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Abstract
The detection of an organism in a given site is widely used as a state variable in many meta-

population and epidemiological studies. However, failure to detect the species does not nec-

essarily mean that it is absent. Assessing detectability is important for occupancy (presence

—absence) surveys; and identifying the factors reducing detectability may help improve sur-

vey precision and efficiency. A method was used to estimate the occupancy status of host

trees colonized by mistletoe seeds of Psittacanthus plagiophyllus as a function of host co-

variates: host size and presence of mistletoe infections on the same or on the nearest neigh-

boring host (the cashew tree Anacardium occidentale). The technique also evaluated the

effect of taking detectability into account for estimating host occupancy by mistletoe seeds.

Individual host trees were surveyed for presence of mistletoe seeds with the aid of two or

three observers to estimate detectability and occupancy. Detectability was, on average,

17% higher in focal-host trees with infected neighbors, while decreased about 23 to 50%

from smallest to largest hosts. The presence of mistletoe plants in the sample tree had negli-

gible effect on detectability. Failure to detect hosts as occupied decreased occupancy by

2.5% on average, with maximum of 10% for large and isolated hosts. The method presented

in this study has potential for use with metapopulation studies of mistletoes, especially those

focusing on the seed stage, but also as improvement of accuracy in occupancy models esti-

mates often used for metapopulation dynamics of tree-dwelling plants in general.

Introduction
Ametapopulation is a group of local populations patchily distributed where migration is possi-
ble at least between some populations [1]. One of the models most used for understanding
metapopulation dynamics is the “incidence function model” (IFM) [2–4], in which the process-
es of colonization and extinction are inferred from spatially explicit data collected on the
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occurrence patterns of organisms in their habitat patches on successive sampling [5]. In this
model, probabilities of colonization and extinction, which are independent for every patch in
each time period [3,6] are modelled as a function of the degree of patch isolation and size, re-
spectively, where colonization is higher for well-connected patches, and extinction is lower for
larger patches [2,3].

Many key applications of metapopulation models were first made in the field of epidemiolo-
gy [7,8]; hosts are analogous to habitat patches that can be occupied by organisms (parasites).
As in metapopulations, in host-parasite models the characteristics of the focal host and of its
neighborhood are more important for determining the probability of its infection than for the
whole host population [9], making the model of parasite transmission similar to the IFM in
such scenarios.

Mistletoes, which are aerial hemiparasitic plants of the Sandalwood order (Santalales), are
excellent model organisms for studying metapopulation dynamics and disease transmission
because of the facilities they offer for testing theoretical predictions through manipulation and
field observation [10–14]. Hosts are habitat patches connected by seed dispersal (migration).
Colonization occurs when the seed adheres and establishes on the host tree, while extinction
occurs through the death of the infecting plants or of the host itself. Many mistletoe species are
dispersed by birds (seed vectors), which remove the fruits from infected trees and deposit the
majority of seeds on tree branches, especially in well-connected, large hosts [15–18], a pattern
similar to that proposed by the IFM.

In pursuit of these model organisms, it is necessary to investigate and quantify a problem
that has been identified for more than a decade by several researchers studying metapopula-
tions—that of false absences—that is, the failure to detect a given species in a habitat patch
when it is, in fact, present [19–22]. This problem may occur because the species is inconspicu-
ous [23,24], or because its abundance is so low that it negatively influences its detection
[25,26]. It is important to take such problems into account because, if species detection is low,
it can lead to underestimates of colonization, resulting in, among others, underestimations of
dispersal distance, and overestimation of extinction rates [27,28].

To take detectability into account, Mackenzie et al. [20,21] proposed a model to estimate
the incidence of a target species using information gathered from repeated-surveys (hereafter
re-survey) conducted at the same site or patch. In this method, occupancy (C) (the probability
of a species being present at a site in a given survey) and detectability (p) (the probability of
species detection at a site given its presence) can be modeled simultaneously using a technique
that allows the inclusion of covariates influencing both parameters.

We used re-surveys of mistletoe seeds on host trees to evaluate the issue of false-absences
and quantify its influence on occupancy estimates. In fact, before conducting this study, we
had already noted detection failures when we misclassified some hosts as occupied by seeds
when, indeed, they were not (RFF, unpublished data). Although recording the detection/non-
detection of mistletoes at sampling sites (i.e., hosts) is less time-consuming than collecting de-
tailed data on absolute or relative abundance within host tree canopies, detection of seeds or of
established mistletoe plants on host trees is not always an easy task. The large size of some host
trees, visual obstruction of parts of host canopy, low abundance of mistletoe seeds within host
crowns, plus the rarity and low conspicuity of some species, may all reduce their detectability.

Here we used the mistletoe Psittacanthus plagiophyllus Eichl. (Loranthaceae) as a model
study organism because, at our study site, it is locally specialized on the cashew tree Anacardium
occidentale L. (Anacardiaceae) [29], which eliminates the influence of different host species af-
fecting detection probabilities. We evaluated three predictions relating to detectability and to oc-
cupancy: (1) detectability of mistletoe seeds is negatively affected by host size, due to the
difficulty of locating mistletoe seeds on larger hosts. For example, it could be easier to detect at
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least one mistletoe seed in a small host tree, than in a bigger tree with the same number of seeds.
In contrast, occupancy increase with host size because of the preference of birds to perch and de-
posit seeds on larger than average hosts [30,31]; (2) detectability of mistletoe seeds is positively
affected by proximity to infected neighbors, the same occurs for occupancy. This is because
hosts with infected neighbors have a higher probability of receiving mistletoe seeds than isolated
ones, increasing detection and occupancy probabilities; (3) previously infected hosts attract bird
seed dispersers more often than non-infected hosts, which, in turn, deposit seeds frequently on
such trees, increasing occupancy. Consequently, detectability of mistletoe seeds should also be
higher on previously parasitized hosts simply because they have more seeds. The study assumed
these mechanisms were operating, but they were not investigated directly.

Finally, we hypothesized that not accounting for detectability would underestimate the occu-
pancy estimates of host trees. To evaluate this, we compared the naïve occupancy estimates ob-
tained using a logistic model fitted to our data, with the occupancy estimates of the best model
we fitted after accounting for detectability. We conclude discussing the issue of detectability not
only for theoretical metapopulation mistletoe studies, but also for monitoring programs of es-
tablished mistletoes and other tree-dwelling plants conducted at larger spatial scales.

Materials and Methods

Study site and species
The study was conducted in a large (10 x 10 km) patch of savanna on the right bank of the Tapa-
jós River, near Alter do Chão (2°31000” S, 54°57002”W), Santarém, Pará, Brazil. Our study spe-
cies, Psittacanthus plagiophyllus, is a shrubby hemiparasite that occurs in savannas of northern
South America [32]. It has large, yellow/orange, hummingbird pollinated flowers, and black, el-
liptical fruits (length = 11.25 mm ± 0.56, width = 8.86 mm ± 0.38, N = 80). Fruits are dispersed
frommid-June to late September mainly by the Plain-crested Elaenia (Elaenia cristata) [17], a
tyrant flycatcher common in Brazilian savannas and cerrados, which ingests the fruits whole and
drops seeds by regurgitation or bill-wiping on tree branches [33]. Seeds are small (length = 10
mm ± 0.7, width = 7.8 mm ± 0.7, N = 100) (Fig 1). Established adult mistletoes can be large
(74 ± 13.4 cm of diameter, N = 11) and are frequently aggregated within host trees.

Repeated detection / non-detection surveys
Twenty-four to 28 cashew trees (total of 130 hosts) were randomly selected in each of five host
populations, and three simultaneous surveys were conducted on the same host trees between 5
and 24 August 2008, when the majority of mistletoe seeds had been dispersed. We chose study
individuals from the cashew tree hosts using a random number table to provide angles between
0 and 259 degrees. We walked 50 m in the direction drawn, and then marked the nearest host
tree with an aluminum tag. All host trees included in the analysis were distant from each other
by at least 50 m: if a drawn point indicated a host shorter than this minimum distance, then a
new point was drawn. All hosts included in the study were georeferenced with a hand-held
GPS. For three populations (80 hosts), two observers, one at a time, climbed host trees and
searched independently for mistletoe seeds. There was no communication between the observ-
ers during and after the searching period, which lasted 3 min (the same sampling effort used
for more than 90% of time-free surveys of mistletoe seeds in this host species, R. Fadini unpub-
lished data). We used a fixed time because the observers could influence one another if they
had a free searching time, in the sense they have a tendency of leaving the tree soon after all
mistletoe seeds are found. Both observers recorded detection or non-detection of mistletoe
seeds on a spreadsheet immediately following the survey. For the remaining two host popula-
tions (50 hosts), there were three observers instead of two. Only RF sampled all populations.
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We chose three site (host) covariates to account for variation in mistletoe detectability and
occupancy: (1) “host size” (crown diameter in meters); (2) presence/absence of infected hosts
with fruit-producing mistletoes within 50 m of focal hosts (hereafter “presence of infected neigh-
bor”); (3) presence/absence of adult, fruit producing mistletoes on the focal host (hereafter “pres-
ence of infection”). Furthermore, because host size is frequently correlated with the abundance
of mistletoe seeds [15, but see 34], more seeds would be “diluted” in a bigger tree and, therefore,
host size “controls” the effect of seed abundance, being a good covariate for detectability.

Statistical analyses
Each host tree that was searched for mistletoe seeds had its own detection/non-detection histo-
ry composed of a sequence of ones (detection) and zeros (non-detection), corresponding to ob-
servations of the same host made by multiple observers for three-minute periods. First, the
probability of a host being occupied or not is described, respectively, asC and (1-C). If the
host is unoccupied, mistletoe seeds were not detected there. If the site is occupied, the mistletoe
seed can be detected with probability p or not detected with probability 1-p. For example, the
detection history hi = 010 is described as: the species is present in this host (at least one “1” in
the history). Therefore, it is present but not detected on the first occasion, detected on the sec-
ond, and present but non-detected on the third. The probability of observing this detection his-
tory can be described as:

Prðhi ¼ 010Þ ¼ cð1� pÞpð1� pÞ
In an extreme case, a given host may have the history Pr (hi = 000). Therefore, the mistletoe
seed may not be present at this host or it may be present but go undetected in the three surveys.
This can be described as:

Prðhi ¼ 000Þ ¼ c
Y3

j¼1

ð1� pÞ þ ð1� cÞ

All these models assume that probabilities are constant across all hosts [represented by p(.)].

Fig 1. Seeds of P. plagiophyllus attached to a branch of A. occidentale (Photo: Leidielly Ghizoni).

doi:10.1371/journal.pone.0127004.g001
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However, probabilities of detection may vary according to host characteristics (covariates) such
as host size [p(host size)], proximity to infected hosts [p(neighbor)], and presence of adult infec-
tions [p(infection)] [35]. We can model this using the logit link function [36], expressing the
probability of a host tree being detected with a mistletoe seed according to β host covariates,
where the subscripts “i” and “j” denotes the individual host and the survey occasion, respectively.

LogitðpijiÞ ¼ b0þ b1xi1þ . . .þ bUxiU

Similarly, we can model the probability of a host tree being occupied according to the same or
different host covariates (as for detection probabilities):

LogitðcÞ ¼ b0þ b1xi1þ . . .þ bUxiU

The product of all detection/non-detection histories at all hosts generated a likelihood model
which is maximized to obtain maximum likelihood estimates of p (detectability) (detectability
term) andC (occupancy) (occupancy term). We constructed thirty-six models performing a
full combination of covariates in the occupancy and detectability, except those containing both
“host size” and “presence of infection” in the same term because of multicolinearity problems.
We pooled all sites for analysis because we wanted to model occupancy and detectability for
focal hosts rather than for study sites. This is in accordance with IFM [2] as well as with more
spatially explicit epidemiological models [9], where the state of a given patch or host is modeled
as a function of their own characteristics and neighborhoods. Comparison among models was
made using a parsimonious penalized likelihood function ranked by the AIC [37] provided by
the software Presence 2.0 [38]. Models with AIC differences less than 2 have substantial sup-
port, 4 to 7 have less support, and greater than 10 have no support. The ordering criteria of
models is based on the relative AIC corrected for small samples (ΔAICc). The model averaging
(W) is used when the best models are not separated by a difference of AIC larger than 2. Raw re-
sults were expressed as means with standard deviations, except on graphs that represented
means with confidence intervals.

Ethics statement and public repository data
No specific permissions were required for this study. Field work did not involve endangered or
protected species.

Results
The data underlying the statistical analyses in the present study can be found in (S1 Dataset).

Average crown diameter of focal host-trees was 5.3 ± 2.5 m (height: 5 ± 1.24 m). Sixty-per-
cent (77 hosts) did not have infected neighbors, while only 9% were infected by fruiting mistle-
toes. Two of the thirty-six models were well supported, but the best (W = 49%) included “host
size” and “presence of infected neighbor” in both terms (Table 1). As expected, occupancy was
higher for larger hosts, especially for those with infected neighbors (Fig 2A). Presence of a fruit-
ing mistletoe on the focal host, by contrast, was not an important model covariate for occupan-
cy, nor for detectability (but note above the small proportion of hosts infected by fruiting
mistletoes). Overall detectability of seeds (p) was high (i.e., [p(.)]) = 0.78; CI = 0.7–0.84). De-
tectability was, on average, 17% higher in focal-host trees with infected neighbors, while de-
creased about 23 to 50% from smallest to largest hosts (Fig 2B). Failure to detect seeds on host
trees underestimated occupancy by an average of 2.5%. Occupancy was well predicted for
small hosts (0.9 to 5 m of crown diameter), but was underestimated for the larger ones, espe-
cially for those without infected neighbors (~10%) (Fig 3).
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Discussion
This is the first study to estimate occupancy of host trees by mistletoe seeds using detectability
information gathered from re-surveys. We show that we failed to determine the state of hosts
as occupied by mistletoe seeds in several occasions (i.e. detectability is less than one) and, there-
fore, we warn against the use of single visits. Although many studies collect quantitative infor-
mation about host colonization by mistletoe seeds instead of occurrence data [10,15,17,30,39],
we urge that detectability should not be neglected. Due to the pervasive, aggregated pattern of
the seed shadow in mistletoes (where the majority of host trees receive very few seeds), not con-
sidering detectability could substantially underestimate host occupancy.

An intuitive way to compensate for potentially low detection of mistletoe seeds in metapo-
pulation studies would be to increase the search time during single visits conducted to host
trees. However, no matter how long is this, without a measure of uncertainty provided by prob-
abilistic models, an observer could never know how precise and accurate are the estimates of
occupancy [40]. Therefore, in order to increase precision and accuracy of parameter estimates

Table 1. Summary of model selection for predicting both the occupancy and detectability of hosts (Anacardium occidentale) by seeds of the mis-
tletoe Psittacanthus plagiophyllus.

Model ΔAICc W -2l K

Ψ (size+neighborhood), p (size+neighborhood) 320.03 49% 307.35 6

Ψ (size+neighborhood), p (size) 322.03 18% 311.55 5

Ψ (size+neighborhood), p (infection+neighborhood) 324.12 6.3% 311.44 6

Ψ (size+neighborhood), p (size) 324.31 5.7% 313.83 5

Ψ (neighborhood), p (size+neighborhood) 324.59 5% 314.11 5

Models were organized in decreasing order of importance. Only five of the 36 models and their respective resulting values are presented.

doi:10.1371/journal.pone.0127004.t001

Fig 2. Occupancy (A) and detection probability (B) of mistletoe seeds of Psittacanthus plagiophyllus
deposited on the host Anacardium occidentale according to proximity to infected hosts host size
(host crown diameter). Central markers represent means, and lines represent 95% confidence intervals.
Both graphs were traced with estimates from the modelΨ (size+neighborhood), p (size+neighborhood).

doi:10.1371/journal.pone.0127004.g002
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in mistletoe metapopulation studies, we suggest increasing the number of independent visits
conducted to the same host trees rather than expanding the time spent searching for seeds.

Our best model indicates that both occupancy and detectability varied as function of two
main host covariates: size and proximity to other infected hosts. Host size affects occupancy
positively probably because of the preference of bird dispersers for perching on branches of
larger than average trees after feeding on mistletoe fruits [41]. On the other hand, this affects
detectability negatively, as a larger host ‘dilutes’ the chance of finding seeds that are present. As
predicted, host trees located close to other infected individuals had higher occupancy and de-
tection probabilities due to the limited seed dispersal distances covered by birds after feeding
on fruits, which concentrates most seeds in the neighborhood of infected hosts [18]. Finally,
presence of adult mistletoes on focal trees was a poor predictor of host occupancy and detect-
ability. This is because Elaenia cristata after consuming Psittacanthus fruits in one tree retain
seeds in or on their bills until they land in another tree [17,39], therefore not increasing the
chance of seed deposition on previously infected hosts.

The most important aspect to consider when dealing with detectability in metapopulation,
as well as in long-term monitoring studies, is how failure to detect a species affects site occu-
pancy estimates. In our study, this was low on average (~2.5%). However, it increases up to
10% for large hosts without infected neighbors. In an analysis of immediate relevance to the
current study, Moilanen [20] showed that 10% of false-absences may influence considerably
the results and conclusions of metapopulation dynamics modeled as a Markov chain process.
He showed that failing to detect organisms in large patches, in contrast with a more accurate
detection in smaller ones, could cause a strong overestimation of extinction rates for the former
in comparison with the latter. Further, failing to detect organisms in isolated patches, followed
by in subsequent seasons, can also cause overestimation of species colonization ability. In our
case, if we had been interested in using a Markov chain to model metapopulation processes or
mistletoe transmission from its earliest stages [13], we would have obtained a higher rate of
production of new infections for the [(t+1)] sampling occasion because of false-absences from
hosts occupied by seeds in the previous sampling time [(t)].

Fig 3. Comparison of occupancy estimates of seeds of Psittacanthus plagiophyllus between twomodels: one using naïve estimates fitted with a
logistic regression (logit (p) = 0.251 + 0.18 (host crown) - 1.64(neighbor)), and other using occupancy estimates accounted for detectability (first
model of Table 1).

doi:10.1371/journal.pone.0127004.g003
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Perspectives and improvements for future metapopulation and
monitoring studies of mistletoes and other tree-dwelling plants
Suppose we were not interested in modeling mistletoe metapopulations from the beginning of
the process of seed transmission, but only in successive sampling of established mistletoes on
the focal host trees [e.g., 12]. Even in this case, our sampling would not be free of false-ab-
sences. In our experience based on several years of sampling mistletoes on their host trees
[17,29,42], established mistletoe infections can be missed numerous times. Indeed, we also
sampled mistletoe infections using presence-absence on host trees and found a detectability of
0.83 (CI = 0.75–0.89). However, we decided to remove this from this study because size of in-
fections seems to be more important for detection than host tree covariates. In this sense, if
marking mistletoes on host trees is possible, we still suggest using re-surveys to separate the
process of mortality (extinction for a simple metapopulation model) and recruitment (coloni-
zation) from the detectability itself, especially for small, inconspicuous life-states of plants [23].
If appropriate to the research question, quantitative datasets could be converted to occupancy
after sampling [e.g., 12].

Some studies besides the current one have already investigated empirically how host tree
characteristics influence detection of mistletoe plants. For example, Geils and Mathiasen [43]
first rated a stand of trees for mistletoe presence, and then conducted a detailed sampling of
felled trees, showing that is difficult to rate infection intensity for both larger trees in dense co-
niferous forests, as well as small trees with short crowns. In contrast, Shaw et al. [44] used a
canopy tree crane facility to evaluate the accuracy of ground-based surveys of a group of mistle-
toes in a sample of coniferous trees. They concluded that it is more difficult to rate trees in-
fected with small mistletoe plants concentrated high above the ground through dense
vegetation, than to assess presence of large mistletoes, or sample trees with unobstructed
crowns. Many monitoring programs in the United States and Canada, such as the Forest
Health Monitoring Program and the Canadian Forest Insect and Disease Survey, use presence-
absence data to detect general trends of mistletoe spread, and design strategies to conduct pre-
ventive or corrective management [see references in 45]. Although these monitoring programs
use careful inspection to reduce detection error, the single-survey data commonly used to per-
form comparisons among trees, plots or stands may be unreliable if detectability varies between
sites, years or observers. Accordingly, using re-surveys to account for detectability allows the
investigator to determine the degree of precision of occupancy estimates, increasing integration
reliability when data has come from several sources such as plots, aerial surveys, aerial photog-
raphy, road surveys, and remove sensing [46–48].

Besides mistletoes, several other studies proposed to use other tree-dwelling plants as
model organisms for exploring metapopulation dynamics [49–52]. Indeed, failure to detect
dispersal propagules or adult plants on host plants may not be an exclusive property of mistle-
toes. However, to our knowledge, only Snall et al. [53] gave a brief mention of detectability in
their work (“spore capsules [of Orthotricum obtusifolium—an epiphytic bryophyte] are less
conspicuous and hard to spot from the ground”, our square brackets), though they did not
quantify the effect. We recommend using re-surveys to account for detectability in all plants
for which a metapopulation approach has been applied. Because conducting repeated surveys
on the same host trees maybe time-consuming, we further suggest identifying detectability
problems using host or site covariates first, and then increasing survey effort for those host
types (or sites) with poor detectability (e.g. larger and isolated trees in our study). Finally, we
recommend that sampling is conducting independently at different time-periods for different
observers; permitting the use of time-free surveys instead of the time-fixed technique that we
have applied here.
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S1 Dataset. This file includes the raw data underlying the statistical analyses in the manu-
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