomly selected from Poisson distributions with average run times of t,, known as the
persistence time. (C) Polar angles, ©,, were randomly selected from the von Mises distribution with bias
factor k. The value k = 0 corresponds to unbiased motion. Increasing k corresponds to more directional bias.
(D) Log-log MSD slopes showing (z) for two values of centroid measurement error: g, =0, 1 um (black and
red, respectively; xX’s for T < 7, and *'s for > 7n; parameters t, =3.6 s, k=1.5,v=0.3 um/s, At =1s;
ensemble sizes of n = 400). The minimum time interval above which the Bgrw-model fit decouples from the
effects of measurement error and persistence was estimated at 7., = 50.4 s. Fitting the Sgrw-model to data
above this minimum time interval (green curve) gave virtually identical directionality times for both values of
measurement error. Data in the 7 < 7,j, domain (x’s in the shaded region) were not used for fitting. A single
parameter exponential fit function, 2 — e/% (cyan curve), also fit in the 7> 7,,,;, domain, shows that a heuristic
fit model does not accurately measure directionality time.

doi:10.1371/journal.pone.0127425.g003

distribution) and 10 (relatively narrow Gaussian-like curve). The correspondence between x
and (cos®) is shown in S1 Fig. Positions along the 2D-PBRW were sampled periodically with
sampling interval At and 2D Gaussian noise with radius o,,, was added to each sampled position
coordinate to resemble the measurement error of microscope tracked directionally migrating
cells such as neutrophils [14, 17].

To investigate the effects of measurement error on directionality time, two ensembles of
simulated trajectories were computed, one with ¢,,, = 0 and the other with ¢,,, = 1 ym. These
simulated trajectories were ergodic, thus allowing EASD and MSD to be swapped interchange-
ably (B(t) < B(1), with t < 7). The corresponding measurements of f(7) are shown Fig 3D
(black and red, respectively). Visually, the deviations between the two datasets are greatest at
short time scales (shaded region). Specifically, 5(0) = 0 when o,,, > 0, instead of 3(0) = 2 when
0,, = 0. Effectively, measurement error hides the identification of persistence in the short time
scale limit.
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Recall that Bpprw/() converges to the Sprw-model above time tprw (see Eq 8 and Fig 2B).
Measurement error sets an additional convergence time, £, , above which the Bgrw-model is
valid. This time is derived analytically in the supporting information (Appendix A in S1 File,
below Eq. A24; see also S2 Fig) by adding a measurement error term to the EASD of the PBRW
model and calculating the time above which this modified PBRW model converges to within
5% of the Sgrw-model:

[0}
~ 4. 2d—" .
fo, N 4BV (10)

Here, d is the number of dimensions, and v, ms(00) = lim; _, o Vime(7) = |c|v is the root mean
squared (RMS) speed asymptote, a measurable quantity that is sampling interval independent.
A minimum fit time, Ty, is defined as the larger of tgrw and ¢, (Eq. A25in S1 File). In

=t, = (4.5)(2) % = 50.4s (using Eq 10). Data in the 7 > 7,,;, do-
main (Fig 3D, #’s) were fit to the Sgrw-model (green curve) illustrating that the effects of mea-
surement error and persistence can be decoupled from measures of directionality time by
leaving out data below the time interval 7,,;,. Although backwards extrapolation is required to
measure directionality time in this example, it is not generally required (i.e. when t; > 7,,;,).

The possibility of using a heuristic model to measure directionality time is investigated by

this example, 7

min

fitting the data in the 7 > 7,,,;;, domain to a single parameter exponential function, 2 — e /"
(Fig 3D, cyan curve). This model does not fit the data as well as the Sgryw-model, returning
overestimates of directionality time. Overall, measurements of directionality time using a heu-
ristic model such as this generally satisfy the overall objective of measuring the time scale at
which motion transitions from random to directional. However, lost when using a heuristic fit
model are the consistency and interpretability of directionality time with respect to an analyti-
cal framework that characterizes directional motion.

Simulated migration paths corresponding to a range of parameter combinations (,, «, 0,,)
were analyzed to answer the following questions related to the robustness of the Sgrw-model.
For what type of motion does the Sgrw-model fit well? When does it fail? And to what extent
does directionality time decouple from measurement error by fitting at times 7 > 7,,;,? Good-
ness of fit was tested using the reduced chi-squared metric, 3 (left column in S3A Fig). Fits la-
beled “good” (unshaded regions) were those with y? < 1. All other fits were labeled
“problematic” (yellow shaded regions). The Sgrw-model fits were good over most of the pa-
rameter space. For non-directional motion (x = 0), many of the Sgrw-model fits were problem-
atic, although the model still returned characteristically large directionality times. The Bprw-
model fits were also problematic for directional motion with small £, and ¢, compared to the
time scale of noise, , (i.e.t,and t; < t, corresponding to the bottom-right yellow regions in
S3A Fig). Measurements of directionality time indicated that values of ¢, increases slightly as
0,, increases (right column in S3A Fig). This weak monotonic coupling between ¢, and ¢, oc-
curs because measurement error decreases the value of 3(7) at all time scales (though most
strongly at short time scales), thus slightly increasing the value of ¢, obtained from fitting to the
Berw-model. This coupling was only significant at the lower limits of ¢, (S3B Fig). Overall,
these simulation results show that if motion is directional and ¢, and ¢, are not masked by the
time scale of noise, ¢, , then the Bgrw-model fits robustly and yields a directionality time that is
negligibly skewed by measurement error.

For comparison, the sampling interval dependent metrics (TAD, TAD persistence, tortuosi-
ty, and tangent-tangent correlation) were calculated for the simulation trajectories (54 Fig). As
expected, the numerical values associated with these metrics varied significantly with sampling
interval, coupling strongly to measurement errors at the smaller sampling intervals.
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Application to Real Data

Above, we have built the framework for the Bgryw-model that characterizes idealized biased
random walks and decouples from measurement error. With this framework in place, we con-
sider complexities in experimental data that may cause deviations from the idealized Bprw-
model. The primary causes of deviation can be grouped into three categories:

1. Persistence—correlated orientation below a corresponding persistence time

2. Position Variance—caused by measurement error and/or parametric variance across the en-
semble (i.e. population heterogeneity)

3. Nonergodicity—occurs when the parameters of motion change over time

Methods for handling these deviations are addressed below.

Deviations caused by persistence and measurement error induced position variance can be
decoupled from the Sgrw-model by fitting above the independently calculated minimum fit
time Tp,;, discussed above (c.f. Fig 3D). That leaves deviations caused by parametric variance
and nonergodicity to be addressed.

Parametric variance, denoted 7, is the variance in distance traveled caused by variances of
the random walk parameters across the ensemble (i.e. population heterogeneity). For example,
the variance in distance traveled at long time scales due to a spread in the instantaneous speed

. 2 . . . .
parameter, 6v, is o, = ¢*(0v)"t*. Parametric variance systematically increases measurements of

EASD and is usually the dominant cause of deviation between f(t) and the Bgry-model at
large time scales (see Eq. B2). Deviations caused by parametric variance cannot be corrected by
fitting above a minimum fit time, Ty

Ergodicity is the conversion factor that maps EASD to TASD, given in Eq 3. When a process
is ergodic, EASD and MSD are interchangeable, and so are calculations of 5 based on either
EASD or MSD. When a process is nonergodic, for example when the instantaneous migration
speed changes significantly over time across the entire ensemble, measurements of 5(7) based
on MSD will deviate from the Bgryw-model which is derived from the EASD. Deviations caused
by ergodicity occur at all time scales and, like deviations caused by parametric variance, cannot
be corrected for by fitting above a minimum fit time, 7p,p.

We show in Appendix B (Eq. B9 in S1 File) that log-log MSD slope () can be decomposed
into the fgrw-model plus two other terms that correct for deviations caused by position vari-
ance and nonergodicity: S(1) = Bprw(7)+8,(7)+B:(7). The term S, accounts for deviations
caused by position variance (primarily parametric variance), and S accounts for deviations
caused by nonergodicity. The position variance correction is calculated by using experimentally
observed variances in distance traveled to estimate how much parametric variance and mea-
surement error have an effect on MSD, and the corresponding log-log MSD slope (Eq. B10 in
S1 File). The nonergodicity correction can also be calculated from experimental data (Eq. B11
in S1 File) but the result is often relatively noisy because time averaging cannot be applied to re-
duce statistical noise. To get a better signal to noise on measurements of B¢(7), the correction
can instead be calculated by simulating biased random walks using the experimentally observed
speed distribution. The simulation of these trajectories is repeated until a sufficient signal to
noise is achieved for the measurement of S(7). A recipe for these simulations can be found in
the supporting information (Appendix B in S1 File) with sample code online [27]. In many
cases, however, simulations are unnecessary because nonergodic migration data can be made
nearly ergodic by choosing to analyze truncated migration segments over which the instanta-
neous speed remains relatively constant. We recommend the latter approach whenever
possible.
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Neutrophil Chemotaxis Example

In this section, an implementation of the Szrw-model to measure directionality time is demon-
strated on migration paths of chemotactic human polymorphonuclear neutrophils (PMNs) fol-
lowing the step-by-step procedure outlined in S5 Fig. PMN migration paths, (), were
obtained from data provided by O’Brien et al. [17], and the corresponding centroid measure-
ment errors were calculated as described in the methods section. Two sets of data were ana-
lyzed, each containing the trajectories of chemotactic PMNs migrating on the 2D surfaces of
polyacrylamide gels (Young’s modulus: 10 kPa) towards a source of the chemoattractant for-
myl-methionyl-leucyl-phenylalanine. The difference between the two data sets was the coating
on the gel surface: one was human fibrinogen (Fgn), the other was human type IV collagen
(Col IV). Tangent-tangent correlation measurements gave a persistence time upper bound of 5
s (S6C Fig). Note, PMN migration persistence decreases significantly as surface stiffness de-
creases below 100 kPa [14-16]. PMN persistence times on stiffer surfaces can be much larger.
EASD was calculated but was noisy. Therefore, MSD was also calculated to reduce the statisti-
cal noise (Fig 4A).

Data was checked for nonergodicity by measuring the ensemble averaged instantaneous
speed (EAIS) over time. Non constant EAIS is an indicator of nonergodic motion because it
signifies that the underlying characteristics of motion change over time and that the time aver-
aged squared displacements will be different from the ensemble averaged squared displace-
ments. EAIS was not constant over all time but was relatively constant over the first 400 s of
migration. Therefore, all long nonergodic trajectories were truncated at 400 s (40 centroid mea-
surements each) leaving an ensemble of ergodic trajectories from which directionality time
could be measured. If EAIS were still changing significantly in time, then the ergodicity correc-
tion term f3; could have been calculated using the recipe in the supporting information (Appen-
dix B in S1 File).

Next, v,ms(00) was calculated (Fig 4A, bottom-right inset): v,,s(00) & 0.15 and 0.13 ym/s
for Fgn and Col IV, respectively. Taken together with the upper limit on t,, the minimum fit
time was calculated using Eq 10 for both data sets: 7,,,;, = 60 s and 69 s for Fgn and Col IV, re-
spectively. With these data, the minimum fit times corresponded to the time scale below which
measurement error skewed the data. The variance corrected log-log MSD slope, 8 — 3, (see Fig
4B), was fit to the Sprw-model at time intervals 7 > 7,,;, (regions with shaded error bars). The
resulting directionality times were 10.7 £ 1.0 s and 21.2+5.1 s for Fgn and Col IV, respectively
(Fig 4B, bottom-right inset). With 19 PMN trajectories in the Col IV data set, compared to 25
in the Fgn data set, the Col IV fit was noisier. The uncertainty on these measurements of direc-
tionality time was relatively large because both values fell below the minimum fit time. More
precise values of directionality time could be acquired if the measurement errors were smaller
or the directionality times were larger. For comparison, the sampling interval dependent met-
rics (TAD, TAD persistence, tortuosity, and tangent-tangent correlation) were calculated for
this data (S6 Fig). The numerical values of these measurements varied significantly with sam-
pling interval and their coupling to measurement errors were unknown.

Summary

We have completed a three part description of directionality time, including an analytical deri-
vation, computational simulations to investigate robustness, and an application to noisy real
world ensembles of the directional migration paths of chemotactic neutrophils. In comparison
to the sampling interval dependent metrics (see S4 and S6 Figs), the directionality time metric
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Fig 4. Measuring directionality time from experimental data. (A) The observed mean squared
displacements (MSDs) of chemotactic human Polymorphonuclear Neutrophils (PMNs) migrating on
fibrinogen (Fgn, blue, circles, n = 25) and collagen IV (Col IV, red, squares, n = 19) coated polyacrylamide
gels with a Young’s modulus of 10 kPa. The shaded regions indicate the standard errors of the MSD. The
corresponding trajectories (top-left) and RMS speed (bottom-right) are also shown. The RMS speed
asymptotes, v,ms(oc), for Fgn and Col 1V are approximately 0.15 and 0.13 um/s, respectively. (B) Log-log
MSD slopes corrected for position variance, 8 — 8, are plotted against time interval r and fit to the Bgrw-
model (solid curves) to obtain directionality times, t,. The shaded regions indicate standard deviations on log-
log MSD slope at time intervals above the minimum fit time. The resulting directionality times are depicted in
the bar graph to the bottom-right, with error bars corresponding to 68% confidence intervals.

doi:10.1371/journal.pone.0127425.9g004
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is nearly independent of parameters that are constrained by the experimental apparatus and/or
chosen arbitrarily by humans. Whereas speed and persistence time are sufficient for character-
izing non directional migration, one additional metric, directionality time, along with speed
and persistence time, suffices to characterize directional migration.

Supporting Information

S1 File. Supporting Text. This supporting text is divided into three sections: A mathematical
notation guide; Appendix A: Analytical modeling of directional motion; and Appendix B: De-
viations caused by variances and nonergodicity.

(PDF)

S1 Fig. Tangent-bias correlation, ¢ = (cos®), plotted against the von Mises bias factor, k.
This curve shows the correspondence between ¢ used in the analytically derived biased random

walk models, and x used in the simulated biased random walk model. This curve was calculated
(k) rc)

i whereI is the

from the definition of the von Mises distribution. Specifically, (cos®) =

modified Bessel function of the first kind, order .
(EPS)

S2 Fig. Time scales at which Bpgrw(f) converges to the fzrw-model when measurement
error is nonzero (g, > 0). Times above which the difference between Bprrw(t) and the Sgrw-

model is less than 5% are shown as solid curves correspond to values of the constant

-
€= ”’"/ , which is proportional to measurement error. The convergence time is estimated by

the equatlon A t, =% as derived in the supporting information (Appendix A in S1 File,
below Eq. A24). When implementing a fgryw-model fit to measure directionality time, (1)

curves are fit at time intervals 7 > ¢, to decouple directionality time from measurement error.
(EPS)

S3 Fig. Additional data plots investigating the robustness of the fgrw-model. (A) Goodness
of fit and directionality time measurements across a range of parameter combinations (same
parameters as in Fig 3D except that t,, x, and 0,, all vary, and At = 10 s). Squares on phase dia-
grams indicate parameter combinations where ensembles of random walks were simulated

(n = 4000 migrations per ensemble). Goodness of fit was measured by calculating reduced chi

squared, > =13~ % where oy is the standard deviation (spread) on values of

B(z,) used for fitting, and v is the degrees of freedom. A fit was categorized as “good” if 3> < 1,
otherwise it was categorized as “problematic.” The directionality time model worked robustly
except near x = 0 and when ¢, and t; < Tpy;n. The latter is the limit where measurements of di-
rectionality time can no longer be resolved (problematic fits at low ¢, high 0,,, as x increases
beyond 6 where t, is effectively negligible). (B) Directional migration efficiency is inversely pro-
portional to directionality time (in units of #,). Directional migration efficiency is defined as
the ensemble averaged distance traveled (R(t)) divided by the distance, vt, a ballistic walker
would have traveled if it had the same speed. This plot, calculated for the values of k indicated,
shows that ¢, is a proxy for the distance a walker will travel, and that ¢, best decouples from
measurement error as persistence time ¢, increases. Note that random walks corresponding

to x > 10 are nearly ballistic (t; ~ 0) and there are no significant changes in dynamics as

K — 00.

(EPS)

S4 Fig. Sampling interval dependent metrics applied to simulation data (2D-PBRW, ¢, =
3.6 s, k = 1.5, and v = 0.3 ym/s). The position of the random walk was sampled every At =1, 4,
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or 20 s, with sampling errors of 0,,, = 0 (blue bars and thin blue curves) or 0.1 ym (green bars
and thick green curves). (A) Ensemble averaged turning angle distributions (TAD) based on
sampling intervals of 1 s (solid curves) and 4 s (short-dashed curves). TAD persistence is the
fraction of all turning angles between =+ 7 (inset, error bars are standard error of the ensemble
mean). When o, = 0, TAD persistence is smallest when At ~ t,. This is time scale of reorienta-
tion and consequently the sampling interval with which the motion appears most random.
Small amounts of measurement error (g, = 0.1 ym) hide the persistence of motion that would
otherwise be measured at the smallest sampling interval At = 1 s. These data show that TAD
persistence is sampling interval dependent. (B) Ensemble averaged tortuosity (error bars are
standard error of the ensemble mean). As with TAD persistence, tortuosity is sampling interval
dependent, increasing with At. (C) Tangent-tangent correlation curves. Tangents are calculated
based on the forward displacement between nearest sampled points. Therefore, tangent-tan-
gent correlation is sampling interval dependent. In particular, randomness at short time scales
are not resolved as At increases. The persistence time, £, can be back-measured from the tan-
gent-tangent correlation curves if there is sufficient temporal resolution (At < t,). Each of these
metrics are sampling interval dependent and couple to measurement error at short sampling
intervals. Hence, these metrics are not generally comparable from one experiment to the next.
(EPS)

S5 Fig. Step-by-step flow-chart for processing experimental migration data to measure di-
rectionality time.
(EPS)

S6 Fig. Sampling interval dependent metrics applied to chemotactic polymorphonuclear
neutrophils (PMNs) on fibrinogen (Fgn, blue colors) and human collagen IV (Col IV, red
colors) coated polyacrylamide gels of elastic modulus 10 kPa. (A) Ensemble averaged turn-
ing angle distributions (TAD) are plotted based on measurements of turning angles at time in-
tervals of 10 s (solid curves) and 60 s (dashed curves). TAD persistence, calculated as the
fraction of all turning angles between =7, is shown in the inset (error bars are standard error of
the ensemble mean). (B) Ensemble averaged tortuosity measured at the same sampling inter-
vals (error bars are standard error of the ensemble mean). (C) Tangent-tangent correlation
curves also measured at sampling intervals At = 10 and 60 s. Tangents are calculated based on
the forward displacement between nearest sampled points. Therefore tangent-tangent correla-
tion curves show more correlation when calculated at the 60 s sampling interval, compared to
the 10 s interval. For both Fgn and Col IV, tangent-tangent correlation curves drop towards
their asymptote at a persistence time of ¢, < 10 s. Regardless of the sampling interval, chemo-
taxis on Fgn is more correlated than chemotaxis on Col IV, a result that is consistent with our
measurements of directionality time. Each of these metrics are sampling interval dependent
and couple to measurement error. Hence, these metrics are not generally comparable from one
experiment to the next.

(EPS)
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