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Abstract
An outbreak of adenovirus has been surveyed in Taiwan in 2011. To better understand the

evolution and epidemiology of adenovirus in Taiwan, full-length sequence of hexon and

fiber coapsid protein was analyzed using series of phylogenetic and dynamic evolution

tools. Six different serotypes were identified in this outbreak and the species B was predom-

inant (HAdV-3, 71.50%; HAdV-7, 15.46%). The most frequent diagnosis was acute tonsillitis

(54.59%) and bronchitis (47.83%). Phylogenetic analysis revealed that hexon protein gene

sequences were highly conserved for HAdV-3 and HAdV-7 circulation in Taiwan. However,

comparison of restriction fragment length polymorphism (RFLP) analysis and phylogenetic

trees of fiber gene in HAdV-7 clearly indicated that the predominant genotype in Taiwan has

shifted from 7b to 7d. Several positive selection sites were observed in hexon protein. The

estimated nucleotide substitution rates of hexon protein of HAdV-3 and HAdV-7 were

0.234×10-3 substitutions/site/year (95% HPD: 0.387~0.095×10-3) and 1.107×10-3 (95%

HPD: 0. 541~1.604) respectively; those of the fiber protein of HAdV-3 and HAdV-7 were

1.085×10-3 (95% HPD: 1.767~0.486) and 0.132×10-3 (95% HPD: 0.283~0.014) respective-

ly. Phylodynamic analysis by Bayesian skyline plot (BSP) suggested that using individual

gene to evaluate the effective population size might possibly cause miscalculation. In sum-

mary, the virus evolution is ongoing, and continuous surveillance of this virus evolution will

contribute to the control of the epidemic.
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Introduction
Human adenoviruses (HAdVs) are double-stranded non-enveloped DNA viruses belonging to
the family Adenoviridae, genusMastadenovirus. More than sixty serotypes of HAdVs have
been recognized and classified into seven species (A-G) based on genome sequencing, phyloge-
netic and biological characteristics [1, 2]. Capsid proteins such as hexon and fiber in HAdV
play a critical role of entry into cell and immune response as well [3]. Antigenic and genetic
variability of these regions can cause epidemics or outbreaks [4–6]. HAdV are implicated in a
wide range of human diseases, including respiratory diseases, conjunctivitis, cystitis and gastro-
enteritis. Acute respiratory tract infection (ARTI) is a serious threat to infant and child who
usually required hospitalization. Species B (HAdV-3, 7, 14, 55), C (HAdV-1, 2, 5, 6) and E
(HAdV-4) are frequently isolated from pediatric patients with ARTI [4, 6–8]. In particular the
HAdV-7 is frequently associated with the severe ARTI such as lethal pneumonia or broncho-
pneumonia [9, 10]

HAdV is one of the major pathogens of the ARTI in Taiwan [11]. A total of 3 outbreaks
caused by this virus had been detected in Taiwan since 1999. HAdV-7 was responsible for the
outbreak in 1999, HAdV-4 in 2000~2001, and HAdV-3 in 2004~5 [12, 13]. After the outbreak
in 1999, isolation rate of HAdV-7 became lower. However, HAdV-3 was still the most common
serotype during the past two decades [14]. In 2011, clinical isolates of adenovirus was signifi-
cantly increased implying an outbreak of HAdV. To investigate the predominant serotype of
the virus in this outbreak, and to reveal whether the predominant strains have antigenic or se-
quence variation in the hexon and/or fiber capsid protein gene, we conducted a comprehensive
phylogenetic and evolutionary analysis. The clinical features of the adenovirus infections were
also analyzed.

Materials and Methods

Ethics Statement and Study Design
A total of 207 isolates used in this study were stratified random sampling depending on num-
ber of monthly adenovirus positive case from positive stocks collected during the outbreak in
2011. Virus was isolated from either nasopharyngeal aspirate or throat swabs from children
with ARTIs in Kaohsiung Medical University Chung-Ho Memorial Hospital, and then grown
in H292 and A549 cells (purchased from American Type Culture Collection). The study of eth-
ical approval was obtained from Kaohsiung Medical University Hospital Institutional Review
Board (KMUH-IRB-980344). This was a retrospective study without intervention or obtaining
extra clinical specimens. All samples were de-identified and analyzed anonymously, so in-
formed consent was waived. The Institutional Review Board of Kaohsiung Medical University
Hospital also approved the waiving of informed consent. Statistical analyses of the correlation
between serotypes and clinical data were using JMP software (Version 8). The statistical signifi-
cance was set at the level of p< 0.05.

Serotype and genotype classification
Viral DNA was extracted using QIAamp DNAMini Kit (Qiagen, Santa Clara, CA). For restric-
tion fragment length polymorphism (RFLP) analysis, DNA extraction was according to the tra-
ditional phenol/chloroform/isoamyl alcohol (25:24:1) extraction methods [15]. DNA was
stored at −80°C until use. The primer pair AdnU-S’ (5’-TTCCCCATGGCNCACAACAC-3’)
and AdnU-A (5’-GCCTCGATGACGCCGCGGTG-3’) were used to amplify a 956-bp product
from the hexon region[16]. PCR products were subjected to sequence assay and were used for
the identification of serotypes. For genotyping, aliquots containing1–2 μg of viral DNA were
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digested with 10–15 U of BamHI, Bcl I, BstE II and Bgl II (Promega, Madison, WI, USA) ac-
cording to the manufacturer’s instructions. Digested products were electrophoresis on 0.8%
agarose gel containing SYBR Green I (Invitrogen, Ltd.) and run for 16 hr at 50 V in TBE buffer.
The RFLP patterns were identified according to nomenclature system developed by Li et al.
and other modification [17, 18].

PCR amplification and sequencing of hexon and fiber genes
We designed six primers to amplify the full length of hexon and fiber genes. Primers Ad-3F-F
(5’-ACCTCACCCTCTTCCCAACT-3’), Ad-3F-R (5’-GAAGGGGGAGGCAAAATAAC-3’),
Ad-7F-F (5’-GAAATTTTCTCCCAGCAGCA-3’), Ad-7F-R (5’-GAAGGGGGAGGCAAAA
TAAC-3’) were used to amplify the full length HAdV-3 and HAdV-7 fiber gene, respectively.
The primer pair of B1-H-F (5’-GCAGCAGAGGAGAAAGGAAG-3’) and B1-H-R (5’-GAC-
GATGGCTTTGAGCTCTT-3’) was used to amplify the whole hexon gene in both HAdV-3
and HAdV-7. The primer sequence and annealing temperature was shown in supplementary
table (S1 Table).

PCR amplification was done by Sensoquest Labcycler (SensoQuest GmbH) with Pfu DNA
polymerase (Promega Corporation, WI). PCR products were purified with QIAquick spin
(Qiagen, Valencia, CA) columns and subject to direct sequencing by BigDye 3.1 Terminator
Cycle Sequencing reagents on ABI Prism 3730 DNA Analyzer (Applied Biosystems, Forest
City, CA).

Phylogenetic and phylodynamic analysis
Full length of hexon and fiber genes were alignment by Muscle implemented in the MEGA 6
software [19, 20]. Likelihood mapping analysis was performed to evaluate the phylogenetic sig-
nal with TREE-PUZZLE software version 5.2 [21] The transition/transversion ratio, base fre-
quencies, and α parameter of gamma distribution were estimated by TREE-PUZZLE software
version 5.2. Phylogenetic trees were reconstructed with the neighbor-joining (NJ) and maxi-
mum likelihood (ML) methods using the MEGA 6 and PhyML 3.0 [19, 22]. The robustness of
the phylogenetic trees was statistically evaluated by bootstrap analysis with 1000 replicates. The
bootstrap value>75% was considered to a monophyletic group.

The evolution rates and population size changes of HAdV were determined using Bayesian
Markov Chain Monte Carlo (MCMC) method offered in BEAST v1.8.2 along with the BEA-
GLE library [23, 24]. The SRD06 nucleotide substitution model was used in all simulations as
this model is recognized to provide better resolution for coding regions to Bayesian analysis
[25]. The demographic model, included Bayesian skyline, constant size, exponential growth, lo-
gistic growth, and expansion growth was used to estimate evolutionary and population dynam-
ic, under both molecular clock models (strict and relaxed) [23]. The best fit of demographic
and clock model was estimated form model comparison by Akaike’s information criterion
(AICM) in the Tracer program v1.6 [26]. The MCMC chains were run for sufficient time to
achieve convergence (ESS>200). In addition, the uncertainty of parameter is estimated in 95%
highest probability density (HPD). The Maximum Clade Credibility (MCC) tree was con-
structed by Tree Annotator v 1.7.4, with the 10% burn-in. The final of phylogenetic trees were
edited by Figtree v1.4.2.

Selection pressure of hexon and fiber protein genes
To determine the selection pressures on hexon and fiber protein of HAdV, we estimated the
ratio of non-synonymous substitutions (dN) and synonymous substitutions (dS) per site based
on ML trees under the appropriate substitution model, using the single likelihood ancestor
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counting (SLAC), fixed effects likelihood (FEL) methods with significance level on 0.05. Bayes-
ian tests for selection acting on individual sites were using FUBAR with posterior probabilities
on 0.95 [27]. The directional evolution in protein sequences (DEPS) test was using to detect se-
lective sweeps [28]. Residues with a Bayes factor of>100 were reported as positively selected.

All methods were implemented in the HyPhy package and accessed through the Datamon-
key web-server interface (http://www.datamonkey.org) [29, 30].

Results

Serotypes and clinical features
A total of 207 isolates were analysis by amplify partial hexon sequences and followed by
BLAST search on NCBI database (http://blast.ncbi.nlm.nih.gov/Blast.cgi). All isolates were in-
cluded in the clinical feature analysis. Among the 2011 outbreaks, six different serotypes were
identified and the species B were the predominant strains (HAdV-3, 71.50%; HAdV-7,
15.46%) (Table 1). We only focus on these two major serotypes in this study.

The most common symptoms were fever (96.14%), cough (76.33%) and rhinitis (60.87%).
The most frequent diagnosis was acute tonsillitis (54.59%) and bronchitis (47.83%). The male-
to-female ratio is 1.5:1; the mean age of the patients was 5.12 ± 4.08 years. The mean peak body
temperature and length of hospitalization was 38.88 ± 2.87°C and 6.21±3.15 days respectively.
The age distribution and fever days showed significant difference in patterns depending on the
HAdV serotypes (P = 0.007and 0.032). Furthermore, HAdV-3 presented higher fever than that
of HAdV-7(P = 0.011) (Table 1).

Table 1. Demographic and clinical data for adenovirus-positive patients according to each serotype.

Number of adenovirus serotypes (%)

Variables Total
HAdV-

positives

HAdV—1 HAdV—2 HAdV—3 HAdV—5 HAdV—6 HAdV—7

Serotype 207 6(2.89) 16(7.73) 148(71.50) 2(0.97) 3(1.45) 32(15.46)

Sex

Male 82(60.0) 3(50.0) 5(31.25) 93(62.84) 1(50.0) 2(66.67) 23(65.63)

Female 125(40.0) 3(50.0) 11(68.75) 55(37.16) 1(50.0) 1(33.33) 11(34.38)

Age

5.12±4.08 2.33±1.37 2.53±1.31 5.21±3.76 3.75±3.18 3.0±0.0 6.77±5.79

Clinical presentation

Length of hospitalization 6.21±3.15 5.33±3.39 5.56±1.93 6.40±3.30 5.0±0.0 6.0±1.00 5.91±3.14

Fever (°C) 38.88±2.87 38.57±0.96 38.96±0.93 39.13±0.94 39.05±0.49 39.17±0.29 37.72±0.6.92

Fever (days) 3.62±2.35 5.50±5.01 4.19±2.37 3.38±1.95 2.50±0.71 1.67±0.58 4.35±3.11

Fever 199(96.14) 6(100.00) 16(100.00) 142(95.95) 2(100.00) 3(100.00) 30(93.75)

Cough 158(76.33) 5(83.33) 13(81.25) 112(75.68) 2(66.67) 24(75.00) 158(76.33)

Rhinorrhoea 126(60.87) 4(66.67) 9(56.25) 91(61.49) 2(100.00) 2(66.67) 18(56.25)

Diarrhea 71(34.30) 0(0.00) 4(25.00) 52(35.14) 1(50.00) 1(33.33) 13(40.63)

Clinical presentation

Acute tonsilitis 113(54.59) 4(66.67) 11(68.75) 81(54.73) 1(50.00) 3(100.00) 13(40.63)

Acute pharyngitis 22(10.63) 1(16.67) 1(6.25) 15(10.14) 0 0 5(15.63)

Acute sinusitis 36(17.39) 1(16.67) 3(18.75) 29(19.59) 0 0 3(9.38)

Bronchopneumonia 53(25.60) 2(33.33) 4(25.00) 37(25.00) 0 2(66.67) 8(25.00)

Bronchitis 99(47.83) 4(66.67) 5(31.25) 73(49.32) 2(66.67) 2(66.67) 13(40.63)

Pneumonia 26(12.56) 0 2(12.50) 21(14.19) 0 0 3(9.38)

Gastroenteritis 28(13.53) 0 2(12.50) 23(15.54) 0 0 3(9.38)

doi:10.1371/journal.pone.0127377.t001
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Phylogenetic analysis of the hexon and fiber genes
Likelihood mapping analysis showed that most of the quartets were located in the three corners
of the triangle suggesting a treelike signal. Consistent tree topologies were observed by NJ and
ML methods. The analyzed HAdV-7 hexon gene sequences were highly conserved and phylo-
genetic analysis showed they were clustered together with reference sequences from NCBI da-
tabase and the strains isolated in same period from north Taiwan [31], except prototype and
two 7d isolates from Japan in 2004 (with 96.3% and 95.4% identity respectively) (Fig 1A). For
the fiber gene, our results showed that HAdV-7 in this outbreak were all classified into a single
cluster with HAdV-7d2 and 7d rather than the previous predominant genotype 7b (Fig 1B). To
confirm this observation, whole genome viral DNA was analyzed by RFLP and compared with
the previous report [13, 17, 18]. These restriction patterns of Bam HI showed the HAdV-7 in
this outbreak was belong to 7d or 7d2 genotype. Furthermore, three restriction enzymes (BstE
II, Bcl I and Bgl II) conformed that they were not 7d2 genotype (S1 Fig). Based on these results
we suggest the predominant of HAdV-7 in Taiwan has shifted from 7b to 7d genotype.

Similar results were observed from HAdV-3, all hexon and fiber gene sequences were highly
conserved and also clustered together with our previously reported strains and other reference
strains from Taiwan (Fig 1C and 1D). The viral nucleotide sequences determined in this study
have been assigned with GenBank accession numbers KC456083 to KC456103 (HAdV-3
hexon genes), KC456104 to KC456125 (HAdV-3 fiber genes), KC456126 to KC456142
KC456125 (HAdV-7 fiber genes) and KC456143 to KC456159 (HAdV-7 hexon genes). The ac-
cession numbers of sequences used for phylogenetic and evolutionary analysis in this study
were listed in supplementary table (S2 Table).

Fig 1. Phylogenetic analysis of the human adenovirus type 3 and type 7 hexon and fiber genes. The phylogenetic tree was inferred from HAdV-7
hexon gene (A), HAdV-7 fiber gene (B), HAdV-3 hexon gene (C) and HAdV-3 fiber gene (D). Tree topology was constructed using the neighbor-joining
method. The topologic accuracy of the tree was evaluated by using 1,000 bootstrap replicates. Only bootstrap values greater than 75% are shown. Red and
purple texts represent HAdV- 7 and 3 isolated in Taiwan in this outbreak, respectively. Orange text represents HAdV- 3 reference sequences from Taiwan.
Green text was HAdV- 7 reference sequences from Northern Taiwan.

doi:10.1371/journal.pone.0127377.g001
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Selection pressures in the HAdV- 3 and 7 surface proteins
Selection pressures of hexon and fiber protein in HAdV-3 and 7 were estimated by the dN/dS
ratio. The criteria were 1) the ratio of dN/dS<1 as negative selection, 2) dN/dS = 1 as neutrali-
ty, and 3) dN/dS>1 as positive selection. The mean ratio of dN/dS in HAdV-3 and 7 hexon,
fiber protein was 0.520, 0.534 and 0.092, 0.142, respectively (Table 2).

All of open reading frames contained negatively selected codons. The Hexon of HAdV-7 re-
vealed relatively higher negatively selected codons than others. Positive selection was detected
on HAdV-3 hexon protein at codon 649 by FEL method. Three codons (137, 205, 649) were
detected by FUBA whereas other 15 codons were detected by DEPS.

For HAdV-7, two positive selection sites were detected in hexon protein of which codons
146 by SLAC method and codons 443 by DEPS. A positive selection site was detected in fiber
at codons 104 by DEPS method.

Phylodynamic of adenovirus
Phylodynamics of HAdV-3 and HAdV-7 was estimated by Bayesian skyline plot basis on
hexon and fiber gene, respective. The genetic diversity of the HAdV-7 population remained
steady until 2005, subsequently, the steep declined the effective population size lasted until
2011(Fig 2C and 2D). The result of hexon gene in HAdV-3 showed the population was declin-
ing after 1999 (Fig 2A). BSP constructed form HAdV-3 hexon, HAdV-7 hexon and fiber were
represent downtrend for population dynamics (Fig 2A, 2C, and 2D). However, inconsistent re-
sults were found in the HAdV-3 fiber gene. That was steady after 2005 and showing upward
trend at after 2010 (Fig 2B).

Evolutionary rates and the most recent common ancestor (tMRCA) of
HAdV- hexon and fiber genes
The uncorrelated lognormal relaxed clock model and Bayesian skyline was determined to be a
better fit model for both hexon genes. For HAdV-7 fiber gene, the uncorrelated exponential re-
laxed and Bayesian skyline was the better fit model. For HAdV-3 fiber gene, the better fit
model was uncorrelated lognormal relaxed clock model and exponential growth. All of the nu-
cleotide substitution rates, evolutionary rates and tMRCA are summarized in Table 3. The esti-
mated nucleotide substitution rate of hexon protein on HAdV-3 and HAdV-7 was 0.234×10–3

substitutions/site/year (95% HPD was 0.387~0.095×10–3) and 1.107×10–3 (95% HPD was

Table 2. Selection sites detected in hexon and fiber of HAdV- 3 and 7.

Positively selected sites No. of negatively
selected sites

Mean dN/dS

SLACa FELa FUBAb DEPSc SLAC FEL FUBA

HAdV- 3

Hexon Non 649 137,205,649 22,205,254,299,326,386,417,429,439,649,651,652,667,675,714 2 5 4 0.520

Fiber Non Non Non Non Non 3 3 0.534

HAdV- 7

Hexon 146 Non Non 443 6 44 27 0.092

Fiber Non Non Non 104 Non 3 3 0.142

a P value of <0.05.
b Posterior probability of �0.95.
cBayes factor of >100

doi:10.1371/journal.pone.0127377.t002
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0.541~1.604), respectively. The nucleotide substitution rate of fiber protein on HAdV-3 and
HAdV-7 was 1.085 ×10–3 (95% HPD: 1.767~0.486) and 0.132 ×10–3 (95% HPD: 0.283~0.014),
respectively. The TMRCA of HAdV- 3 was dated to 1964 (95% HPD: 1918~1983) for hexon;
the fiber was dated to 1995 (95% HPD: 1991~1998). The TMRCA of HAdV-7 hexon was dated
to1949 (95% HPD: 1931~1955). However, the TMRCA of fiber gene was more than two hun-
dred years (1788, 95% HPD: 1422~1984).

The evolutionary rate of synonymous positions (3rd codon position) was significantly
higher than that of nonsynonymous positions (1st and 2nd codon positions) in hexon and
fiber genes, except the fiber gene of HAdV-3.

Discussion
Previous studies suggested that viral genetic diversity cause by recombination was considered
as main source of emerging outbreaks [30, 32–34]. For example, HAdV-7h, first isolated from
the Buenos Aires, Argentina in 1987, had been reported to be highly virulent and predominant
only in South America and Japan [8]. Sequence and phylogenetic analysis of HAdV-7h clearly
indicated that it was an emerging virus and resulting from the recombination of HAdV-3 fiber
[8].

During the last decade, emerging and/or re-emerging adenovirus cause several outbreaks
worldwide, including Taiwan, Malaysia, China, the United States, Japan, France, Korea and
Portugal [1, 4–6, 12, 13, 32, 35–37]. In 2011, a community outbreak of respiratory tract infec-
tions was observed in Taiwan and the majority of the patients required hospitalization. PCR
and sequence of partial hexon gene showed the HAdV-3 and HAdV-7 were predominant and
constituted this outbreak. The HAdV-3 and HAdV-7 also caused an outbreak in nearby coun-
tries China and Korea [38, 39]. The mean age of the patients of this outbreak was 5.12 ± 4.08

Fig 2. Bayesian skyline plot for complete hexon and fiber gene of the HAdV-3 and HAdV-7. The BSP were inferred from HAdV-3 hexon gene (A),
HAdV-3 fiber gene (B), HAdV-7 hexon gene (C) and HAdV-7 fiber gene (D). The bold line represents the median estimate of the effective population size of
infections through time, with the 95% HPD values shown within the blue line.

doi:10.1371/journal.pone.0127377.g002
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years. The male-to-female ratio (1.5:1) showed that HAdV infections affected more boys than
girls. These clinical phenomenons are in consistent with previous studies [14, 40, 41]. However,
the age distribution showed a significant different pattern depending on the HAdV serotypes,
meaning that subgenus B was significantly older than that of subgenus C (P = 0.007). This ob-
servation was similar to that of HAdV-3 outbreak in Taiwan in 2004~2005 [12].

In Taiwan, HAdV-3a genotype was predominated during the 1983–1999, while HAdV-3a2
was predominated in 2001–2005 [14]. Comparison with phylogenetic trees and sequence align-
ments of fiber and hexon gene sequences from our previous data indicated that HAdV-3 was
highly conserved with other Taiwan strains, and the predominant genotype did not change.
According to our surveillance, HAdV-7 was not the major serotype circulating in Taiwan, but

Table 3. Mean relative evolutionary rates for codon positions and times of most recent common ancestor (TMRCA) in hexon and fiber gene of
Human adenovirus.

TMRCA Substitution rates (× 10–3) Mean relative SE of
(calendar year) subs/site/year substitution rate mean

HAdV- 3

Fiber 1995 1.085

(1998~1991) (1.767~0.486)

1st codon position 1.211 1.8918E-3

(95% HPD) (0.7317~1.673)

2nd codon position 0.578 1.5242E-3

(95% HPD) (0.2419~0.9669)

3rd codon position 1.211 1.8817E-3

(95% HPD) (0.7251~1.669)

Hexon 1964 0.234

(1983~1918) (0.387~0.095)

1st codon position 0.711 9.1974E-4

(95% HPD) (0.4913~0.9411)

2nd codon position 0.818 1.1818E-3

(95% HPD) (0.5521~1.1008)

3rd codon position 1.471 1.1912E-3

(95% HPD) (1.1008~1.7713)

HAdV- 7

Fiber 1788 0.132

(1422~1984) (0.283~0.014)

1st codon position 0.422 9.677 E-4

(95% HPD) (0.1741~0.67)

2nd codon position 0.504 1.0291 E-3

(95% HPD) (0.2447~0.774)

3rd codon position 2.074 1.2913 E-3

(95% HPD) (1.7414~2.4109)

Hexon 1949 1.107

(1931~1955) (0.541~1.604)

1st codon position 0.326 7.0944 E-4

(95% HPD) (0.2036~0.4544)

2nd codon position 0.25 6.8106 E-4

(95% HPD) (0.1362~0.373)

3rd codon position 2.424 9.0516 E-4

(95% HPD) (2.2558~2.5802)

doi:10.1371/journal.pone.0127377.t003
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the HAdV-7b genotype was the predominant genotype of HAdV-7 in Taiwan [13]. Interesting-
ly, our phylogenetic analysis showed that all the isolates from this outbreak were clustered with
HAdV-7d2 from USA, HAdV-7d from Japan, and HAdV-7d and HAdV-7i form Korea (Gen-
Bank accession number HM057190, JN860677, AF104383, AF053087, AY921622 and
AY7748816 respectively), rather than previous predominant HAdV-7b. This result suggested
that the predominant genotype may have shifted. Further whole genome RFLP analysis sup-
ported this hypothesis.

The HAdV-7d, or a closely related variant, HAdV-7d2, was predominant genotype in
Japan, Korea and China after 1984 [14, 42, 43], whereas HAdV-7b was predominant genotype
in the same period in Taiwan till 2004. After the outbreak in 1999, HAdV-7 isolation rate was
decreased in our and other contracted virology laboratories [31]. Interestingly, the transmis-
sion route of HAdV-7d that contributed to its emergence remained an important concern. One
possible explanation was the frequent travels between Taiwan, China, Japan, Korea, and North
American. We hypothesized that HAdV-7d genotype was introduced from an outside source
resulting its emergence in 2011. This can be clearly seen in the MCC tree that all isolates form
2011 were clustered with isolates from China in the same period.

Phylodynamics of the hexon gene of HAdV-7 and HAdV-3 showed a downward trend of
the effective population size in recent years. This suggested that genetic evolution of hexon
gene for both HAdV-3 and 7 were stabilized. However, different results from hexon gene were
found in HAdV-3 fiber gene. The effective population size showed on BSP was rise in 2011,
which consistent with adenovirus outbreak in 2011.

The amino acid variation associated with positive selection was often observed in hexon
gene. Hexon is the surface glycoprotein and thus is an accessible target to antibodies, which
could explain the positive selection occurred in there.

For HAdV-3, the amino acid variation (G205V) located within HVR3 (hypervariable re-
gion) was detected as a positive selection site by FUBA and DEPS, while this nonsynonymous
substitution was found in a new genotype of HAdV-3 either [44, 45]. The G205V variation
might be beneficial to P649 H or R located within HVR7 also was positive selection site detected
by FEL, FUBA, and DEPS. This variation was found in HAdV-3a and HAdV-3a2 subgroups in
Taiwan in 1996~1999 and 2002~2005. For HAdV-7, positive selection site was observed in
HVR1 of hexon protein at T146 (436_437 del AC) by SLAC. This amino acid residue only ex-
isted in the prototype strain but was deleted in all other HAdV-7 genotypes [46]. This deletion
might conducive to HAdV-7 survival. On the other hand, another positive selection at L443Q
was found by DEPS. The substitution was from Leu in HAdV-7b to Gln in Ad7d and affected
the hydropathic characteristic (hydrophobic to hydrophilic) [46]. HAdV-7d was replaced
HAdV-7b as the predominant circulating virus in our neighboring countries. Therefore, we
suggest the L443Q was important codon for HAdV-7d expansion. The relatively low dN/dS ra-
tios in HAdV-7 hexon gene implicated no strong selection occurred in HAdV-7.

This is the first report of dynamic evolution and selection pressure for Adenovirus in Tai-
wan. In this study, we found that the predominant genotype of HAdV-7 has changed. Al-
though the evolution of the two major capsid proteins was steady, the virus evolution is
ongoing under selection pressure. The acquisition of additional mutations in the future could
lead to an antigenic drift and cause further outbreaks. In order to quickly respond to an out-
break caused by emergent or re-emergent adenovirus in the future, continuous surveillance of
this virus evolution is necessary.
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