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Abstract

Airborne microorganisms have significant effects on human health, and children are more
vulnerable to pathogens and allergens than adults. However, little is known about the micro-
bial communities in the air of childcare facilities. Here, we analyzed the bacterial and fungal
communities in 50 air samples collected from five daycare centers and five elementary
schools located in Seoul, Korea using culture-independent high-throughput pyrosequen-
cing. The microbial communities contained a wide variety of taxa not previously identified in
child daycare centers and schools. Moreover, the dominant species differed from those re-
ported in previous studies using culture-dependent methods. The well-known fungi de-
tected in previous culture-based studies (Alternaria, Aspergillus, Penicillium, and
Cladosporium) represented less than 12% of the total sequence reads. The composition of
the fungal and bacterial communities in the indoor air differed greatly with regard to the
source of the microorganisms. The bacterial community in the indoor air appeared to con-
tain diverse bacteria associated with both humans and the outside environment. In contrast,
the fungal community was largely derived from the surrounding outdoor environment and
not from human activity. The profile of the microorganisms in bioaerosols identified in this
study provides the fundamental knowledge needed to develop public health policies regard-
ing the monitoring and management of indoor air quality.

Introduction

There are numerous microorganisms in the air we breathe; the number of bacterial cells and
fungal spores present in air is estimated to be 10*m™ [1,2] and ~10°~10*m™ [3-5], respective-
ly. Although the atmosphere is an extreme environment for microorganisms because of high
levels of solar radiation, low moisture, and low nutrient content, many of these airborne mi-
crobes are metabolically active [6,7]. Both the metabolically active and inactive airborne
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microbes have clinically important effects on human health. For example, exposure to airborne
fungal allergens such as hyphae, spores, and fungal fragments can cause asthma, rhinitis, atopic
dermatitis, and allergic diseases [8-12]. Young children have higher susceptibility to bioaero-
sols than adults; hence, they are more vulnerable than adults to the diseases caused by microor-
ganisms in bioaerosols. In addition, they breathe more air than adults (per kilogram of body
weight), which may result in a higher daily intake of the pathogens or allergens present in air
[13,14]. In Korea, children aged 4-9 years generally attend daycare centers or elementary
schools for one quarter of each day. Therefore, determining the components of the bioaerosols
in these spaces is important for improving the public health of children.

For a long time, culture-based microbiological methods have been used to investigate air-
borne microbial communities, and these methods have enabled direct observation of airborne
bacteria and fungi. Culture-based studies have shown that most airborne bacteria are typically
gram-positive bacteria belonging to the genera Staphylococcus, Corynebacterium, Bacillus, and
Micrococcus [15-21]. However, some gram-negative bacteria, such as Acinetobacter, Moraxella,
Pantoea, and Pseudomonas were also isolated at lower frequencies [19]. The dominant airborne
fungi detected belonged to the genera Aspergillus, Penicillium, Cladosporium, and Alternaria
[15,22,23]. However, culture-based studies can only provide an estimate of the true diversity of
the microbial communities in air because most (>>99%) microorganisms in the environment
are recalcitrant to culturing [24,25]. In fact, the composition of the airborne microbial commu-
nities determined by culture-dependent and culture-independent 16S rRNA gene sequencing
differ considerably [26,27].

Since the 1990s, new molecular taxonomic techniques for fungi have been introduced, and
DNA sequence databases have been developed to facilitate fungal identification. These molecu-
lar identification tools have provided new insights into fungal ecology. In recent culture-inde-
pendent studies of airborne fungi, the ITS region was chosen as a target molecular marker [28-
30]. Yamamoto et al. [31] identified 558 different genera in outdoor air samples by analyzing
the entire ITS region. Fréhlich-Nowoisky et al. [32] used DNA sequence analysis to efficiently
detect and unambiguously characterize fungi in atmospheric aerosol samples. The ITS region
is currently the most phylogenetically informative sequence for fungal identification, especially
at lower taxonomic levels.

In recent years, metagenomic approaches have provided deeper insights into airborne mi-
crobial diversity in different environments, such as urban environments [31,33-36], subway
systems [37,38], museums [39], buildings [40,41], and air particles [32,42]. However, the
bioaerosols in children’s daytime spaces have not been extensively examined in metagenomic
studies. Thus, we investigated the diversity of microorganisms present in the air of education
facilities for children in Seoul, Korea using 454 pyrosequencing. The bacterial and fungal popu-
lations in 50 indoor and outdoor air samples from five daycare centers and five elementary
schools were analyzed. The purpose of this study was (1) to characterize the microbial compo-
sition of the air at locations frequented by children, and (2) to examine the association between
indoor and outdoor bioaerosols. The results of this study will improve our understanding of
airborne microorganisms and provide a rationale for developing public health policies regard-
ing the monitoring and management of indoor air quality.

Materials and Methods
Sample collection

Indoor and outdoor air samples were collected at five daycare centers (sites A to E) and five ele-
mentary schools (sites F to J) located in Seoul, Korea from August 19 to October 24, 2013. The
presidents of the elementary schools and the directors of the daycare centers were provided
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official documents from the Research and Business Foundation of Korea University requesting
their cooperation, and they gave permission to conduct the study at each site. The results of
this study were communicated to the daycare centers and elementary schools. Information
about the investigated daycare centers and schools is shown in Table 1. The facilities were se-
lected because the buildings are widely distributed in Seoul and are nearly equidistant to each
other. The evaluated daycare centers and schools varied in building construction, size, sur-
rounding environment, and the number of children served. Ventilation was provided naturally
through windows. The children performed their normal activities during the measurements.
Temperature and relative humidity were monitored during the sampling periods. The microbi-
ological sampling cycle was of 10 h (from 8 am to 6 pm). To obtain duplicate or triplicate sam-
ples from the same site, the sampling sessions were conducted for 2 subsequent days (24 h
periods) for the daycare centers and 3 subsequent days for the elementary schools. Samples
were obtained using an air sampler equipped with Millipore cassettes (47 mm diameter) with
sterile mixed cellulose ester filters (47 mm; 0.45 um; Millipore). Although microsized

(<0.45 pm) bacteria could pass though the 0.45 pm pores, we chose this filter based on the re-
sults of previous studies [36,43,44] and initial testing, in which we verified an increase in bacte-
rial mass by agglomeration of abiotic or biotic particles on the filter membrane during
sampling. The air sampler was operated at an airflow rate of 24 L/min, which was maintained
by a vacuum pump (BMW-200; Total Eng) and verified with a calibrator (TSI-4045 Mass
Flowmeter; TSI) during each 24-h measurement. For indoor air measurement, the air sampler
cassette was fixed on a tripod 1.5 m above the floor in the rear of the classroom. The pumps for
the indoor air samplers were placed inside noise-insulated enclosures to reduce the noise expo-
sure of the occupants. The outdoor air measurements were obtained approximately 1.5 m
above the ground outside the building, avoiding areas traversed by people. Before sampling,
the empty sampling cassettes were sterilized in an autoclave and then dried in a drying oven.
The samples were transported directly to the laboratory under chilled conditions (4°C). Then,
the filters were placed in sterile plastic tubes and frozen at -20°C until DNA extraction.

DNA extraction, PCR, and pyrosequencing

DNA was extracted directly from each air sampling filter using a commercial soil DNA isola-
tion kit (MP Biomedicals). The extracted DNA was amplified using primers targeting the V1-
V3 regions of the prokaryotic 16S rRNA gene as previously described [45]. The primers used
for bacteria were V1-9F (5'-CCTATCCCCTGTGTGCCTTGGCAGTC-TCAG-AC-GAGTTT
GATCMTGGCTCAG-3' [the underlined sequence is the gene-specific region]) and V3-541R
(5'-CCATCTCATCCCTGCGTGTCTCCGAC-TCAG-barcode-AC-WTTACCGCGGC
TGCTGG-3') [45]. The ITS regions of the fungal rRNA operon were amplified using fusion
primers ITS-3F (5-CCTATCCCCTGTGTGCCTTGGCAGTC-TCAG-CA-CATCGATGAA
GAACGCAGC-3') and ITS-4R (5'-CCATCTCATCCCTGCGTGTCTCCGAC-TCAG-bar-
code-GC-TCCTCCGCTTATTGATATGC-3'). The fusion primers contained 454-specific
adapters, keys, linkers, barcodes, and universal fungal ITS priming sequences [46]. The barcode
and primer sequences are available at http://www.ezbiocloud.net/resource/M1001. The PCR
for both bacteria and fungi was performed under the following cycling conditions: an initial de-
naturation step at 94°C for 5 min, followed by 10 cycles of denaturation at 94°C for 30 s, an-
nealing at 60°C to 55°C (with a touchdown program) for 45 s, and elongation at 72°C for 90 s.
This was followed by an additional 20 cycles of denaturation at 94°C for 30 s, annealing at 55°C
for 45 s, and elongation at 72°C for 90 s, and a final elongation step at 72°C for 5 min. The sizes
of the amplicons were 500 bp-700 bp for bacteria and 600 bp-800 bp for fungi, respectively.
The amplified products were purified using resin columns (Qiagen), and 1 ug of the PCR
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Table 1. Characteristics of the investigated child daycare centers and elementary schools.
Site Sampling date Location Age of occupants Mean temp. (°C) Mean humidity (%)

Indoor Outdoor Indoor Outdoor

Daycare centers A 2013.08.19~20 127°1°11.8"E,37°37°39.6"N 5 26.7 28.9 56.8 57.6
B 2013.08.21~22 127°1°40.5"E,37°39°32.9'N 5 28.8 20.4 47.7 53.3
C 2013.08.26~27 127°0'50.9°E,37°39°15.1"N ) 30.2 29.5 452 46.0
D 2013.08.28~29 127°7°13.7°E,37°32'7.3'N 5 29.6 28.3 56.5 66.4
E 2013.09.30~01 127°2'36.1°E,37°40°43.0'N 5 24.0 241 63.3 60.0
Elementary schools F 2013.09.02~04 127°3'58.1"E,37°402.4'N 8 28.4 24.3 45.9 49.5
G 2013.09.09~11 127°2'6.5°E,37°35°41.2'N 8 26.6 241 59.1 70.6
H 2013.09.24~26 127°0'54.7°E,37°342.2'N 8 26.7 23.7 45.6 52.4
| 2013.10.14~16 126°52°55.4E,37°34°47.3'N 9 26.0 16.9 38.1 59.8
J 2013.10.21~23 126°57°6.8"E,37°33°32.7'N 8 23.1 20.5 37.9 41.5

doi:10.1371/journal.pone.0126960.t001

product from each sample was mixed and purified using the AMPure bead kit (Agencourt Bio-
science). The DNA was sequenced unidirectionally from universal primers (518R for bacteria
and ITS-4R for fungi) at Chunlab, Inc. with a Roche/454 GS Junior system according to the
manufacturer’s instructions. The sequencing data from this study were deposited in the Short
Read Archive under accession number SRP043178 (Bioproject accession number
PRJNA252641).

Processing of sequencing data

The pyrosequencing data for the 16S rRNA gene sequences was processed through Java-based
multi-step bioinformatics pipelines as described elsewhere [45,47-49]. The unidirectional se-
quencing reads from different samples were separated by their unique barcodes. To filter low
quality sequences, reads <300 bp or with an average quality score <25 were omitted. Then the
barcode, linker, and PCR primer sequences were removed from both sides of the reads using
pairwise sequence alignment and the hmm-search program in HMMER 3.0 [50]. The trimmed
sequencing reads were assembled into sets of highly similar sequences using a TBC clustering
algorithm with a 97% cutoft [51]. While clustering, homopolymeric errors were ignored by al-
lowing a mismatch error of up to 2 bp, which was based on the error rate of 454 sequencing
(0.5%). Representative sequences in clusters of trimmed sequences were chosen for identifica-
tion. Singletons were considered as individual OTUs. The representative sequences and single-
tons were assigned to taxonomic positions according to the highest pairwise similarity among
the top five BLASTN hits against the EzTaxon-e database [52]. Sequences that showed no
match in a BLASTN search (expectation value of >e™°) against the EzTaxon-e database were
considered to be non-target sequences and were ignored. To calculate the nucleotide sequence
similarity between the query and the candidate species, Myers and Miller global pairwise align-
ment [53] was used along with CLUSTAL [54]. Chimeric sequences were detected by UCHIME
[55] and were eliminated from further processing.

To analyze the fungal sequences, the sequencing reads were processed by Fungal ITS Extrac-
tor [56], which uses a profile hidden Markov model to obtain pure ITS sequences. The ex-
tracted ITS sequences were filtered and denoised using the same pipeline used for the bacterial
sequence analysis, except that the clustering was not performed. Individual reads were sub-
jected to a BLASTN search against the UNITE (https://unite.ut.ee/) and EzFungi (http://www.
ezbiocloud.net/ezfungi) databases. Sequences that showed no match in the BLASTN search
(expectation value of >e™°) were considered to be non-target sequences and were ignored.
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Statistical analyses

To avoid potential bias caused by different sequencing depths, samples with more than 3,000
reads were rarefied to a depth of 3,000 reads (2,000 reads for fungal sequences) for subsequent
analysis. The species richness (rarefaction curves) and diversity indices (OTUs richness, Chaol
richness [57], and Shannon diversity [58,59]) were calculated using the rRNA Database Proj-
ect’s pyrosequencing pipeline (http://pyro.cme.msu.edu/) using the CLcommunity program
(http://www.chunlab.com/software_clcommunity_about). The diversity measures were calcu-
lated by using a TBC clustering algorithm, and the cutoff value for assigning a sequence to a
species-level OTU was >97% similarity. Source tracking using CLcommunity software was
performed to determine the proportion of the communities that originated from human
sources. The percentage of the sequencing reads that were shared between a sample community
and a reference human microbiome was calculated. The overall phylogenetic distance between
each pair of communities was estimated using Fast UniFrac analysis (29) in the CLcommunity
program. In brief, sequences were first identified at the species level using a similarity-based
identification method with the EzTaxon-e or EzFungi database. The taxonomic assignments
were applied to a reference phylogenetic tree backbone constructed from the EzTaxon-e or
EzFungi taxonomic structure. Sequences that could not be assigned to known taxa were consid-
ered to belong to different species. Using the reference tree with species abundance values, a
weighted Fast UniFrac distance was calculated for the samples. The resultant distance matrix
was then used to generate an ordination diagram using principal coordinate analysis (PCoA)
in the R program (http://www.r-project.org/). For fungal communities, Bray-Curtis dissimilari-
ty-based PCA analysis was also performed using the genera abundance table.

To compare the microbial community structures based on categorical metadata, samples
were pooled into binds (daycare/elementary school or indoor/outdoor), and statistical signifi-
cance tests were performed using the R program. Differences in diversity indices, depending
on categorical metadata, were evaluated by ANOSIM using the Wilcoxon t-test. The signifi-
cance of differences in the microbial profiles (the PCoA vectors from UniFrac distance analy-
sis) according to categorical metadata was determined using Wilcoxon ¢-test on the x- and y-
coordinates. The difference in species abundance, depending on categorical metadata, was de-
termined using Hotelling’s t-test, and multiple testing problems were adjusted with false dis-
covery rate correction [60]. The correlation between environmental variables (temperature or
humidity) and microbial community was evaluated using linear regression analysis.

Results
Overview of the microbial diversity in aerosols

Fifty samples were collected from the indoor and outdoor air of five daycare centers (sites A to
E) and five elementary schools (sites F to J) (Table 1). The bacterial and fungal communities in
all the samples were successfully characterized (S1 Table). Pyrosequencing of bacterial 16S
rRNA gene amplicons resulted in 254,771 valid reads (average length, 458 nt) for the 50 air
samples (average, 5,095 reads/sample). We observed an average of 1,440 bacterial operational
taxonomic units (OTUs) for each sample (range, 144-5,027). The Chaol estimator of species
richness ranged from 173 to 6,599 (average, 1,788). The observed OTU richness of the indoor
and outdoor samples did not differ significantly (Wilcoxon t-test). Bacterial community diver-
sity, as estimated by the Shannon diversity index, between indoors and outdoors or between
daycare centers and elementary schools did not differ significantly.

Pyrosequencing of fungal ITS amplicons resulted in 195,092 valid reads (average length, 339
nt) for the 50 air samples (average, 3,902 reads/sample; S1 Table). Fungal richness and diversity
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were estimated based on the OTUs with 97% nucleotide sequence similarity. The number of
OTUs ranged from 149 to 697 for each sample (average, 390). The Chaol estimator of species
richness ranged from 292 to 1,155 depending on the sample (average, 629), indicating that ap-
proximately 1.61-fold more fungal OTUs may have been present in the collected air samples
than were actually observed in this study. The observed OTU richness and the fungal commu-
nity diversity, as estimated by Shannon diversity index, did not differ between the indoors and
outdoors or between the daycare centers and elementary schools.

In the rarefaction analyses of bacterial or fungal reads, although the gradients of the collec-
tor’s curves decreased with increasing numbers of sequences, the number of OTUs still in-
creased even at the highest number of sequences samples, indicating the high bacterial
diversity in tested samples (data not shown).

Community structure dynamics

The bacterial composition of the indoor samples was generally different from that of the out-
door samples. In the Fast-UniFrac distance-based PCoA analysis, the indoor and outdoor sam-
ples formed distinct clusters (Fig 1A; Wilcoxon ¢-test, p < 0.0000 and p = 0.0022 for the x-
coordinates and y-coordinates, respectively). A few exceptional cases were also observed, such
as at sites J, G, and F. Although the J-Out samples were from outdoor air, they contained a
large proportion of human-associated bacteria, including species belonging to the genera Mi-
crococcus, Paracoccus, and Staphylococcus. The G-In samples (from indoor air) contained a
high proportion of Actinobacteria, which are usually abundant in outdoor air. Significant dif-
ferences between the F-out samples and other outdoor samples were driven by the idiosyncrat-
ic abundance of bacteria belonging to the genera Streptomyces, Pseudonocardia, and
Nocardiopsis.

In addition, differences were also observed between the indoor bacterial communities in
daycare centers and elementary schools (p = 0.0001 [x-coordinates] and p = 0.8918 [y-coordi-
nates]). The bacterial communities outside of daycare centers and elementary schools did
not differ.

In contrast to the bacterial community, the fungal community composition in the indoor
and outdoor air did not differ. This was evident in both the EzFungi-based UniFrac analysis
and the UNITE-based Bray-Curtis dissimilarity analysis (S1 Fig). The air samples tended to
cluster according to sampling site, regardless of whether they were of indoor or outdoor origin
(Fig 1B). For example, the indoor and outdoor samples from the J3 site were very similar
(upper left side of the ordination graph). This result indicates that the fungal communities of
the indoor air reflected those of the outdoor air; therefore, human activity had little influence
on the indoor fungal composition.

The effect of temperature and relative humidity on the abundance of specific microbial taxa
was evaluated using regression analyses; however, no direct correlation was observed. In addi-
tion, the overall bacterial community structure (PCoA coordinates) was not linked to environ-
mental variables. This may be because the duration of sampling was as long as 10 h, and the
samplings were restricted to the same city over a short period of time.

Bacterial community composition

In the outdoor and indoor air, 38 and 32 bacterial phyla were detected, respectively. Most se-
quences (60-96.3%) were assigned to 3 dominant phyla, namely, Actinobacteria (37% indoor,
35% outdoor), Proteobacteria (34% indoor, 33% outdoor), and Firmicutes (18% indoor, 15%
outdoor). The phyla Cyanobacteria, Bacteroidetes, Chloroflexi, Acidobacteria, and Deinococcus-
Thermus made minor contributions (<5% on average) to the overall population. Other phyla

PLOS ONE | DOI:10.1371/journal.pone.0126960 May 28, 2015 6/17



@’PLOS ‘ ONE

Bioaerosol in Childcare Facilities

(A) Bacteria

(B) Fungi

A
3 F2 3 A
o S “F1
A N
F1 o
8 ] S
S A
F3 S
—_ —~ ©
S R
~ S —
5 © < 3
A =
N N
O . O
& 84 &3
S S
202 &
o . 3vY 7 P A
o e . AgaJ1 T
S %® B v H2
A2 Lo HI o
SECUER% S
S| El1Fh2 “B1® "t B1-
T I I [ I I [ I I I
-0.04 -0.02 0.00 -0.04 -002 000 002 004 0.6

PC1 (25.2%)

PC1 (26.8%)
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doi:10.1371/journal.pone.0126960.g001

contributed less than 1% (on average) of the total sequences. Only a few sequences fell into can-
didate phyla (e.g., TM7, BRC1, and OD1; <1% of each sample).

At the generic level, 2,537 bacterial genera were detected in the indoor and outdoor samples
of this study. The distributions of the most prominent bacterial genera (>1.2% of the total bac-
teria) in the 50 air samples are shown in Fig 2. The bacterial genera at >1.2% abundance ac-
counted for 50.0% and 41.3% of the bacteria in the indoor and outdoor samples, respectively.
Of the bacterial genera identified in the indoor air samples, the genus Micrococcus was the
most abundant (13.2%), followed by Paracoccus (5.2%), Staphylococcus (4.6%), and Enhydro-
bacter (4.3%; S2 Table).

The composition of the dominant bacteria in the indoor air clearly differed from that in the
outdoor air. The indoor air samples contained a greater number of well-documented human-
associated bacteria than the outdoor air; Micrococcus (13.72% indoor, 3.3% outdoor;

p < 0.0001), Staphylococcus (4.2% indoor, 1.3% outdoor; p < 0.0001), Streptococcus (4.2% in-
door, 0.2% outdoor; p < 0.0001), Corynebacterium (3.3% indoor, 1.7% outdoor; p = 0.0008),
and Propionibacterium (1% indoor, 0.3% outdoor; p = 0.0006; S2 Fig).

In contrast, in the outdoor samples, several genera commonly found in soil and water were
generally abundant, Methylobacterium (3.9%), Streptomyces (3.5%), Pseudonocardia (2.8%),
Sphingomonas (2.6%), and Bacillus (2.5%; S2 Table). The composition of the abundant bacteri-
al genera in the outdoor air samples was highly variable. For example, the most common genus
varied between the outdoor samples: Bacillus (12.1%) in D2-Out, Sphingomonas (7.2%) in
E1-Out, Pseudonocardia (20.83%) in F1-Out, and Methylobacterium (12.2%) in H1-Out.
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Because the indoor air samples from daycare centers and elementary schools also differenti-
ated on the PCoA plot, the abundance of the dominant bacteria was compared. The genera
Paracoccus (8.1% daycare centers, 3.4% elementary schools; p = 0.0001), Streptococcus (5.7%,
2.9%; p = 0.0313), and Bacillus (2.2%, 0.95%; p = 0.0049) were more abundant in daycare cen-
ters than in elementary schools.

Fungal community composition

Based on the EzFungi database, most ITS reads belonged to Basidiomycota (73.5% indoor,
59.8% outdoor) and Ascomycota (23.5% indoor, 35.1% outdoor; Fig 3). A very low proportion
of Chytridiomycota (0% indoor, 0.001% outdoor) and Glomeromycota (0.001% indoor, 0% out-
door) was detected. The rest of the identified sequences belonged to unclassified fungi that
could not be attributed to a phylum.

The airborne Ascomycota encompassed three major fungal classes, namely Dothideomycetes
(10.3% indoor, 15.2% outdoor), Eurotiomycetes (7.2% indoor, 8.8% outdoor), and Sordariomy-
cetes (4.5% indoor, 8.8% outdoor; Fig 3). Depending on the sample, 0.2% to 57.7% of the reads
could not be attributed to a class and were regarded as unidentified sequences. Dothideomy-
cetes, which includes genera associated with allergenic fungi such as Alternaria, Epicoccum,
Curvularia, and Cladosporium, comprised almost half of the Ascomycota (10.0-62.5%; average,
44%). Eurotiomycetes, which includes Aspergillus and Penicillium, accounted for 28% and 24%
of the Ascomycota sequences in the indoor and outdoor air, respectively. In contrast, the major-
ity of detected Basidiomycota species (>95%) belonged to a single class, Agaricomycetes. These
fungi accounted for 69.5% of the indoor samples and 56.9% of the outdoor samples.
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Fig 3. Fungi in indoor and outdoor air identified at the phylum and class levels. The inner circles indicate the composition of fungal reads at the phylum
level, and the outer circles indicate the composition of the fungal community at the class level.

doi:10.1371/journal.pone.0126960.9003

Hyphodontia and Thanatephorus were the most common fungal genera in the indoor and
outdoor air samples (S3 Table). Human skin-associated fungi, such as species belonging to the
genus Malassezia, were detected in indoor air samples but were nearly absent from the outdoor
air samples. Many different types of fungi, including mushrooms (e.g., Agaricomycetes), plant
pathogens, wood-rotting fungi, and molds, were identified in these air samples.

The relative abundance of four representative allergic fungi, namely Aspergillus, Alternaria,
Cladosporium, and Penicillium, was calculated (Fig 4). The abundance of Aspergillus (5.0% in-
door; 5.2% outdoor) and Cladosporium (2.7% indoor; 2.0% outdoor) did not differ between the
indoor and outdoor air. However, the abundance of Alternaria (1.3% indoor; 3.2% outdoor)
showed a difference (p = 0.0033), and was 2.4 times more abundant in outdoor air than in in-
door air. Penicillium (1.1% indoor; 1.9% outdoor) was also more abundant (1.8 times;

p = 0.0036) in outdoor air than in indoor air.

Because fungal ITS identification varies depending on the database used, the ITS reads ob-
tained in this study were also analyzed by BLAST searches against the UNITE database. Based
on the UNITE database, 0.1-66.8% of the ITS reads were identified as uncultured fungi. The
fungal genera highly represented in EzFungi were similarly observed in the UNITE database,
although their abundances differed (S3 Table). Because the two databases did not yield conflict-
ing results, EzFungi-based taxon composition was used for overall analyses.

Identification of bacterial species in bioaerosols that are shared with the
human microbiome

To identify the bacterial species that originated from humans, the bacterial communities ob-
tained in this study were compared with a previously reported human microbiome. The skin,
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Fig 4. Relative abundance of four allergenic fungi in indoor and outdoor air samples. The solid black
lines represent the medians, and the circles are outliers. Bars denote the minimum and maximum values
excluding the outliers.

doi:10.1371/journal.pone.0126960.g004

airways, gastrointestinal tract, oral, and urogenital tract microbiome data reported by Costello
et al. [61] were used as the reference human microbiome. The proportion of the bacterial com-
munities that came from skin and other human sources were significantly higher (p < 0.0005)
in indoor aerosols than in outdoor aerosols (S3 Fig). On average, 10.6% of the bacterial se-
quences in indoor air came from human skin, and 6.6% or 6.5% of the bacterial sequences in
indoor aerosols were from human airways or the oral microbiome, respectively. In comparison,
the proportion of human originated bacteria in outdoor samples was lower.

Discussion

Previous studies of the aerosol microbiology in facilities for children primarily utilized culture-
dependent techniques [15,16,19-21,23,62—65]. Despite the development of molecular tech-
niques and the great interest in airborne microbiomes, metagenomic investigations have not
been employed to identify the airborne microbes in children’s facilities. Previously, Lee et al.
[66] investigated the bacterial diversity in a daycare center using culture-independent methods
(16S rRNA gene sequencing of clone libraries). They used surface swabs of toys and furniture
and found 190 bacterial species. According to the data, the genus Pseudomonas was particularly
abundant in the clone libraries, followed by uncultured bacterial strains and human-associated
bacteria. In the present study, a high abundance of Pseudomonas spp. was not observed, which
may due to the difference in the sample types. Our results, which were obtained by high
throughput sequencing, show that the aerosols in the daytime spaces of children harbor a di-
verse and dynamic microbial population. Several bacterial genera belonging to the Proteobac-
teria (e.g., Paracoccus, Methylobacterium, and Acinetobacter) were newly identified, as these
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genera had not been previously reported in schools or daycare centers using cultivation-depen-
dent methods [6]. The high abundance of Firmicutes (Staphylococcus and Bacillus) and Actino-
bacteria (Corynebacterium and Micrococcus) that was consistently observed in previous
culture-based studies was confirmed here.

Traditionally, fungi have been identified by directly observing the morphology of captured
spores or after cultivation. Most culture-based fungal studies have focused on detecting several
fungal genera (Alternaria, Aspergillus, Penicillium, and Cladosporium) and the reported pro-
portion of these genera within air samples varied depending on the study and method of analy-
sis [15,18,23,62,64]. Fungi belonging to the Ascomycota can be more easily cultivated than
Basidiomycota species using traditional media [32,67] and have received attention because of
their allergenic effect and clinical importance. In our study, we used the ITS2 region for a meta-
genomic analysis of fungal communities and identified 855 genera from 50 air samples. The
fungal communities were more diverse than the visible communities and contained a wide va-
riety of previously unidentified taxa. Moreover, the dominant species were significantly differ-
ent from those reported in previous studies using culture-based methods. The dominant fungi
from the culture-based studies (Alternaria, Aspergillus, Penicillium, and Cladosporium) repre-
sented <12% of the total sequence reads, whereas Basidiomycota (class Agaricomycetes) repre-
sented over 60% of the total reads. Similar to the present findings, using ITS1 analysis, Adams
et al. observed a diverse composition of fungal taxa and a particular abundance of Agaricomy-
cetes and Dothideomycetes in indoor environments [68-70]. However, another study of the
global indoor fungal composition using sequence analysis of the ITS2 region showed a domi-
nant abundance of the phylum Ascomycota (particularly class Dothideomycetes) [71].

The bacteria in indoor air appeared to be a diverse combination of species associated with
both humans and the outside environment. For example, in the indoor air samples, Micrococ-
cus and Staphylococcus species [72-74], which are commonly found in the human skin micro-
biome, were observed together with Paracoccus [75-77] and Methylobacterium species [78,79],
which have been isolated from various geographical locations and environments. Additionally,
PCoA using weighted UniFrac distances detected a significant difference in the bacterial com-
position between the two G-In samples and other indoor samples. The G-In samples contained
a large proportion of bacterial genera generally detected in outdoor environments. We postu-
lated that the inflow of adjacent outdoor air by the naturally supplied ventilation could have a
large impact on indoor air microbiomes as was shown in previous studies [38,80]. The different
outdoor environments, various terrains, and land use types (mountain, stream, big market,
park, etc.) may explain the differences in the outdoor and/or indoor microbial communities.
However, human-associated bacteria greatly contributed to the structure and taxa of the indoor
bacterial communities. The source tracking analysis results also support human skin as a pri-
mary source of bacteria in indoor air. Moreover, comparison of the bacterial communities that
originated from human sources in daycare centers and schools showed that the indoor micro-
biome varied according to the microbial community of the occupants, similar to what was
shown in other studies of indoor surfaces [81-83]. These results were in agreement with a pre-
vious report showing that the fundamental source of bacteria in indoor air was the direct shed-
ding of microorganisms from humans during occupancy [40]. Although Meadow et al. [43]
reported a close resemblance between outdoor and indoor airborne bacterial communities, the
human-associated bacterial genera observed in this study were more than twice as abundant in
indoor air than in outdoor air. Human occupancy in indoor environments is believed to elevate
the concentration of indoor airborne bacteria due to the resuspension of settled dust and the
shedding of bacteria from human skin [40,44].

Our study demonstrated that the composition of fungi and bacteria in indoor air is vastly
different. In contrast to the bacteria, most fungi detected indoors appeared to originate from
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diverse outdoor sources, independent of human activity. Known human-associated fungi such
as Malassezia [84-86], which comprises lipophilic yeasts that are not detected by culturing in
common media, were detected in the indoor air; however, the contribution of these fungi to the
fungal communities was very low (0.08%). As demonstrated in the UniFrac analyses of this
study, the indoor fungal composition did was not differ from the outdoor fungal composition.
This result is congruent with the previous report of Adams et al. [69], who suggested that resi-
dential surfaces are passive collectors of airborne fungi of putative outdoor origin and that
aerosolization of endogenous fungi from growth on typical household surfaces is minor com-
pared to the fungal input from outdoors. Other studies using culture-independent techniques
also showed that the composition of the indoor fungal community is predominantly of outdoor
origin and is geographically patterned [70,71]. It would be not surprising that the human-asso-
ciated fungal assemblages in indoor air are smaller than the bacterial ones because the total
number of fungal cells on humans is orders of magnitude smaller than that of the bacterial
microbiota [87].

Conclusions

Our 454 pyrosequencing approach provided deeper insight into the high diversity of the micro-
bial community in the indoor and outdoor air of spaces typically occupied by children. This
study also detected rare airborne microbes not found by traditional culture-based surveys and
demonstrated that the airborne microbial communities were likely influenced by various envi-
ronmental sources. The composition of the indoor bacterial community was influenced by
human occupancy; however, the composition of the indoor fungal community originated from
diverse outdoor sources rather than from humans. These findings provide a better understand-
ing of the airborne microbes present in human environments and a clue for assessing the infec-
tions, asthma, allergy, or other respiratory diseases resulting from exposure to airborne
microbes. However, additional analyses at different locations over longer time periods are
needed to obtain a comprehensive understanding of the airborne microbiome and the various
factors that affect the airborne microbial ecology.
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S1 Fig. Principal coordinate analysis (PCoA) of the fungal community based on (A) the
EzFungi database and (B) UNITE database. Differences in the composition of the microbial
communities were quantified using a Bray-Curtis dissimilarity matrix.

(TIF)

S2 Fig. Relative abundance of four dominant bacterial genera in indoor and outdoor air
samples. The solid black lines represent the median, and the circles are outliers. Bars denote
the minimum and maximum values excluding the outliers.
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S3 Fig. The proportion of human originated bacteria in the aerosols. The air sample data
were compared to reference human microbiome data, and the proportion of sequences ob-
served in both the sample and reference data was calculated. The most frequently observed
human bacteria and their proportion in the indoor aerosols are shown in the lower panel.
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