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Abstract
Science is a social process with far-reaching impact on our modern society. In recent years,

for the first time we are able to scientifically study the science itself. This is enabled by mas-

sive amounts of data on scientific publications that is increasingly becoming available. The

data is contained in several databases such as Web of Science or PubMed, maintained by

various public and private entities. Unfortunately, these databases are not always consis-

tent, which considerably hinders this study. Relying on the powerful framework of complex

networks, we conduct a systematic analysis of the consistency among six major scientific

databases. We found that identifying a single "best" database is far from easy. Neverthe-

less, our results indicate appreciable differences in mutual consistency of different data-

bases, which we interpret as recipes for future bibliometric studies.

Introduction
Science is a human endeavor. As such, it benefits from all virtues and suffers from all paradoxes
inherent to humans. Among these are the old problems of appreciating and measuring research
achievements [1]. When judging what is and what is not scientifically interesting or important,
scientists are not just subjective, but often offer arguments that stem from poor understanding
of the academic culture and tradition in fields other than their own. In the age of Big data, sci-
ence of science is emerging as an attempt to scientifically examine the science itself [2, 3]. This
young field has potential to answer some of the oldest questions about scientific progress, such
as elucidating the sociological mechanisms leading to new discoveries [4–6], or establishing a
platform for objectively quantifying scientific impact [3, 7, 8]. These insights are also useful in
building realistic scenarios of future development of science and its impact on our lives [5, 7,
9]. Science of science also receives attention from policy makers [10]. Indeed, being able to fair-
ly evaluate and compare scientific outputs enables the community to improve the funding
strategies and target them towards achievable goals. It also provides a framework to quantify
the research impact resulting from a given investment [9].

The dynamics of science is articulated through a constant influx of scientific publications,
primarily research papers. Appearing in a variety of journals, papers are interrelated in intricate
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ways, governed by complex patterns of co-authorships (collaborations) [11] and citations [12].
Hidden in these patterns are the answers to many pondering questions: Which papers set the
new trends [13]? Can their eventual impact be recognized early upon publication [14]? How
does interdisciplinary research arise and what are the best ways to stimulate it [15]? Extracting
these answers calls for new methodologies of untangling these complex patterns from scientific
databases such as Web of Science or arXiv. The only way to exploit the rapid growth of biblio-
metric (scientometric) data, is to parallel it with equally rapid growth and improvement of
methodologies aimed at efficiently mining them.

In this context, the framework of networks (graphs) has been recognized as an elegant tool
for representing and analyzing complex systems [16, 17]. In a variety of fields ranging from
computer science and physics to sociology and biology, this approach has provided paradigm-
shifting results [18, 19]. In particular, scientific databases can be represented as complex net-
works by identifying publications or authors as network nodes and modeling their bibliometric
relationships as network links [11, 20]. Relying on this paradigm, intense research efforts over
the last decade provided novel quantitative findings on dynamics and evolution of science. Be-
sides being suited for analyzing the emergence of interdisciplinarity [21], this framework gave
insights into new ways of estimating scientific impact [14, 22], opened a window into the com-
munities among scientists [23, 24], or enabled novel approaches to study the evolution of sci-
ence [25, 26].

However, despite promising results and increasing availability of data, the core obstacle is
the lack of a universal scientific database with all data systematically stored. Instead, there are
several databases, each relying on its own practice in storing, organizing and tracking biblio-
metric data, including Web of Science, arXiv, PubMed etc. Moreover, none of the datasets is
free from errors, mostly occurring due to different referencing styles or typos in authors names
(in particular names utilizing non-English characters), which often lead to incorrectly recorded
collaborations and citations. This in practice means that each bibliometric study in itself un-
avoidably carries some degree of bias, resulting from the choice of the database. On top of this
comes the fact that different fields usually have different collaboration and citation cultures,
which further complicates issue of objectively comparing different scientific fields.

On the other hand, researchers is bibliometrics usually work relying on the database at their
disposal. Finding additional data is often difficult and sometimes expensive. While the con-
struction of a universal database is an ambitious goal, we recognize that the bibliometric com-
munity will benefit from a critical comparison of the available databases. Of course, since there
is no “ground truth” to tell between the reliable and non-reliable databases, the best we can do
is to systematically examine and quantify the consistency among different scientific databases.
We here conduct a detailed analysis of the consistency among six major scientific databases,
employing three different paradigms (categories) of bibliometric networks (paper citation, au-
thor citation and collaboration). This amounts to a major methodological and empirical exten-
sion of our earlier paper [27]: additional datasets and network paradigms are considered, and
findings confirmed by complementary analyses. Our results consist of an approximate quanti-
fication of consistency between the six databases that hold within each network category. Our
study aims at being helpful to colleagues when choosing the most suitable network paradigm.

Results
We obtained the data on co-authorships and citations from the following six databases: Ameri-
can Physical Society (APS), Web of Science (WoS), DBLP, PubMed, Cora and arXiv. Since
some databases are very large (e.g. WoS), we were unable to include them entirely. Neverthe-
less, we made sure that the dataset from each database is representative of it in terms of papers
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and citations (see Methods). From each database we constructed three bibliometric networks
using the following three network paradigms (categories):

• P! P, directed paper citation network (nodes: papers, links: one paper citing another),

• A$ A, directed author citation network (nodes: authors, links: one author cites another in
at least one of his/her papers),

• A–A, undirected co-authorship network (nodes: authors, links: co-authorship of at least one
paper).

This gives us the total of 6+6+6 = 18 networks (12 directed and 6 undirected), to which we de-
vote the rest of this paper. Our goal is to study the consistency among the networks within
each category in terms of their topologies, from which we draw conclusions on the consistency
among the databases.

In Table 1 we summarize the basic properties of the 18 examined networks. Numbers of
nodes and links vary greatly, but are always larger than 104. WCC is the fraction of nodes con-
tained in the largest connected component (weak connectivity for directed networks, see Meth-
ods). With exception of DBLP P! P network, it always contains at least 80% of nodes (DBLP
database consists mostly of the papers only from major journals and conferences, which rarely
cite one another). Some papers/authors are never cited, others do not cite any other paper/au-
thor in the same database. Motivated by this, we consider “bow-tie” [27] of directed networks,
which indicates the fraction of ‘core’ nodes (both citing and cited), in contrast to the fraction of
‘in’ nodes (never cited) and ‘out’ nodes (not citing). Diversity of these parameters (note their
independence from networks’ sizes) already gives a hint at the variability among the databases.
Some additional particularities: P! P networks are in general acyclic since a paper can only
cite older papers. Rare exceptions occur due to parallel publication of multiple papers citing
one another, and due to errors. These networks include the information on chronology of pub-
lishing. In contrast, A$ A networks often contain cycles, since collaborating authors typically
cite one another. Also, basically all nodes here will have self-loops (authors cite their previous
work). On the other hand, no P! P network node has a self-loop, since papers usually do not
cite themselves (except in very unusual cases or due to errors).

We now observe the following: while the three network paradigms (P! P, A$ A and A–
A) are all bibliometric in nature, the resulting network architectures are very different. In other
words, by representing a database via three different network paradigms, we view its complexi-
ty from three different standpoints. These three representations are largely uncorrelated, each
contributing some new information (for example, although collaborating authors often cite
one another, they also cite other scientists they never worked with, and sometimes co-author
papers with scientists they never cited or got cited by). This allows the comparison among the
databases along three independent lines, allowing us to isolate for each database the network
category best suited for its study. To illustrate this point, we graphically visualize a sample of
each network in Fig 1, obtained via network sampling algorithm [28, 29]. Network samples are
small subnetworks which capture the key topological features of the corresponding large (com-
plete) networks (visualizing complete networks is impractical due to their size, see Methods).
Visual comparison of network samples coming from the same database (horizontal) indeed in-
dicates that each network paradigm presents a database from a different angle, viewing its com-
plexity from a specific aspect. Comparison of network samples corresponding to different
databases (vertical) reveals significant topological differences among them. They exist along all
three vertical columns, and are most clearly pronounced for P! P and A–A networks. This
suggests that in all three network categories there are at least some differences in the data
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structure and bibliometric precision among the databases. Motivated by this insight, we contin-
ue our study in more quantitative terms.

We begin by introducing a platform for quantification of the network topologies [27]. On
top of 6 network measures introduced in Table 1, we compute for each network additional 16
measures:

• Degree statistics and distribution parameters: hki, γ, γin, γout,
• Degree mixing quantifiers: r, r(in,in), r(in,out), r(out,in), r(out,out),

• Clustering distribution parameters: hci, hbi, hdi,
• Clustering mixing quantifiers: rc, rb, rd,

• Effective diameter parameter: δ90.

The definition and interpretation of each network measure along with the procedure used for
its computation are explained in Methods. The Supporting Information Fig. A in S1 File graph-
ically shows relevant node degree and clustering profiles and distributions (see Methods).
Rather than studying all the values (which are reported in the Supporting Information Tables
B1 and B2 in S1 File), we would here like to illustrate our approach to quantifying the mutual
consistency of databases relying on these measures. We focus on a specific one among them,
clustering mixing rb, whose values for all networks are shown in Table 2. Looking at the table
row by row, three observations can be made. All P! P networks are relatively consistent in
their values except for DBLP. Similarly, with exception of APS, all A$ A networks are roughly
consistent. Finally, PubMed is the only database not consistent with the others when it comes

Table 1. Basic network measures. The values of all basic network measures for the 18 examined networks. See Methods for details on the definitions of
network measures and their computation.

Network size Network bow-tie

Type Database # Nodes # Links % WCC % In % Core % Out

P ! P APS 450,084 4,691,938 99.8% 2.6% 82.7% 14.5%

WoS 728,673 3,633,240 96.9% 11.5% 53.9% 31.5%

DBLP 1,467,987 1,502,092 4.3% 0.6% 0.6% 3.1%

PubMed 5,853,635 18,790,433 99.7% 89.9% 4.3% 5.5%

Cora 195,946 608,475 99.0% 83.7% 8.6% 6.6%

arXiv 27,770 352,768 98.7% 9.2% 73.6% 15.9%

A $ A APS 260,816 40,556,550 100.0% 1.7% 84.6% 13.7%

WoS 470,227 20,291,830 99.5% 9.9% 65.3% 24.4%

DBLP 14,880 219,173 98.8% 59.4% 26.8% 12.6%

PubMed 638,178 11,905,813 99.8% 51.1% 31.2% 17.5%

Cora 21,521 582,021 99.6% 9.2% 66.2% 24.1%

arXiv 11,779 586,562 99.4% 7.4% 79.3% 12.7%

A–A APS 248,866 4,231,131 90.0% - - -

WoS 531,952 2,966,442 89.8% - - -

DBLP 1,359,484 5,821,900 89.9% - - -

PubMed 1,675,367 16,926,075 96.4% - - -

Cora 23,480 130,644 87.5% - - -

arXiv 11,868 24,638 81.4% - - -

doi:10.1371/journal.pone.0127390.t001
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Fig 1. Graphical visualization of the network samples. As indicated, each sample corresponds to one of the 18 examined networks. See Methods for
details on network sampling algorithm.

doi:10.1371/journal.pone.0127390.g001

Table 2. Values of clustering mixing. Values of the network measure clustering mixing rb for all 18 examined networks. See text for discussion.

APS WoS DBLP PubMed Cora arXiv

P ! P 0.43 0.51 0.66 0.41 0.43 0.51

A $ A 0.71 0.12 0.17 0.29 0.34 0.22

A–A 0.87 0.91 0.84 0.46 0.85 0.64

doi:10.1371/journal.pone.0127390.t002
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to A–A networks. This suggests a simple way to quantify the consistency of databases within
each network category. Of course, we expect that the consistency will depend on the chosen
network measure. Ideally, the “best” database would be the one most consistent with as many
others for as many measures as possible. However, as we show in what follows, trying to identi-
fy such a database is elusive. Instead, our main result is the consistent quantification of their
mutual consistency for each network category. Our findings are to be understood as an “ad-
vice” to researchers in bibliometrics about the suitability of various network paradigms in rela-
tion to the database of their interest.

Our next step is to employ the standard technique of multidimensional scaling (MDS) [30,
31], with aim to graphically visualize the overall differences among the databases. To this end,
for each network category, we consider the differences of values of all network measures and
for each pair of databases. The result of MDS is the embedding of 6 points representing 6 data-
bases into the Euclidean space of given dimensionality. This embedding is done in a way that
the Euclidean distance between each pair of points is representative of the inconsistency be-
tween the corresponding databases, in terms of the average difference in values of network
measure (see Methods). The obtained embeddings for 2- and 3-dimensional space are shown
in Fig 2. Closer together databases are, better the overall consistency of their network measures.
For the case of P! P networks, only PubMed and Cora appear to be relatively consistent with
one another. PubMed and DBLP display a nearly perfect consistency between them for A$ A
networks, with some (independent) consistency among arXiv, WoS and Cora. For A$ A net-
works, best consistency is found for DBLP, Cora andWoS. Indeed, the consistency among da-
tabases is dependent on the network paradigm used to represent them. Even within each of
these categories, it seems difficult to establish which databases are mutually consistent and
which are not. In what follows, we seek to establish at least some approximate results in
this direction.

Returning to the values of network measures, we construct another comparison among da-
tabases, this time relying on the standard statistical analysis. We begin by realizing that net-
work measures are not all independent [32, 33], neither are the “true” values for any of them
known. This calls for identifying a set of measures which cumulatively provide the optimal in-
formation on the network topologies. To this end, for each database we first compute the exter-
nally studentized residual, separately for each network measure and category (see Methods).
We express the residuals in the units of standard deviations for that measure. That is to say, the
database with residual zero is the one most “in the middle” according to that measure. Oppo-
sitely, the database with the residual farthest from zero is the one least surrounded by others.
Next we use these residuals to identify the optimal set of independent network measures, sepa-
rating between directed and undirected networks (Methods). We found this to consist of 13
measures for directed and 7 for undirected networks, whose residuals are reported in Fig 3. We
also confirmed that this selection still cumulatively provides enough information to enable the
differentiation among the networks (Methods). The difference with the previous MDS analysis
is that here we treat each network measure separately, without mixing their values in any way,
and we also remove some measures as redundant. This is done not just to exclude possible
inter-dependences among them, but also since the values belonging to different measures can-
not always be directly compared. For P! P networks, with exception of DBLP, all databases
appear to be relatively consistent. A$ A networks also display good consistency, with excep-
tion of APS which shows a notable discrepancy. A–A networks reveal APS and arXiv databases
to be most inconsistent with others. Note that these results are in a good agreement with the re-
sults of the MDS analysis (Fig 2). In fact, the analysis of residuals again confirms that it is hard
to identify a single “best” database in terms of biggest consistency with other databases, even
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Fig 2. Multidimensional scaling (MDS) analysis. Embedding of points in 2D (top row) and 3D space (bottom row) obtained via MDS. Each point represents
one database as indicated. Distance between any pair of points is representative of the average difference of network measure values for the corresponding
database pair, and in adequate ratio with distances between other points in that plot.

doi:10.1371/journal.pone.0127390.g002

Fig 3. Analysis via residual computation. Externally studentized residuals for all databases, computed separately for each independent network measure
and each network category. See Methods for interpretation and details on computation.

doi:10.1371/journal.pone.0127390.g003
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within the realm of a single network category. Needless to say, it would be even more elusive to
search for the “best” database simultaneously for all network categories.

Still, as our wish is to offer at least some qualitative argument on mutual consistency of data-
bases, we construct the ranking of databases from computed residuals. Within each network
category we proceed as follows. For each network measure, we assign the rank 1 to the database
with the residual closest to zero, rank 2 to the database with the residual second closest to zero,
and so on until we assign the rank 6. Averaging these ranks yields an average rank for each da-
tabase, defining a database ranking for each category (see Methods). Smaller the rank of a data-
base, better its overall consistency with the rest. The rankings are reported in Fig 4. However,
despite a clear hierarchy given by ranking, not all ranking differences are statistically signifi-
cant. To account for this, we indicate as CD (critical difference) the width corresponding to the
p-value of 0.1 by which we establish the statistical significance. Thus, any ranking difference
smaller than CD is not statistically significant. For easier understanding of the figure, we add
bold lines to indicate groups of databases where ranking differences are not statistically signifi-
cant. For P! P networks, WoS is the most consistent database, even though its ranking is not
statistically different from Cora, arXiv, APS and PubMed. The same is visible from A$ A net-
works, where rankings of Cora and arXiv are even somewhat better than that of WoS. Finally,
DBLP ranks best in terms of A–A networks, followed by WoS, Cora and APS, none of which
are actually statistically worse. Based on the available data, these results represent the optimal
differentiation among the databases in terms of their consistency. We believe that the differ-
ences we found are to be attributed to different methodologies in maintaining different data-
bases. Specifically, WoS keeps track of citations manually, thus avoiding many errors related to
referencing styles and authors’ names, which to a large extent explains its good quality.

As mentioned earlier, bibliometric studies are in practice done by relying on the data that
happens to be available to the researcher. These data usually comes from a single database,
which is usually among here considered databases. However, such studies often suffer from
criticism of bias coming from relying on a single database. To aid this situation, we reiterate

Fig 4. Final overall ranking.Ranking of databases for all three network categories. Critical difference (CD) indicates what range of ranking differences is not
statistically significant. The difference in ranking of databases underlined by the common bold line are not statistically significant (Methods).

doi:10.1371/journal.pone.0127390.g004

Consistency of Databases

PLOS ONE | DOI:10.1371/journal.pone.0127390 May 18, 2015 8 / 16



the above results towards offering concrete suggestions regarding the choice of the network
paradigm best suited for studying any given database. WoS can be basically studied via any net-
work paradigm. Roughly the same can be said of Cora. When examining arXiv, one should
avoid A–A networks. In contrast, study of DBLP should exactly go via A–A networks. On the
other hand, studying APS and PubMed seems to be less promising. However, if the choice has
to be made, P! P appears to be the best option for both.

Discussion
Our work was done relaying on the representative datasets from six databases which, to our
best knowledge, are the ones most frequently used in modern bibliometrics. Of course, we real-
ize that these by no means include all the relevant bibliometric data. In particular, some data-
bases including SCOPUS, Google Scholar and CiteSeer are missing from our study.
Unfortunately, we were unable to obtain the representative datasets from these databases.
However, some of the missing databases rely on the bibliometric methodology similar to some
of the studied databases (notably, SCOPUS uses methodology very similar to WoS [34, 35]).
For this reason, we believe that the presence of these databases would not significantly alter our
results. Furthermore, the considered databases do not always overlap in the scientific fields
they cover (for example APS, Cora and PubMed). Due to this a minor bias could be present in
our study, which unfortunately can never be entirely removed if one wants to compare differ-
ent fields. On the other hand, all databases refer to computer and natural sciences, which are
known to have very similar collaboration and citation cultures. We thus believe this bias had
no major impact on our key findings. Nevertheless, we agree that there exists an intrinsic
incomparability between distant scientific fields (for instance computer science and history),
which necessitates new approaches and methodologies able to offer more objective compari-
sons. Another interesting question revolves around aggregation of the databases: aggregate
data would provide a closer approximation of the ground truth, yet it might be hindered by the
above described discrepancies in the datasets. We leave this open problem for future work.

One could argue that bibliometric networks are not the only framework for studying the
consistency among scientific databases. For example, a simple comparison of a sample of rec-
ords could provide insights on their precision. Yet, complex networks have become over the
years a well established platform for investigating complex systems. This is due to their power
to reveal the information hidden in the shear complexity of systems such as scientific commu-
nity. For this reason, while acknowledging the value of additional approaches to this problem,
we argue that networks are presently the most appropriate framework. On the other hand, our
study could be extended to other network paradigms used for bibliometric networks, such as
those based on linking the papers which share keywords or specific words in the title or ab-
stract [36].

The main ingredient of our methodology is the network comparison, realized via computa-
tion of 22 network measures and identifying the independent among them. In fact, this turns
out to be the simplest approach, easily applicable to both directed and undirected networks.
However, we note that the NP-hard problem of network comparison is a topic of constant in-
terest in the field, with novel ideas rapidly accumulating [37]. Also, our approach was largely
based on classical statistical analysis involving significance testing, which was recently scruti-
nized [38]. However, besides being in agreement with our previous paper [27], our results are
also confirmed by MDS analysis which is in no way related to classical statistics. We thus argue
that our statistical results are indeed informative. Finally, while noting that improvements of
our methodology are possible, we hope our work traces a new avenue for all interested in criti-
cally examining science as a human endeavor.
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Methods
The data. The data has been extracted from publicly available repositories and purchased from
commercial bibliographic sources. Authors and publications neither citing nor cited were dis-
carded, together with authors not collaborating. Self-citations of papers that occur due to errors
were discarded. The details on six studied databases are below.

American Physical Society (APS) is the world’s second largest organization of physicists
(http://www.aps.org), behind German DPG. It publishes a range of scientific journals, includ-
ing the Physical Review series, Physical Review Letters and Reviews of Modern Physics. The
data considered here contains all publications in aforementioned journals up until 2010 con-
sisting of 450,084 papers and 264,844 authors, and 4,710,547 citations between the papers.

Web of Science (WoS) is informally considered the most accurate scientific bibliographic da-
tabase, professionally hand-maintained by Thomson Reuters (http://thomsonreuters.com). It
dates back to early 1950s [39, 40] and contains over 45 million records of publications from all
fields of science [35]. For this study, we consider all publications in WoS category Computer
Science up until late 2014. The entire dataset includes 978,821 papers and 580,112 authors, and
3,633,421 citations between the papers.

DBLP Computer Science Bibliography (DBLP) indexes major journals and proceedings from
all fields of computer science [41] (http://dblp.uni-trier.de). It is freely available since 1993 and
hand-maintained by University of Trier, Germany. It contains more than 2 million records of
publications, while the citation information is rather scarce compared to WoS [35]. For this
study, we considered a snapshot of the database on September 2014 including 2,696,491 papers
and 1,424,895 authors, and 1,534,369 citations between the papers (http://lovro.lpt.fri.uni-lj.si).

PubMed (PubMed) is a search engine of MEDLINE database focusing on life sciences and
biomedicine, maintained by US National Institutes of Health (http://www.ncbi.nlm.nih.gov). It
contains about 24 million citations between publications dating back to late 19th century. For
this study, we extracted open access publications from PubMed Central Collection up until
2014 and author information fromMEDLINE Baseline Repository between 2012 and 2014.
We thus obtained 5,853,635 papers and 1,716,762 authors, and 18,842,120 citations between
the papers.

Computer Science Research Paper Search Engine (Cora) is a service for automatic retrieval of
publication manuscripts from the Web using machine learning techniques [42]. It contains
over 200,000 publication records collected from the websites of computer science departments
at major universities in August 1998 (http://people.cs.umass.edu/˜mccallum). For this study,
we consider a complete database including 195,950 papers and 24,911 authors, and 623,287 ci-
tations between the papers (http://lovro.lpt.fri.uni-lj.si).

arXiv.org (arXiv) is a public preprint repository of publication drafts uploaded by the au-
thors prior to an actual journal or conference submission hosted by the Cornell University in
US since 1991 [43] (http://arxiv.org). It currently contains almost one million publications
from physics, mathematics, computer science and other fields. For this study, we consider all
publications in arXiv category High Energy Physics Theory between 1992 and 2003 (http://
snap.stanford.edu). The data contains 27,770 papers and 12,820 authors, and 352,807 citations
between the papers.

Network sampling algorithm. The goal of network sampling is to extract a subnetwork
from the complete (often very large) network, which would be representative of its topological
(or other) properties. Due to its small and regulable size, this subnetwork (which we call net-
work sample) can be easily visualized and compared to network samples representing other
networks. We obtained the network samples by considering the induced subgraphs on the
nodes visited by a random walker starting at some random node [28, 29]. That is to say, our

Consistency of Databases

PLOS ONE | DOI:10.1371/journal.pone.0127390 May 18, 2015 10 / 16

http://www.aps.org
http://thomsonreuters.com
http://dblp.uni-trier.de
http://lovro.lpt.fri.uni-lj.si
http://www.ncbi.nlm.nih.gov
http://people.cs.umass.edu/&tilde;mccallum
http://lovro.lpt.fri.uni-lj.si
http://arxiv.org
http://snap.stanford.edu
http://snap.stanford.edu


network sample includes all the nodes visited by the walker after some number of steps, togeth-
er with all the links connecting those nodes. In fact, this has been proven to generate samples
that are most similar to the original networks [44]. In our work we generated 5000 networks
samples of 250 nodes for each of the original networks, whereas the best sample is selected ac-
cording to Kolmogorov-Smirnov distance between the degree distributions.

The network measures. To quantify the topology of the examined networks we used 22 dif-
ferent measures. Below we explain the remaining 20 measures (number of nodes and links is
obvious). For undirected networks we compute only the measures naturally defined for them.
For directed networks, upon computing the measures naturally defined for them, we disregard
their directionality, and also compute the measures normally referring to undirected networks.
Largest (weakly) connected component of a directed network is its maximal subnetwork such
that all its nodes are mutually reachable, disregarding the directionality. We define as WCC the
size of this subnetwork. We measured the strong connectivity only in the context of network
bow-tie structure [27] (% core, % in, and % out).

Degree distributions. For directed networks, in-degree kin and out-degree kout of a node are
respectively the number of incoming and outgoing links. k is the degree of a node, k = kin+kout,
and hki denotes the mean degree. For undirected networks we deal only with k. We computed
the exponents γin, γout and γ which characterize the degree distributions (for directed network
γ is computed disregarding the directionality). This is done by fitting the tails of the distribu-
tions by maximum-likelihood estimation:

g� ¼ 1þ n
X
V

ln k�=kmin

 !�1

for kmin 2 f10; 25g: ð1Þ

In cases exhibiting power-law degree distributions, these exponents correspond to the actual
power-law exponents. In all cases these exponents were characteristic of the degree distribu-
tions, in the sense that similar distributions have similar exponents.

Degree mixing. Neighbor connectivity Nk� is the mean neighbor degree of all network nodes
with degree k� [45]. The degree mixing r(α,β) is the Pearson correlation coefficient of α-degrees
or β-degrees at links’ source and target nodes, respectively [46]:

rða;bÞ ¼
1

ska
skb

X
L

ðka � hkaiÞðkb � hkbiÞ; ð2Þ

where hk�i and σk� are the means and standard deviations, α, β 2 {in, out} (measured only for di-
rected networks). r is the mixing of degrees k, measured for undirected networks and for direct-
ed ones disregarding their directionality [47].

Clustering distributions and mixing. All clustering coefficients were computed disregarding
the directionality of directed networks. Clustering coefficient c is usually defined as the link
density of its neighborhood [32]:

c ¼ 2t
kðk� 1Þ ; ð3Þ

where t is the number of linked neighbors and k(k−1)/2 is the maximum possible number,
c = 0 for k� 1. The mean hci is denoted network clustering coefficient [32], while the clustering
mixing rc is defined as before. Clustering profile gives the mean clustering Ck of nodes with de-
gree k [48]. Note that the denominator in the equation above introduces biases when r< 0
[33]. Thus, we rely on delta-corrected clustering coefficient b, defined as c�k/Δ [49], where Δ is
the maximal degree k and b = 0 for k� 1. Similarly, degree-corrected clustering coefficient d is
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defined as t/ω [33], where ω is the maximum number of linked neighbors with respect to their
degrees k and d = 0 for k� 1. From definition it follows b� c� d.

Diameter statistics. All diameter statistics were computed disregarding the directionality of
directed networks. Hop plot shows the percentage of mutually reachable pairs of nodes H(δ)
with δ hops [50]. The network diameter is defined as the minimal number of hops δ for which
H(δ) = 1, while the effective diameter δ90 is the number of hops at which 90% of such pairs of
nodes are reachable [50],H(δ90) = 0.9. Hop plots are averaged over 100 realizations of the ap-
proximate neighborhood function with 32 trials [51].

Multidimensional scaling (MDS).MDS is a statistical technique that visualizes the level of
similarity of individual objects of a dataset. From the range of the available MDS techniques,
we used the non-metric multidimensional scaling (NMDS), which work as follows. Given are h
objects (or points) defined via their coordinates in l dimensions. This situation is expressed via
h × lmatrix called H. From this original matrix H we compute the dissimilarity h × hmatrix D,
in which each matrix element D(i, j) represents the Euclidean distance between the pair of ob-
jects i and j in the original matrix H. NMDS reduces the dimensionality of the problem, by
transforming the h × hmatrix D into a h × pmatrix Y, where h is the number of objects (or
points), now embedded in p dimensions instead of l (p< l) [31]. The Euclidean distances be-
tween the obtained h points in Y are a monotonic transformation of the points in D in p dimen-
sions. In our analysis, we used a original matrix H with size of 6 × 20, meaning that the number
of points (data basis) is h = 6 and the number of coordinates is l = 20. The original matrix H is
transformed into dissimilarity matrix D with size of 6 × 6. Using NMDS we transformed the
matrix D into two matrices Y0 and Y00, so that Y0 has a size of 6 × 2, and Y00 has a size of 6 × 3.

Externally studentized residuals. Let xij be the value of j-th network measure of i-th data-
base, where N is the number of databases, N = 6. Corresponding externally studentized residual
x̂ ij is:

x̂ ij ¼
xij � m̂ ij

ŝ ij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1=N

p ; ð4Þ

where m̂ ij and ŝ ij are the sample mean and the corrected standard deviation excluding the con-

sidered i-th database, m̂ ij ¼
P

k 6¼ixkj=ðN � 1Þ and ŝ2
ij ¼

P
k6¼iðxkj � m̂ ijÞ2=ðN � 2Þ. Assuming

that the errors in x are independent and normally distributed, the residuals x̂ have Student t-
distribution with N−2 degrees of freedom. Significant differences in individual statistics x are
revealed by the independent two-tailed Student t-tests [52] at P-value = 0.1, rejecting the null
hypothesis H0 that x are consistent across the databases,H0 : x̂ ¼ 0. Thus, x̂ ij express the con-

sistency of the database i with the other databases, along the j-th network measure. Note also
that the absolute values of individual residuals jx̂j imply a ranking R over the databases, where
the database with the lowest jx̂j has rank one, the second one has rank two and the one with
the largest jx̂j has rank N.

Identifying independent network measures. Denote rij to be the Pearson product-moment
correlation coefficient of the residuals x̂ for i-th and j-th network measure over all databases.
Spearman rank correlation coefficient ρij is defined as the Pearson coefficient of the ranks R for
i-th and j-th statistics. Under the null hypothesis of statistical independence of i-th and j-th sta-
tistics, H0:ρij = 0, adjusted Fisher transformation [53]:

ffiffiffiffiffiffiffiffiffiffiffiffi
N � 3

p

2
ln

1þ rij
1� rij

ð5Þ
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approximately follows a standard normal distribution. Pairwise independence of the selected
network measures is thus confirmed by the independent two-tailed z-tests. This gives 13 inde-
pendent measures for directed, and 7 independent measures for undirected networks, as
shown in the Fig 3. Furthermore, Friedman rank test [54] confirms that chosen set of measures
exhibits significant internal differences, as to still be informative on the databases (see below).

Ranking of databases. Significant inconsistencies between the databases are exposed using
the methodology introduced for comparing classification algorithms over multiple data sets
[55]. Denote Ri to be the mean rank of i-th database over the selected measure, Ri = ∑j Rij/K,
where K is the number of independent measures K 2 {7, 13}. One-tailed Friedman rank test
[54, 56] first verifies the null hypothesis that the databases are statistically equivalent and thus
their ranks Ri should equal, H0:Ri = Rj. Under the assumption that the selected statistics are in-
deed independent, the Friedman testing statistic [54]:

12K
NðN þ 1Þ

X
i

R2
i �

NðN þ 1Þ2
4

 !
ð6Þ

has χ2-distribution with N−1 degrees of freedom. By rejecting the hypothesis at P-value = 0.1,
we proceed with the Nemenyi post-hoc test that reveals databases whose ranks Ri differ more
than the critical difference [57]:

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðN þ 1Þ

6K

r
; ð7Þ

where q is the critical value based on the studentized range statistic [55], q = 2.59 at P-
value = 0.1. A critical difference diagram plots the databases with no statistically significant in-
consistencies in the selected statistics [55].

Supporting Information
S1 File. Degree and clustering graphical profiles, continuation of network measures.Node
degree and clustering profiles and distributions of all the considered networks, along with
other network statistics. See Methods for interpretation and details on computation.
(PDF)
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