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Abstract

This study proposes a visualization processing method for the deformation risk level of un-
derground space. The proposed method is based on a BP-Hopfield-RGB (BHR) composite
network. Complex environmental factors are integrated in the BP neural network. Dynamic
monitoring data are then automatically classified in the Hopfield network. The deformation
risk level is combined with the RGB color space model and is displayed visually in real time,
after which experiments are conducted with the use of an ultrasonic omnidirectional sensor
device for structural deformation monitoring. The proposed method is also compared with
some typical methods using a benchmark dataset. Results show that the BHR composite
network visualizes the deformation monitoring process in real time and can dynamically in-
dicate dangerous zones.

Introduction

Safety accidents frequently occur in large-scale construction of underground space engineering
[1, 2]. Safety monitoring of underground space is increasingly becoming a critical need for na-
tional economic development. However, monitoring data on underground space engineering
involve large and complex features. Moreover, the existing visual tools are often based on spe-
cific measurement techniques. These techniques, such as photogrammetric, total station, and
3D laser scanning techniques, mainly focus on measurement data processing. In the process,
such methods neglect the practicality of displaying risk levels. Thus, monitoring information
on underground space safety and evaluating and forecasting its status are difficult, which in
turn causes serious obstacles to underground space exploitation.

Some studies have been conducted on the visual technology of safety monitoring. For exam-
ple, Smith and Brown have made some advances in directional borehole radar data analysis
and visualization [3]. Tang has shown that the difference evolution arithmetic and visualization
toolkit can be used to calculate and evaluate the state of tunnel surrounding rock [4]. A 3D
laser scanning system has also been used to acquire and visualize monitoring data on under-
ground space deformation [5, 6]. Chen has studied the browsing modes of the 3D simulation
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view in monitoring underground construction [7]. An approach has also been proposed for
safety management of metro construction using 4D visualization technology [8]. Laser ultra-
sonic scanning excitation and integrated piezoelectric have been used in visualizing the defects
in composite aircraft manufacturing and the damages of the debonding mode [9]. A wireless
strain monitoring system, which integrates local tethered data acquisition and long-range wire-
less data transmission, has been developed for real-time strain monitoring and visualization of
building safety [10]. Expanding on the original work in field construction by describing recent
advances in both activity- and operation-level construction, Kamat et al. showed that graphical
3D visualization can serve as an effective communication method [11]. Moreover, bridge infor-
mation modeling has become an effective tool in bridge engineering construction and visuali-
zation [12]. Continuous analytic techniques based on fracture mechanics and acoustic-
emission analytics, along with software infrastructure, have been applied in real-time monitor-
ing [13]. Glisic et al. researched and proposed the accessibility and visualization principles of
heterogeneous monitoring data [14]. Other studies presented a general dynamic visualization
model for SHM, which results in a dynamic and interactive visualization process [15]. A WSN
monitoring framework based on 3D visualization [16] and a wireless data acquisition frame-
work for structural health monitoring and control have also been presented [17].

Although various strategies for visualizing monitoring data have been developed, strategies
for underground space safety remain a great challenge because of the following reasons: First,
the underground space environment is highly complex, and numerous parameters affect safety
monitoring [18, 19]. Most of the current methods are capable of handling only a limited num-
ber of parameters [20]. Second, the existing visualization techniques generally focus on a spe-
cific topography [21, 22]; research on the universal visualization model can still be expanded
turther. Third, the current methods have achieved mainly the visualization of monitoring data
with specific physical characteristics, such as strain, temperature, or crack [23-25]. However,
only simple methods, such as the threshold partition, are adopted for abstract risk-level charac-
teristics. Given these limitations, an intelligent, dynamic, and real-time visualization technique
is urgently needed. The present study proposes a visualization technique for underground
space deformation risk level based on a BP-Hopfield-RGB (BHR) composite network. Through
parallel inputting of multiple environmental parameters, the method constructs a universal
model for monitoring underground space safety. Complex environmental factors are integrat-
ed by the BP neural network (BPNN), and dynamic monitoring data are automatically classi-
fied in the Hopfield network. Combined with the RGB color space, the deformation risk level is
displayed in real time. Thus, the dangerous zones in underground space are indicated and
located quickly.

Method

This study establishes an ultrasonic spherical sensor device to detect omnidirectional deforma-
tion. The center of the sphere is considered the origin, and the ultrasonic transceiver arrays are
localized on the surface of the sphere. A spatial 3D coordinate system is established, as shown
in Fig 1(a). The ultrasonic spherical sensor array is used as a benchmark of spatial measure-
ment to detect random structural deformation in underground space [26]. The designed device
is shown in Fig 1(b).

The 3D space that is monitored through the ultrasonic array is organized and divided into a
series of subspaces. These subspaces are distinguished from each other by identifying the ultra-
sonic sensors localized at the different latitude and longitude lines. The monitoring informa-
tion for each direction in the 3D space is mapped into a latitude and longitude map to facilitate
the visual management of the spatial monitoring information.
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(a)Spatial three-dimensional coordinate model (b) Ultrasonic spherical array device
Fig 1. Ultrasonic omnidirectional sensor device.

doi:10.1371/journal.pone.0127088.g001

This study proposes a BHR composite network for visualizing deformation risk levels. The
BHR composite network is composed of BPNN, Hopfield neural network, and RGB color
space. The underground space deformation monitoring data are used as input in the BHR net-
work to automatically classify and analyze the visualization of deformation risk levels.

Part 1. BPNN Data Processing

The basic idea of the BPNN is to iteratively learn a certain number of samples, that is, inputs
and expected outputs, until the error between the predicted and expected outputs satisfies the
setting accuracy. In the BPNN, the signal propagates forward and the error propagates back-
ward. The network includes input, hidden, and output layers. The output of a neuron j on the
input and output layers is determined by Eq (1) [27]:

14 n
¥, —f<Zijf<Za)ijei—61> —zt>, (i=1,2,---,nj=1,2---,pt=1,2,---,q) (1)
j=1 i=1

where n, p, and qp represent the neuron number of the input, hidden, and output layers, re-
spectively. The input sample component is represented by e;. The threshold value of the hidden
layer is represented by 6;. The connection weight between the input and hidden layers is repre-
sented by wy;. The connection weight between the hidden and output layers is represented by
vj. The threshold value of the output layer is represented by A.. The transfer function is repre-
sented by f.

The tan-sigmoid function is used as the BPNN transfer function, given that it can limit the
output within the range of [-1, 1], as shown in Eq (2). After inputting the actual measured data
into the trained BPNN, the stable weights and thresholds are acquired [27].

f(x) = tansig(x) (2)

Part 2. Hopfield Network Data Processing

A type of feedback network, the Hopfield network has more than one stable state. It begins at a
certain initial state and then reaches a stable state, which can be stored in the network by
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setting the network weight. Two types of Hopfield network exist: continuous and discrete net-
work. Letting ; and z; represent the function input and output of neuron j at the moment of t,
respectively, the input and output are determined through Eqs (3) and (4) [28, 29]

q
W= Zq)ij}’i — 9 (3)
i=1

1 >0

5 =fly) = { 1o <0 (4)

Where the threshold of neuron j is represented by ;. The number of neurons is represented by
q. The connection weight between neurons i and j is represented by ¢;. y; The neuron input,
that is, the actual output of the BPNN, is represented by yi.

The Hopfield network energy function is defined as [30]

q q q
E= —%Z > ezt > v, (5)

i=1 j=1 i=1

When neuron j varies from time t to time t + 1, the energy variation of the neuron is as fol-
lows:

q 1 q
AEj = Ej(t + 1) - Ej(t) = _Azj(z Qi — 5]') + EAZ]'E Qi) (6)
i=1 i=1

When the state of neuron j changes, its energy variation is AE;<0. Given that neuron j can
be any one of the Hopfield network neurons, all the neurons of the network are in an updated
state according to the same rules. Thus, the energy variation of the network should be AE < 0.

The change in the network convergence involves an energy minimization process. Given that
the energy function is bounded, the network reaches a steady state. This steady state is a discrete
output of the Hopfield network, and the steady state condition is determined as follows:

Z(t+1) = z(t) (7)

Whether or not the network reaches a steady state is determined according to Eq (7). If the
steady state or the training number satisfies the requirement, then the training is ended; other-
wise, it should return to its former state and continue.

Given the aforementioned features of the Hopfield network, this study uses the discrete net-
work. The designed stable states are used as the different risk levels of a sensor array. Through
the Hopfield network, the data learned by the BPNN reach a stable state, which indicates that
the deformation state is maintained at a certain risk level. The output value of the sensor node
in the discrete Hopfield network is -1 or 1. The value is -1 when the neuron stays at an inhibito-
ry state and the deformation is at a low risk level, and 1 when the neuron stays at an active state
and the deformation is at a high risk level.

Part 3. RGB Color Space

RGB color space is a 3D Cartesian space based on three variants: R, G, and B. The three vertices
on the axis represent the three primary colors, namely, red, green, and blue. The different com-
binations of R, G, and B can form a total of about 16.78 million different colors. The different
deformation risk levels can be distinguished by using the different colors formed by different
combinations of RGB values.

PLOS ONE | DOI:10.1371/journal.pone.0127088 May 26, 2015 4/14



@’PLOS ‘ ONE

Composite Network-Based Visualization Method for Risk Level

A1) White (255,255,255) Carmine (255,0,255)

/

Cyan (0,/{55,255) Blue (0.

Ycllo‘ (255,255,0) Red (255,0,0)

/

/
-L1-1 -1-1,-
( ) CleoleD) Green (0,255,0) Black (0,0,0)

Fig 2. Hopfield-RGB network mapping model.
doi:10.1371/journal.pone.0127088.9002

Part 4. BHR Network Data Processing

Each output data of the BPNN are at an equilibrium state. Each data converge into its own equi-
librium state in the Hopfield-RGB network. The stable equilibrium values are then converted into
RGB values. For example, if the discrete Hopfield neural network has three neurons, then the net-
work output consists of three binary numbers; thus, eight stable equilibrium states at the most are
present. These eight stable equilibrium states correspond to the eight vertices of the RGB color
space. Using Eq (8), the output of the Hopfield network can be mapped into the RGB color space.

R:255*(x1+1)
2

G:255*(x2+1) (8)
2

B:255*(2x3+1)

The equilibrium states in the Hopfield network are converted into certain colors and displayed
in real time on the information structure unit of the longitude—latitude mapping model. The
Hopfield-RGB network mapping model (with three neurons) is shown in Fig 2.

Part 5. Visualization Model

The deformation risk level is divided into N levels based on the deformation value and environ-
mental parameters. A higher N corresponds to a higher risk level and therefore greater danger.
The different risk levels of deformation are represented by different colors to distinguish among
them. Based on the above discussion on the BHR composite network, a visualization processing
model is proposed for deformation risk levels in underground space, as shown in Fig 3.

First, the real-time data monitored by the sensor array and environmental impact parame-
ters are processed as a normalized parameter matrix, after which the matrix is inputted to the
BPNN. Through the self-learning process of the BPNN, the stable weights and thresholds are
acquired. Second, the Hopfield network is used to automatically classify the data learned by the
BPNN. Finally, the deformation risk level classification is mapped into the color space and dis-
played in real time with different colors.

Results and Discussion
Model Experiment

The sensor nodes for the underground space deformation monitoring system are in
different monitoring environments; thus, they have different measurement data and
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environmental parameters. This study considers three factors: object material, distance, and
range difference.

1. Object material: Given that the monitoring object of the ultrasonic omnidirectional array is
underground space, the properties of the monitoring object may be different for the moni-
toring area of each sensor node, which affects the deformation risk level. Setting the impact
factor as a decimal value, the maximum impact factor of the different materials is 1, and the
minimum is 0.

2. Distance: The distance between the monitored area and the sensor node affects the monitor-
ing range and ultimately the deformation risk level. A greater distance corresponds to a
higher deformation risk level. The maximum value of the parameter is set at 10,000 mm
and the minimum value at 50 mm.

3. Ranging difference: The ranging difference directly reflects the deformation. A larger differ-
ence means a greater deformation. The corresponding monitoring region has a high defor-
mation risk level. The maximum value of the parameter is set at 50 mm and the minimum
value at 3 mm, that is, the value for the quantitative accuracy of the sensor.

Visualization Experiment of a Single Sensor

The methods can be used for deformation monitoring of an underground structure such as an
artificial tunnel or a natural cave. However, applying real deformation to the monitored struc-
ture, which is in a stable state, is impossible. Therefore, the proposed method is illustrated via
experiments in the laboratory. Considering the three factors above, an experiment was con-
ducted, as shown in Fig 4. Elastic pads were used to build a semi-closed structure. The structur-
al deformation was simulated by exerting force on the elastic pads.

First, the BPNN was trained using the data monitored by the sensor array and environmen-
tal impact parameters (the expected outputs are set as six risk levels). Then the structural defor-
mation within the monitoring area of a single sensor node was measured. The pressure on the
elastic deformable body was gradually increased, and the distances were acquired using the
sensor. The deformation ranging differences were then acquired. Considering the parameter of
the object material, a monitoring dataset was acquired as shown in Table 1.

White(285285255)  Camie (255,0255)

Fig 3. BHR network-based visualization processing model for deformation risk levels.

doi:10.1371/journal.pone.0127088.g003
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Fig 4. Experiment setup for acquiring the deformation risk level.

doi:10.1371/journal.pone.0127088.9g004

A total of 20 sets of data at different time points formed a parameter matrix, which was then
normalized. The normalized data were used as input in the trained BPNN, and the data were
converged to the range of [-1, 1]. The output results of the BPNN are shown in Table 2.

Second, the output matrix of the BPNN was used as input in the Hopfield-RGB network.
Different stable equilibrium points were presented in the network, and the data of the matrix
were automatically classified into different risk levels. The experimental results of different
types of risk levels are shown in Fig 5. Fig 5(a) displays the result graph with two deformation
risk levels; Fig 5(b), with three deformation risk levels; Fig 5(c), with four deformation risk lev-
els; and Fig 5(d), with six deformation risk levels. The data processed by the BPNN converged
into some stable equilibrium points along with the solid colored lines.

In Fig 5(a), the deformation risk levels were set to two. The stable equilibrium points of risk
levels 2 to 1 were set to (1, -1, -1) and (-1, 1, -1), which correspond to red (the highest level)
and green (the lowest level) in the color space, respectively. In Fig 5(b), the deformation risk
levels were set to three. The stable equilibrium points of risk levels 3 to 1 were set to (1, -1, -1),
(1,1,1),and (-1, 1, -1), which correspond to red (the highest level), white (replaced with purple
in Fig 5 because white tracks cannot be seen clearly), and green (the lowest level) in the color
space, respectively. In Fig 5(c), the deformation risk levels were set to four. The stable equilibri-
um points of risk levels 4 to 1 were set to (1, -1, -1), (-1, -1, -1), (1, 1, 1), and (-1, 1, 1), which
correspond to red (the highest level), black, white (replaced with purple), and cyan (the lowest
level) in the color space, respectively. In Fig 5(d), the deformation risk levels were set to six.

Table 1. Deformation monitoring data of the sensor node located at longitude (E90) and latitude (0).

Number Object material

Distance (cm)

Ranging difference(cm) Number Object material Distance (cm) Ranging difference(cm)

0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65
0.65

© 00 NOoO g s~ ODN =

'y
o

79.3
79.0
78.5
78.0
77.6
771
76.8
76.4
76.0
75.5

0 1 0.65 75.1 4.2
0.3 12 0.65 74.7 4.6
0.8 13 0.65 741 5.2
1.3 14 0.65 73.7 5.6
1.7 15 0.65 73.2 6.1
2.2 16 0.65 72.8 6.5
2.5 17 0.65 72.3 7.0
2.9 18 0.65 7.7 7.6
3.3 19 0.65 71.2 8.1
3.8 20 0.65 70.8 8.5

doi:10.1371/journal.pone.0127088.1001
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Table 2. Output results of the BP neutral network.

Number \2

-0.9963
-0.9947
-0.9883
-0.9687
-0.9225
-0.7512
-0.5284
-0.0691

0.4228

0.8042

© 00 N O g B~ WON =

'y
o

doi:10.1371/journal.pone.0127088.t002

Y2 Y3 Number Y1 Y2 VES
-0.0262 -0.5601 11 0.9282 0.5574 0.7865
-0.0433 -0.5431 12 0.9747 0.5270 0.8032
-0.0099 -0.4525 13 0.9944 0.4533 0.8081
0.1119 -0.2506 14 0.9978 0.3663 0.7890
0.2542 -0.0064 15 0.9992 0.1628 0.6992
0.4247 0.3169 16 0.9996 -0.1274 0.4766
0.4988 0.4707 17 0.9998 -0.6022 -0.2426
0.5583 0.6124 18 0.9999 -0.9269 -0.9239
0.5815 0.6979 19 0.9999 -0.9845 -0.9931
0.5771 0.7585 20 1.0000 -0.9944 -0.9987

The stable equilibrium points of risk levels 6 to 1 were set to (1, -1, -1), (1, -1, 1), (-1, -1, -1), (1,
1,1),(-1,-1,1), (-1, 1, -1), and (-1, 1, 1), which correspond to red (the highest level), carmine,

black, white (replaced with purple), green, and cyan (the lowest level) in the color

space, respectively.

Data Visualization Experiment of Omnidirectional Sensor Array

Different pressures were exerted on different areas on the elastic pads to visualize the sensor
array monitoring data. The deformation data monitored by the sensor array were used as input
in the trained visualization model of the deformation risk level. The visualization results are
shown in Fig 6; the risk levels are divided into two, three, four, and six levels in Fig 6(a), 6(b), 6
(c), and 6(d), respectively. The horizontal coordinates represent the latitude and longitude of
the earth’s longitude—latitude mapping model, which were used to locate the sensor nodes.

BP-Hopfield-RGB Net

G 05 Pl

(a) Two risk levels

BP-Hopfield-RGB Net

G 05

a0

BP-Hopfield-RGB Net

(¢) Four risk levels (d) Six risk levels
Fig 5. Experimental result graphs of different types of risk levels.

doi:10.1371/journal.pone.0127088.9005
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The dangerous zones were located afterward; different colors were used to represent different
risk levels. The sensor array monitoring data were visualized, and the risk level values were
displayed synchronously.

Comparison with Other Algorithms

Part 1. Dataset introduction. A standard dataset was used to compare the chosen algo-
rithms. Different algorithms were used to process the dataset to select the suitable
classification algorithm.

Given that this study focuses on underground space monitoring, a benchmark dataset for
seismic bumps was selected [18]. Mining activities are always related to the occurrence of vari-
ous forms of danger, which are commonly called mining hazards. The dataset described the
problem of high-energy (higher than 10* J) seismic bump forecasting in a coal mine, and the
data were obtained from two longwalls in a Polish coal mine. The dataset was a matrix with
2584 instances and 19 attributes. The present study selected three attributes, namely, genergy,
gdenergy, and gdpuls, including a total of 1760 instances, in which 1600 instances were used
for network training and 160 instances for network testing. The test results were then com-
pared. The seismoacoustic attribute was also selected to calculate the accuracy rate of the classi-
fier. The four selected attributes are described as follows:

1. Genergy: the seismic energy recorded in the previous shift by the most active geophone
(GMax) out of all the geophones that monitor the longwall.

2. Gdenergy: a deviation of energy recorded within the previous shift by GMax from the aver-
age energy recorded in the eight previous shifts.

3. Gdpuls: a deviation of a number of pulses recorded in the previous shift by GMax from the
average number of pulses recorded in the eight previous shifts.

4. Seismoacoustic: the result of the shift seismic hazard assessment in the mine obtained
through the seismoacoustic method.

Part 2. Comparison of the pre-processing algorithms. This study normalized the envi-
ronmental impact parameters and the data monitored by ultrasonic omnidirectional sensors,
which then formed a parameter matrix. Before it was classified, the parameter matrix was pre-
processed, and a pretreatment algorithm was used to converge all the parameters into the
range of [-1, 1]. Therefore, three classic algorithms—the BPNN, radial basis function neural
network (RBFNN), and generalization regression neural network (GRNN)—were selected to
pre-process the seismic bump dataset.

BPNN is known as the error backpropagation neural network, which is a typical multilayer
forward neural network. In the network, the signal forwards transmission and the error backs
propagation. Unlike that of the global network, the action function of the RBFNN is localized
and can approximate any nonlinear function. The GRNN is a one-passing learning algorithm,
which approximates any arbitrary function between the input and output vectors, thereby di-
rectly drawing the function estimation from the training data [31].

The experiment was conducted under the same conditions. The experimental hardware
platform was Intel(R) Pentium(R) CPU 2.6 GHz (two CPUs) 4 GB RAM, and the software ex-
perimental platform was Microsoft Windows XP, C language. The three algorithms above were
used to process the standard dataset. The compared items were execution time, running mem-
ory space, and mean squared error; the results are shown in Fig 7.

The comparison of the BPNN and RBFNN in Fig 8 shows that the mean square error and
the memory of the running space have little difference. However, the BPNN uses less time than
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o
@ : PLOS | ONE Composite Network-Based Visualization Method for Risk Level

(c) Four risk levels (d) Six risk levels
Fig 6. Visualization results of different types of deformation risk levels.

doi:10.1371/journal.pone.0127088.9g006

the RBFNN. The most important factor is that the BPNN also has a smaller mean squared
error than the RBFNN and GRNN. Given that it integrates the performance of the three algo-
rithms, BPNN is considered the most suitable algorithm for preprocessing data in this study.

Part 3. Classification algorithm comparison. Three classic algorithms—the Hopfield
neural network, k-nearest neighbor (KNN), and support vector machine (SVM)—were selected
to classify the 160 sets of preprocessed data. The algorithms were evaluated in terms of execu-
tion time, running memory space, and classification accuracy. The classification results are
shown in Fig 8.

The data are classified into two types, as shown in Fig 8. The green part represents seismoa-
coustic = 1, which indicates “lack of hazard.” The red part represents seismoacoustic = 2,
which indicates “hazard.” The result of the Hopfield neural network is more concise and has
better classification performance than other algorithms. A detailed comparison of the results of
the three algorithms is shown in Fig 9.

Comparison of the algortihms for pretreating

the data
a

3.5288 3.5616
3.5

3 2.7410
285)
2
155
1.0025
i 0.6667
0.3421
0
Execution Time Memory Space Mean Squared Error
(Second) (x105KByte)
EBPNN mRBFNN @ GRNN

Fig 7. Comparison of the algorithms for pretreating the data.

doi:10.1371/journal.pone.0127088.g007
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(a) Hopfield

Fig 8. Classification results of the three algorithms.

doi:10.1371/journal.pone.0127088.g008

The comparison of the Hopfield neural network and SVM algorithm shown in Fig 9 shows
that the two algorithms have little difference in terms of running space memory and classifica-
tion accuracy. However, the Hopfield network uses less time than the SVM algorithm. A com-
parison of the Hopfield neural network and KNN algorithm shows that the former has higher
classification accuracy and uses less time than the latter. Given that it integrates the perfor-
mance of the three algorithms, the Hopfield neural network is considered the most suitable
classification algorithm in this study.

Comparison with Existing Techniques

The visualization technologies for safety monitoring are closely connected to measurement sys-
tems. Thus, the proposed method is compared with data processing systems on the basis of
three techniques, namely, photogrammetric, total station, and 3D laser scanning techniques.
These techniques have been widely used for deformation monitoring for the past decade. Spe-
cifically, photogrammetric technique places targets on the gallery vault. Useful information is
then obtained from photographs captured by an optical camera [19]. In total station technique,
an electronic theodolite is integrated with an electronic distance meter to read slope distances
from the instrument to a particular point. Distance is measured by a modulated infrared carrier

Comprison of the classification algorithms

2.5 2.4660

2

1.7278 1.6527

1.5

1 08500 08812 (oais
05 0.2843

0.1388
0
Execution Time Memory Space Classification Accuracy
(Second) (x10°KByte)

B Hopfield @SVM HKNN

Fig 9. Comparison of the classification algorithms.

doi:10.1371/journal.pone.0127088.g009
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Table 3. Comparison of visualization techniques on the basis of typical measurement systems.

Characteristics

Accuracy
Distance
Display speed
Anti-dusting
capability
Need for manual
assistance
Capability to
handle
environmental
parameters
Adaptability in
topography
monitoring

Visualization
results

BHR composite
network visualization
method based on
ultrasonic technique

1.5 mm

Near (< 10 m)
Quick (< 10 s)
Yes (Ultrasound is
insensitive to dust)
No

All environmental
parameters can be
considered in the model.

Universal—for all kinds
of topography

Profile data and risk
levels can be displayed
to help locate the danger
point.

Data processing system based
on photogrammetric technique

0.2 mm

Near (< 10 m)

Quick (< 10 s)

No (Photographic lens should be
kept clean)

Yes

Only 3D coordinate data for
multiple points are considered.
Other environmental factors are
neglected.

The topography must be
illuminated.

Software such as OpenGL is used
to construct the 3D profile. Risk
levels must be displayed via an
additional mechanism.

Data processing system based
on total station technique

1 mm
Far (>1000 m)
Slow (> 10 s)

No (Prism reflector should be kept
clean)

Yes

Only 3D coordinate data for a
single point are considered. Other
environmental factors are
neglected.

The topography must be
illuminated.

Professional software such as
Spectra Precision Survey Pro is
used to satisfy the need for
surveys. Risk levels must be
displayed via an additional
mechanism.

Data processing system
based on 3D laser
scanning technique

2 mm
Far (>1000 m)
Slow (> 60 s)

No (Laser head should be
kept clean)

No

Only point cloud data are
considered. Other
environmental factors are
neglected.

Universal—for all kinds of
topography

Fine 3D construction
profiles can be produced.
Risk levels must be
displayed via an additional
mechanism.

doi:10.1371/journal.pone.0127088.t003

signal that is generated by a small, solid-state emitter within the optical path of the instrument
and is reflected by either a prism reflector or the object under survey [20]. In 3D laser scanning
technique, a 3D laser scanner is employed to scan the surface of the target object to obtain
point clouds of either thousands or millions of coordinates with millimeter accuracy. The 3D
profile can be constructed via data merging [6]. Performance parameters considered for com-
parison include accuracy, distance, display speed, anti-dusting capability, the need for manual
assistance, capability to handle environmental parameters, adaptability in topography moni-
toring, and visualization results (Table 3).

The comparison indicates that although the accuracy and distance of the proposed method
are not ideal, this method has significant potential for use in the monitoring of structural safety
given its quick display speed, anti-dusting capability, the lack of a need for manual assistance,
capability to consider environmental parameters, adaptability in topography monitoring, and
capability to display risk levels.

Conclusion

This study investigated the visualization model of the deformation risk levels of the ultrasonic
omnidirectional array. Multiple environmental parameters were considered. The BPNN and
Hopfield neural network were adopted for pre-processing and classifying the sensor data. The
data processing results were mapped into RGB color space, which visualized the deformation
risk levels of the sensor array. The visualization results facilitate the determination of the pres-
ence and location of danger. Experiments and comparison with other algorithms demonstrate
that the method is characterized by intelligent, dynamic, and real-time features and can there-
fore be used as a universal model for safety monitoring in underground space.
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