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Abstract
Community detection has drawn a lot of attention as it can provide invaluable help in under-

standing the function and visualizing the structure of networks. Since single objective opti-

mization methods have intrinsic drawbacks to identifying multiple significant community

structures, some methods formulate the community detection as multi-objective problems

and adopt population-based evolutionary algorithms to obtain multiple community struc-

tures. Evolutionary algorithms have strong global search ability, but have difficulty in locat-

ing local optima efficiently. In this study, in order to identify multiple significant community

structures more effectively, a multi-objective memetic algorithm for community detection is

proposed by combining multi-objective evolutionary algorithm with a local search proce-

dure. The local search procedure is designed by addressing three issues. Firstly, nondomi-

nated solutions generated by evolutionary operations and solutions in dominant population

are set as initial individuals for local search procedure. Then, a new direction vector named

as pseudonormal vector is proposed to integrate two objective functions together to form a

fitness function. Finally, a network specific local search strategy based on label propagation

rule is expanded to search the local optimal solutions efficiently. The extensive experiments

on both artificial and real-world networks evaluate the proposed method from three aspects.

Firstly, experiments on influence of local search procedure demonstrate that the local

search procedure can speed up the convergence to better partitions and make the algorithm

more stable. Secondly, comparisons with a set of classic community detection methods il-

lustrate the proposed method can find single partitions effectively. Finally, the method is ap-

plied to identify hierarchical structures of networks which are beneficial for analyzing

networks in multi-resolution levels.

Introduction
Many real-world systems which consist of objects with relationships among them can be effica-
ciously represented as complex networks [1]. Community structure is one of the most impor-
tant properties of diverse networks. Generally speaking, a community can be described as a
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group of nodes that are densely intra-connected, while only sparsely linked with the rest of the
network [2]. Community structures in complex networks play important roles in the structure-
function relationship, as they can provide invaluable help in understanding the functions and
visualizing the structures of networks [3, 4].

Most community detection methods can be roughly classified into heuristic based and opti-
mization based methods. Heuristic based methods derive network partitions by executing
some heuristic rules which are usually based on intuitive observations rather than explicitly op-
timizing global objective functions [5]. Such kind of methods usually lacks of accurate descrip-
tion of the properties of global community structures. Optimization based methods formulate
community detection as a combinatorial optimization problem and detect the community
structure by optimizing a predefined evaluation criterion which describes a certain property of
community, such as modularity [6], normalized cut [7] and the map equation [8], etc. Howev-
er, single objective optimization methods have two main intrinsic disadvantages, i.e., they may
lead to bias on the obtained community partition, and they may not be able to detect multiple
potential structures [9]. To overcome above drawbacks, community detection problems have
also been formulated as Multi-objective Optimization Problems (MOPs). Multi-objective com-
munity detection methods describe multiple structure properties of networks by optimizing
multiple conflicting criteria and obtain multiple network partitions which correspond to differ-
ent tradeoffs among these criteria [10, 11].

Traditional community detection methods dealing with single objective function and single
community partition can be hardly adapted to multi-objective community detection problems,
so Evolutionary Algorithms (EAs) which can handle a population of partitions in a single run
have been adopted [9, 12, 13]. EAs have excellent global search abilities of exploring the entire
network partition space and identifying areas with potential high quality partitions. However,
they have difficulty in locating the local best partitions around the potential high quality space
in a short time. To address such drawbacks, Memetic Algorithms (MAs) which combine EAs
with local search procedure have been proposed to deal with single objective community detec-
tion problems so far [14–17]. The integrated local search procedure can search the promising
partition space carefully and accelerate the method to find the local optimal partitions. The hy-
brid search property of MAs should have advantages to deal with multi-objective community
detection problems too. Since conventional local search methods only optimize single fitness
function and deal with one partition at a time, three problems need to be addressed to adapt
them to multi-objective situations, i.e., determining initial partitions, defining appropriate fit-
ness function and designing effective local search strategy.

In this paper, a multi-objective memetic community detection algorithm to identify multi-
ple community structures is presented. The proposed algorithm is termed as MMCD for short.
The MMCD adopts a multi-objective immune algorithm as global search mechanism. We
mainly focus our effort on developing an effective local search procedure by addressing three
problems. Firstly, nondominated solutions generated by evolutionary operations and solutions
in dominant population are selected as initial partitions for local search procedure. Then, a
new direction vector named as pseudonormal vector is proposed to integrate two objective
functions together to form a fitness function. Finally, a network specific local search strategy is
expanded to search the local optimal solutions efficiently. To evaluate the effect of local search
procedure on MMCD and illustrate the important applications of MMCD, experiments on ar-
tificial datasets and real-world networks are carried out from three perspectives, i.e. parameter
settings and effects of local search procedure, comparison with a variety of community detec-
tion methods, and ability to find multi-resolution structures of networks.

The remainder of this paper is organized as follows. Section 2 presents works related to our
work. Section 3 describes the formulation of multi-objective optimization community
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detection problem. The method is described in section 4. Section 5 presents the experimental
results. Finally, Section 6 gives the conclusions.

RelatedWorks
Some multi-objective optimization community detection methods have been proposed based
on EAs which are inspired by biological evolution. The Multi-objective Genetic Algorithm for
Networks (MOGA-Net) [12] optimizes community score and community fitness simulta-
neously. It adopts the Nondominated Sorting Genetic Algorithm-II (NSGA-II) [18] as optimi-
zation mechanism. The Multi-Objective Community Detection algorithm (MOCD) [13]
selects two terms of modularity as objective functions. Since two terms of modularity describe
two opposite properties of a community structure and are appropriate for detecting multiple
structures, we also adopt them as conflicting objective functions in this paper. However, the op-
timization algorithm proposed in this paper is rather different fromMOCD. MOCD adopts
the Pareto Envelope-based Selection Algorithm version 2 (PESA-II) [19] as optimization
mechanism and does not integrate a local search procedure, while our method integrates a
local search procedure into another competitive multi-objective EA, i.e. Nondominated Neigh-
bor Immune Algorithm (NNIA) [20]. The NNIA is also adopted by Multi-objective Immune
algorithm for multi-resolution Community Detection (MICD) [9]. However, MICD adopts
two terms of modularity density as objective functions and also does not integrate a local search
procedure. What’s more, the individual representation scheme and the evolution operators
used by MMCD are different from those used by MOCD and MICD.

One of the biggest differences between MMCD and other multi-objective community detec-
tion algorithms is that it integrates a local search procedure into the multi-objective EA. Con-
ventional EAs which search the community partition space based on random evolution
without much restriction have strong global search ability [9, 12, 21, 22]. However, they have
difficulty in locating the local optimal solutions around the promising search space in a short
time. On the other hand, local search community detection methods are very good at obtaining
the local best partitions [23–25], while the salient drawback is that escaping from the local opti-
ma to achieve a better solution is not easy for them. Based on advantages and drawbacks men-
tioned above, it is profitable to combine EAs and local search methods together to formulate
the Memetic Algorithms for community detection problems. For example, the Meme-Net
community detection algorithm combines GAs with a hill-climbing local search strategy to op-
timize the modularity density [14]. The community detection method based on Modularity
and an Improved Genetic Algorithm (MIGA) takes modularity as objective function and
adopts simulated annealing method as local search method [15]. The Memetic algorithm with
multi-level Learning strategies (MLCD) also optimizes modularity and proposes multi-level
learning methods to accelerate the convergence of genetic algorithm [16]. Above MAs for com-
munity detection mainly optimize single objective functions. It is valuable to extend MAs to
handle multi-objective community detection problems due to the advantages of multi-
objective formulations.

Problem Formulations
In this paper, a network N is modeled as a graph G = (V,E) with adjacency matrix A, where V
and E are the sets of nodes and edges respectively. A community partition is encoded as X =
(x1, x2, . . ., xn) where xi is the code value of node i. A multi-objective maximization community
detection problem [9, 12] (O, f1, f2,. . ., ft) is formulated as

maxFðXÞ ¼ ðf1ðXÞ; f2ðXÞ; . . . ; ftðXÞÞT ; subject to X ¼ ðx1; x2; . . . ; xnÞ 2 O;
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whereO = (X1, X2,. . ., XN) is the set of all feasible partitions of a network, and f1, f2,. . ., ft denote
different objective functions which describe the properties of the partition obtained. To define
the set of solutions which are found by the use of Pareto optimality theory [26], the definition
of dominance relation is given below. Given any two feasible solutions X1 and X2, solution X1 is
said to dominate solution X2, denoted as X1� X2, iff

8 i ¼ 1; 2; . . . ; t : fiðX1Þ � fiðX2Þ ^ 9 i ¼ 1; 2; . . . ; t : fiðX1Þ > fiðX2Þ:

X2 is called dominated solution. If there does not exist any other solution X that dominates X�,
X� is called nondominated (i.e. dominant) or Pareto-optimal solution. Pareto-optimal solu-
tions do not dominate each other, as an improvement in one objective function will result in a
degradation of another. The set of Pareto-optimal solutions is called the Pareto-optimal set
which is formulated as

PS≜fX� 2 Oj∄X 2 O;X � X�g:

The functions vector Fmaps the solution space into the objective function space, and the corre-
sponding image of the Pareto-optimal set in the objective function space is called the Pareto-
optimal front which is formulated as

PF≜fFðX�Þ¼ðf1ðX�Þ; f2ðX�Þ; . . . ; ftðX�ÞÞT jX� 2PSg:

The goal of the multi-objective community detection methods is to find a Pareto-optimal set or
an approximated one.

Since communities are usually described from two aspects that they are usually densely
intra-connected and sparsely inter-connected, choosing two objective functions to reflect such
two properties is reasonable. In this paper, two parts of modularity are selected as two objective
functions because they can reflect such two properties to some extent.

Modularity (denoted as Q) proposed by Girvan and Newman [6] can be written as

Q ¼
X
C2X

lC
m
� kC

2m

� �2
" #

; ð1Þ

where X is one possible partition of the network, C is a community in partition X, lC is the
number of edges in the community C which is defined as lC = (∑i, j 2 C Aij)/2, kC is the total de-
gree of nodes in the C which is defined as kC = ∑i 2 C ki, ki is the degree of node i, andm is the
total number of edges in the network. The value of Q ranges from -1 to 1 and the larger value
corresponds to better network partition. From the Eq (1), modularity can be regarded as a

fixed tradeoff between two terms, i.e.
P

C2X
lC
m
and�PC2XðkC2mÞ2. To maximize the modularity,

both terms should be maximized as possible as they can. Maximizing the first term means as
many as possible edges should be included in communities, which will lead to larger communi-
ties. While maximizing the second term requires the total degree of nodes in communities
should be as small as possible, which will lead to smaller communities. These two complemen-
tary terms naturally conflict with each other to some extent and reflect the two aspects of a
good partition, i.e., densely intra-connected and sparsely interconnected. Thus we select them
as two separate objective functions for our algorithm. The first objective function is

IntraQ ¼
X
C2X

lC
m
: ð2Þ

The value of this term ranges from 0 to 1. Since the range of the second term of modularity is
from -1 to 0, we add a constant 1 to regularize it which will not affect the partition results of

Multi-Objective Community Detection Algorithm

PLOSONE | DOI:10.1371/journal.pone.0126845 May 1, 2015 4 / 31



the network, i.e.,

InterQ ¼ 1�
X
C2X

kC
2m

� �2

: ð3Þ

Because such two objective functions have opposite propensity to the size and the number of
communities, the maximization of them can find community structures at different resolution
levels. The MMCD detects community structures by maximizing such two objective functions
which is formulated as

max FðXÞ ¼ fIntraQ; InterQg; subject to X ¼ ðx1; x2; . . . ; xnÞ 2 O; ð4Þ
where X is a possible partition in network partition space O. Since MMCD integrates a local
search procedure into a EA which is proven to solve the above optimization problem success-
fully, it can solve the above optimization problem by designing an appropriate local
search procedure.

Methods
The MMCD optimizes the formulation Eq (4) by both evolutionary global search and local
search in each generation. As our main focus is on local search procedure, we adopt modified
framework of NNIA [20] as our multi-objective global search mechanism. In fact, our local
search procedure can also be integrated into some other multi-objective optimization evolu-
tionary algorithms, such as NSGA-II and PESA-II.

Some related terms are stated as follows. Feasible solutions of problems are also called indi-
viduals or partitions. In each generation of the algorithm, six populations of individuals evolve
in turn. They are dominant population D which is the set of nondominated individuals, active
population AP which is the set of individuals selected from dominant population with larger
crowding distance, clone population CL which stores clones of active individuals, evolutionary
search offspring population EO which contains the result of evolutionary search, local search
offspring population LO which contains the result of local search, and combined population B
which is responsible for elitism. The main procedure of MMCD is given as Algorithm 1 in
Table 1.

Initialization constructs the initial solution population of the algorithm. Nondominated
Neighbor-Based Selection and Proportional Cloning are used to keep nondominated individu-
als more diverse based on crowding distance [18] to prevent individuals from gathering in
some local regions and avoid premature convergence to local optimal solutions. Crossover and
Mutation are evolutionary global search operations and Local Search Procedure is local search
operation on population. Model Selection select partitions from final approximated Pareto-op-
timal set. The specific criteria to select solutions at each resolution scale should depend on spe-
cific applications. As Initialization are the basis of the algorithm, and evolutionary search
operations (Crossover and Mutation) and Local Search Procedure are two search operations
responsible for population evolution, we will discuss implementation details of them in
the followings.

Representation and Initialization
Locus-based adjacency representation [27] and group based representation [28] are two com-
mon used representation strategies for community partitions in evolutionary algorithms. In
this study, we use the latter one as it is more straightforward and can be conveniently handled
in local search procedure. Each individual Xp in the population is encoded as
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Xp ¼ fx1p ; x2p ; . . . ; xnpg, where n is the number of nodes in the network and xip denotes the com-

munity identifier (also named as community label) of node i in partition Xp. As at most there
are n communities in the network with n nodes, the value of xip can be chosen from any integer

in the range of 1 to n. In the decoding step, the nodes with the same community label are
grouped into one community. If there are k different community labels in an individual at the
end of algorithm, the community structure corresponding to this individual will automatically
have k communities. One prominent property of this algorithm is that the number of commu-
nity k is unnecessary to set in advance. It is worth noting that there are multiple representations
corresponding to one community structure. An illustration of this representation strategy for a
toy network is given in Fig 1. The network with 7 nodes is partitioned into two communities.
Two possible representations corresponding to the community structure are X1 =
{1,1,1,2,2,2,2} and X2 = {3,3,3,4,4,4,4}.

Table 1. Algorithm 1. Main procedure of multi-objective memetic algorithm for community detection.

Input: Maximum number of generations Gmax, Maximum size of dominant population SD, Maximum size
of active population SA, Size of clone population SC, Mutation probability pm, Maximum iterations of local
search strategy MI, Adjacency matrix of the network A.

Output: Network partitions at different resolution levels.

1: Initialization: Generate an initial population B0 with size SD, set generation count g = 0;

2: Update Dominant Population: Identify all nondominated individuals in Bg. Calculate the crowding-
distance values of all nondominated individuals, sort them in descending order of crowding-distance, and
choose the first SD individuals to form dominant population Dg;

3: Nondominated Neighbor-Based Selection: If the size of Dg is not larger than SA, let APg = Dg.
Otherwise, sort individuals in Dg in descending order of crowding-distance, and select the first SA
individuals to form APg. Meanwhile, the original dominant population Dg is set as external population to be
applied for elitism;

4: Proportional Cloning: Apply proportional cloning to APg to obtain the clone population CLg;

5: Crossover and Mutation: Perform crossover and mutation operations on CLg to produce evolutionary
search offspring population EOg;

6: Local Search Procedure: Perform local search operation with parameter MI on external dominant
population Dg and EOg to obtain two local search offspring populations LO1

g and LO2
g, respectively;

7: Combination: Combine LO1
g and LO2

g together to form Bg+1. Set g = g+1;

8: Termination: If g < Gmax, return to step 2. Otherwise, go to step 9;

9: Model Selection: Identify all nondominated individuals in Bg to form dominant population DTg and select
solutions in DTg based on some criteria;

10: Decoding: Decode selected solutions into network partitions. Stop.

Bold words denote module names of each steps.

doi:10.1371/journal.pone.0126845.t001

Fig 1. Illustration of group based representation. Left, a network with a community structure. Right, two
possible representations corresponding to the community structure.

doi:10.1371/journal.pone.0126845.g001
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The population initialization procedure is given as Algorithm 2 in Table 2. Initially, each
node is put in a different community for all individuals in the initial population. Assume each
individual has the same community label assignment (i.e. Xp = {1,2,. . ., n},8p = 1,2,. . ., SI).
Then a simple heuristic process is employed which is similar to that in [28]. For each individu-
al, randomly select a portion of nodes (e.g., α � n nodes, α is a parameter and set as α = 0.3 for
experiments in this paper) and assign their community labels to all of their neighbors, respec-
tively. This heuristic process enhances the diversity and provides the better quality of the initial
solutions, and has a low computational complexity.

Crossover and Mutation
Crossover is one of the evolutionary search operations in NNIA [20]. According to NNIA, the
crossover operation OR on the clone population CL can be defined as

ORðCLÞ ¼ ORðc1Þ þ ORðc2Þ þ � � � þ ORðcSCÞ
¼ crossoverðc1;APÞ þ crossoverðc2;APÞ þ � � � þ crossoverðcSC;APÞ;

where crossover(ci, AP) represents crossover operator on clone ci and an active individual ran-
domly selected from population AP. In order to maintain population size, crossover(ci, AP)
needs to return one offspring to replace ci. Two-point crossover [13] and uniform crossover
[21] are two commonly used crossover operations, but they are not appropriate here because of
a property of group based representation strategy. In this representation strategy, the same
community label in different individuals may represents different communities, so community
labels can’t be simply exchanged between different individuals. In this study, we employ one-
way crossover operation [28]. The crossover procedure is given as Algorithm 3 in Table 3. As-
suming Xp and Xq are two crossover operation parents. Randomly select one of them as source
individual Xs and the other one as destination individual Xd. Then, randomly choose a node i
whose community labels in Xs is xis. Identify the set of nodes with the same community label as

xis in Xs and replace the labels of this set of nodes in Xd with xis, i.e. x
j
d  xis; 8 j 2 fjjxjs ¼ xisg.

This procedure is illustrated in Fig 2. Assuming the source individual is Xs = {1,1,1,4,5,5,7} and
the destination individual is Xd = {2,3,4,5,5,5,6}. Node 2 is randomly chosen and its community
label in Xs is 1. The set of nodes {1,2,3} has the same community label as node 2 in Xs. Replac-
ing labels of all nodes in this set with label 1 in Xd to produce the offspring.

Table 2. Algorithm 2. Population initialization procedure.

Input: Initial Population size SI.

Output: Initial Population B0.

1: Generate SI individuals, Xp ¼ fx1p; x2p; . . . ; xnpg; 1 � p � SI; xip i; 1 � i � n;

2: B0 ;
3: for each individual Xp do

4: Generate a random sequence, i.e. {a1, a2,. . ., an};

5: for each of first α � n nodes xaip in this sequence do

6: xjp  xaip ; 8j 2 fjjAai j
¼ 1g;

7: end for

8: B0 B0[{Xp};

9: end for

doi:10.1371/journal.pone.0126845.t002
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Mutation is the other evolutionary search operation. A neighbor-based mutation operation
which reduces the useless search space by taking into account the effective connections among
nodes is used [12]. In this operation, the reassigned labels of mutated nodes are restricted to
those of their neighbors. For each node i of each individual Xp generated by crossover opera-
tion, generating a random value r 2 [0, 1]. If r is smaller than the mutation probability pm (pm
is set as 0.01 for MMCD in this paper), the community label of this node is replaced with one
of its neighbors’ label, i.e. xip  xjp; 9 j 2 fjjAij ¼ 1g.

Local Search Procedure
Different from memetic algorithms for single objective community detection problems, the
cases of multi-objective face some new problems. We summarize these problems into three is-
sues, i.e., determining initial individuals, defining fitness function and designing local
search strategy.

Initial individuals. In each generation, local search procedure is applied to “good” indi-
viduals in two populations to obtain better individuals. One is evolutionary search offspring
population EO generated after mutation operation and the other one is external dominant pop-
ulation D used for the purpose of elitism. Since non-dominated individuals are “good” individ-
uals in multi-objective cases, initial individuals for local search procedure are nondominated
solutions in population EO and solutions in population D.

Table 3. Algorithm 3. One-way crossover procedure.

Input: Two individuals Xp and Xq.

Output: Offspring of crossover operation Xo.

1: Generate a random value r 2 [0, 1];

2: Randomly choose a node vi;

3: if r < 0.5 then

4: Identify the set of nodes pi with the same community label as xip in Xp, i.e. pi  fjjxj
p ¼ xipg;

5: xjq  xip; 8j 2 pi;

6: Xo Xq;

7: else

8: Identify the set of nodes qi with the same community label as xiq in Xq, i.e. qi  fjjxj
q ¼ xiqg;

9: xjp  xiq; 8j 2 qi;

10: Xo Xp;

11: end if

doi:10.1371/journal.pone.0126845.t003

Fig 2. Illustration of one-way crossover procedure. Left, a toy network with 7 nodes; Right, node 2 is
randomly chosen and the set of nodes with the same label as node 2 is {1,2,3} in Xs.

doi:10.1371/journal.pone.0126845.g002
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Fitness function. There are two objective functions in MMCD, while local search proce-
dure needs a single fitness function to evaluate the neighbors of an initial individual to decide
which neighbor can replace the initial one as a better solution. Dominance relation which is
used in multi-objective EAs can be simply used as a fitness evaluation method by which an ini-
tial individual can be replaced with one that dominates it or the one that is not dominated by
it. As is illustrated in Fig 3(a), the movable area of the former fitness evaluation rule is too
small to find satisfied neighbors, while the area is too huge for the latter one which allows to se-
lect individuals in dominated regions after several searches. Besides dominance relation, scalar-
izing function is widely used as the fitness function for local search procedure in MOPs [29,
30]. Scalarizing fitness function based on two objective funtions can be expressed as

SðXÞ ¼ o1f1ðXÞ þ o2f2ðXÞ;

where f1(X) = IntraQ, f2(X) = InterQ for our method, and ω1 and ω2 are nonnegative weights,
which satisfy the following constraints

oi � 0; i ¼ 1; 2

o1 þ o2 ¼ 1:

Fig 3. Illustration of possible designs of fitness evaluationmethod for local search procedure. (a)
Region I-IV are four regions divided with respect to node A. Individuals in region I dominate A and in region I,
II,IV are not dominated by A. Region I is too small to search, while individuals in region II and IV may move to
Region III which are dominated by A after several generations; (b) When constant weight vectorω = (0.5,0.5)
is applied, individual population will suffer from diversity problem after several searches; (c) Assuming weight
vectorω = (0.5,0.5) selects X1 as initial individual according to random weight vector scheme, then the
probability to select right side individual is much higher then select left side as there is only one individual on
the right side of X1; (d) Pseudoweight vectorω

P deviates from normal line vectorωN.

doi:10.1371/journal.pone.0126845.g003
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Determining the appropriate weights is crucial for effective and efficient local search proce-
dure. As is illustrated in Fig 3(b), if a constant weight vector ω = (ω1, ω2) is applied, all initial
individuals will perform local search in one fixed direction which will result in serious diversity
problem for evolutionary search in the next generation. To maintain population diversity, the
weight vector (i.e. local search direction in objective space) should depend on the location of
each initial individual. A random weight vector scheme is proposed in [29] which first random-
ly specifies a weight vector and then select a solution with maximal fitness function value in
that direction as initial individual for this weight vector. However, as is illustrated in Fig 3(c),
this scheme has a bias selection problem that individuals in a small region may be selected with
much higher probability, when the value range distributions of initial individuals in two objec-
tive functions vary a lot. What’s more, some individuals may be selected more than one time
while some others may not be selected any more. Pseudoweight vector [31] is another widely
used weight vector for scalarizing fitness function and it is defined as

oP
i ðXÞ ¼

ðfiðXÞ � f min
i Þ=ðf max

i � f min
i ÞPM

j¼1ðfjðXÞ � f min
j Þ=ðf max

j � f min
j Þ

; i ¼ 1; 2; . . . ;M;

whereM is the number of objective functions which is 2 in MMCD algorithm. Pseudoweight
vector roughly denotes the priorities of different objective functions at each individual. As is il-
lustrated in Fig 3(d), sometimes pseudoweight vector may obviously deviate from the normal
line of nondominated front. Nondominated front here is defined as the images of all nondomi-
nated solutions in objective space and normal line is the line perpendicular to the smooth line
in nondominated front. In fact, the nondominated front in objective space can be regarded as a
generalized isoline, because points in this front are not better or worse than each other. Since
the gradient direction of an isoline is its normal line direction, the ideal direction of local search
should also be the direction of normal line of the nondominated front.

As it is known to all, normal line is perpendicular to tangent line in two-dimensional space.
However, the smooth line in nondominated front is not an inerratic curve and its formula is
usually unknown, so the tangent line can’t be derived easily. Thus, we propose the pseudonor-
mal vector which approximates the normal line vector for our two objective optimization prob-
lem. In fact, tangent line derives from secant line and it is the limiting case of the secant line, so
we can apply secant line to approximate tangent line and set pseudonormal line perpendicular
to such approximated tangent line. As is illustrated in Fig 4, for an arbitrary individual X which
is not one of the boundary individuals in the nondominated front, the slope of tangent line at
the location of X is similar to the slope of secant line connecting two individuals X1 and X2 that
are closest to X on either side. The “closest to X on either side” here means closest to X on ei-
ther side along either objective function. Actually, two individuals in nondominated front clos-
est to X on either side along one objective function are also closest to X on either side along the
other one. To prove this property, we first give another property of nondominated front in
two-dimensional objective space.

Property 1 (Reversed order property) In two-dimensional objective space, the ascending
order of individuals in nondominated front along one objective function value is the descending
order along the other objective function value.

Proof. Individuals in nondominated front do not dominate each other, so one individual
greater than another one along one objective function value must be smaller than that one
along the other objective function value in nondominated front of two-dimensional objective
space. The property is proved by iterating such relation to all pairs of individuals in
nondominated front.
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Property 2 (Closest relation property) In two-dimensional objective space, for an arbitrary
individual X which is not a boundary individual in nondominated front, two individuals in non-
dominated front closest to X on either side along one objective function are also closest to X on ei-
ther side along the other one.

Proof. Assuming X1 and X2 are two individuals closest to X along objective function f1 and
the relation of inequality is f1(X

1)< f1(X)< f1(X
2). According to Property 1, we have f2(X

1)>
f2(X)> f2(X

2). If two other individuals X3 and X4 are closest to X along objective function f2
and the relation of inequality is f2(X

3)> f2(X)> f2(X
4), then we have the relation of inequality

that f2(X
1)> f2(X

3)> f2(X)> f2(X
4)> f2(X

2). However, according to Property 1, it is easy to
obtain that f1(X

1)< f1(X
3)< f1(X)< f1(X

4)< f1(X
2) which is contradictory to the assumption

that X1 and X2 are two individuals closest to X along objective function f1. Thus, the property
is proved.

The secant line connecting two individuals X1 and X2 is

s ¼ ðf1ðX2Þ � f1ðX1Þ; f2ðX2Þ � f2ðX1ÞÞ:

Then the pseudonormal vector of X is set perpendicular to such secant and defined as

oPNðXÞ ¼ f2ðX1Þ � f2ðX2Þ
p

;
f1ðX2Þ � f1ðX1Þ

p

� �
; ð5Þ

where π is the normalization factor, i.e. π = f2(X
1) − f2(X

2)+f1(X
2) − f1(X

1). For boundary indi-
viduals (i.e. X2 and X3 in Fig 4) who are in the boundary of nondominated front, only one side
of them has closest individuals, so their pseudonormal vectors cannot be calculated by formula
Eq (5). In order to maintain diversity and obtain solutions which are optimal on either objec-
tive function, the pseudonormal vectors of boundary individuals are set parallel to coordinate
axes, i.e. ωPN(X2) = (1,0) and ωPN(X3) = (0,1) in Fig 4. Note that the local search direction

Fig 4. Illustration of pseudonormal vector.ωN is the vector of normal line,ωPN is the pseudonormal vector.

doi:10.1371/journal.pone.0126845.g004

Multi-Objective Community Detection Algorithm

PLOSONE | DOI:10.1371/journal.pone.0126845 May 1, 2015 11 / 31



specified by the weight vector ω in the objective space is a totally different concept from that in
the decision space. The search direction here is used to judge the quality of individuals and
guide the local search rather than the exact direction which individuals move along.

Local search strategy. By using the pseudonormal vector ωPN, the scalarizing fitness func-
tion for local search procedure in MMCD algorithm is

SðXÞ ¼ oPN
1 IntraQþ oPN

2 InterQ: ð6Þ

By substituting IntraQ and InterQ with formula Eq (2) and Eq (3), respectively, the fitness
function can be written as

SðXÞ ¼
X
C2P

SðCÞ þ oPN
2 ;

SðCÞ ¼ oPN
1

lC
m
� oPN

2

kC
2m

� �2

:

ð7Þ

where the meanings of parameters are the same as those in formula Eq (2) and Eq (3) and S(C)
is the contribution of community C to fitness function S(X). For a conventional local search
procedure, the neighborhood of an initial individual is first defined. Then the fitness values of
all neighbors are calculated and the neighbor with maximal fitness value is selected to replace
the current individual. However, calculating the fitness value from scratch for all neighbors is
one of the most time consuming operations in the algorithm. So inspired by LPAm [24] which
local optimizes modularity, we apply an efficient local search strategy here which only calcu-
lates the increments of fitness value based on network structure information.

Firstly, we define the neighborhood of a network partition (i.e. individual or solution). Intui-
tively, a neighbor partition should be close to or similar to itself. Some definitions are given
as follows.

Definition 1 (Local neighborhood) For a network partition Xp, the local neighborhood
Ni(Xp) respect to a node vi is defined as the set of partitions formed by moving node vi to one of
its adjacent communities, i.e.,

NiðXpÞ ¼ X
xj ¼ xjp; if j 6¼ i;

xj ¼ xACip ; if j ¼ i:

8<
:

9=
;;

������
8<
:

where xACip is the community label of community ACi in partition Xp, ACi is an adjacent commu-

nity of vi which is defined as

ACi 2 fCjjvj 2 NðviÞg;

where Cj is the community which node vj belongs to and N(vi) is the set of neighbors of node vi.
N(vi) includes vi itself here, thus community of node itself is also regarded as its adjacent com-

munity and it is easy to derive that Xp 2 Ni(Xp).
Definition 2 (Neighborhood) For a network partition Xp, the neighborhood N(Xp) is defined

as the union of local neighborhood respect to all nodes, i.e.,

NðXpÞ ¼ [n
i¼1NiðXpÞ:

Next, fitness value increments of partitions in local neighborhood Ni(Xp) relative to parti-
tion Xp are calculated based on the network structure information. The node vi is set as an iso-
lated community by regarding community of itself as its adjacent community. The fitness
increment of a local neighbor corresponding to the adjacent community ACi in Ni(Xp) relative
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to Xp is calculated as

DSiðXpÞ ¼ SðACi þ viÞ � SðACiÞ � SðfvigÞ; ð8Þ

where ACi+vi denotes the community combining ACi with vi and {vi} denotes the isolated com-
munity which only contains vi. After calculating all increments corresponding to all adjacent
communities ACi of vi, the one with maximal increment is chosen as vi’s new community. If
the new community is the same as the original one of vi, it means vi is already in the local best
community in partition Xp and Xp is a local maximal solution in local neighborhood Ni(Xp). In
order to show how to calculate ΔSi(Xp), the formula Eq (8) is expanded as

DSiðXpÞ ¼ oPN
1

lACiþvi
m
� oPN

2

kACiþvi
2m

� �2
" #

� oPN
1

lACi
m
� oPN

2

kACi
2m

� �2
" #

� �oPN
2

ki
2m

� �2
" #

¼ oPN
1

lACi ;vi
m
� oPN

2

kACiki
2m2

;

ð9Þ

where lACi+vi and lACi
are the number of edges in the community ACi+vi and ACi, respectively.

lACi, vi is the number of edges between node vi and the nodes in ACi. kACi+vi and kACi
are the

total degree of nodes in the ACi+vi and ACi respectively and ki is the degree of node vi. As men-
tioned above, the community labels of node vi and community ACi in Xp are xip and x

ACi
p , re-

spectively. The formula Eq (9) can be rewritten in the form of adjacency matrix and
community labels as

DSiðXpÞ ¼
1

m

X
j6¼i

oPN
1 Aij �

oPN
2 kikj
2m

� �
dðxjp; xACip Þ; ð10Þ

where δ is the Kronecker delta function. Finally the new community label xi
0
p of node i should

be updated to xACip which maximizes the formula (10), i.e.

xi
0
p ¼ argmax

x
ACi
p

X
j 6¼i

oPN
1 Aij �

oPN
2 kikj
2m

� �
dðxjp; xACip Þ: ð11Þ

This fitness function specialized label update rule can be efficiently implemented by an algo-
rithm similar to label propagation algorithm [23]. The local search procedure is illustrated in
Algorithm 4 in Table 4. The local optimum around Xp in its neighborhood is obtained by get-
ting local optimism in its local neighborhoods respect to all different nodes in a random se-
quence. The local search procedure will be terminated when a predefined maximum iterations
MI is reached or the community label of each node is unchanged.

Analysis of Computational Complexity
In this section, the computational complexity of the proposed algorithmMMCD is analyzed.
Given a network with n nodes andm edges and assuming that the maximum size of the domi-
nant population and active population is SD and SA, respectively, the size of clone population
is SC, the time complexity of one generation for the algorithm can be calculated as follows.
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The time complexity for initialization procedure is O(SD � n). The calculation of two objec-
tive functions needs O(m) time. At most O(SD+SC) calculations of objective functions and O
((SD+SC)2) comparisons are required to identify nondominated individuals in combined pop-
ulation. The worst time complexity for sorting individuals by crowding distance is O((SD+SC)
log(SD+SC)). According to analysis in [20], proportional cloning requires O(SC) time. The
crossover and mutation operations in this paper cost O(SC � n). So the total time complexity
for multi-objective evolutionary search procedure in one generation is O((SD+SC) �m+(SD
+SC)2+(SD+SC)log(SD+SC)+SC+SC � n). As for local search procedure, identifying nondomi-
nated individuals requires O(SC2) comparisons and O(SC) calculations of objective functions.
For each individual, calculating pseudonormal vector requires constant time and the time com-
plexity for label propagation procedure is at most O(MI �m) according to analysis in [24],
whereMI is the maximum iterations for label propagation. Thus, the total time complexity for
local search procedure in one generation is at most O(SC �m+SC2+SC �MI �m). Based on the
analysis above, according to the operational rules of the symbol O, the overall time complexity
of MMCD algorithm with g generations is O(g � ((SD+SC) �m+(SD+SC)2+SC �MI �m)). Maxi-
mum iterationsMI is usually a very small constant, as 95% nodes or more usually can be parti-
tioned correctly by only 5 iterations in LPA [23]. For large network,m will be much larger than
SD+SC, so the time complexity can be further simplified to O(g � (SD+SC) �m).

Experimental Results
In this section, we will study the MMCD through experiments on artificial and real-world net-
works from three aspects. The first experiments will discuss the influence of parameters in
MMCD and validate the advantages of local search procedure in MMCD. Then MMCD will be
compared with a variety of classic community detection algorithms on artificial and real-world
networks to illustrate the performance on finding community structures. Finally, we will apply

Table 4. Algorithm 4. Local Search Procedure.

Input: Individual population P, Adjacency matrix A, Maximum iterations MI.

Output: Offspring population of local search operation OP.

1: Select all nondominated individuals in P to form population DP;

2: for each individual X in DP do

3: Calculate pseudonormal vector ωPN(X);

4: count 0; ischanged 1; OP ;;
5: while count < MI^ischanged == 1 do

6: ischanged 0; count count+1;

7: Generate a random sequence, i.e. {a1, a2,. . ., an};

8: for each node vai in random sequence do

9: Update label xai
p to xai 0p with fitness function specialized label propagation rule (11);

10: if xaip 6¼ xai
0

p then

11: ischanged 1;

12: end if

13: end for

14: end while

15: OP OP[{X};
16: end for

doi:10.1371/journal.pone.0126845.t004
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the MMCD to detect community structures at different resolution levels on artificial and real-
world networks. The MMCD algorithm has been written in MATLAB. Unless stated, all the
non-deterministic algorithms have been independently run 10 times on each datasets. The ex-
periments are carried out on a 2.80GHz and 3.00G RAM computer running Windows 7.

Evaluating the performance of a community detection algorithm needs to define a criterion
to measure the quality of the obtained partition [14]. Modularity (Q) which is used as an objec-
tive function for a variety of community detection methods is a natural quality function whose
higher value indicates stronger community structure. In fact, maximizing two objective func-
tions of MMCD is also an indirect way to maximize the modularity. On the other hand, if
some networks have ground-truth partitions or true partitions, the similarity between true par-
titions and partitions obtained by algorithms can be calculated to indicate the partition quality.
Normalized Mutual Information (NMI) proposed by Danon et al. [32] is such a similarity mea-
sure. The value of Normalized Mutual Information NMI(P1, P2) of two partitions P1 and P2 is
between 0 and 1 with higher value indicating more similar to each other. NMI is independent
with two objective functions of MMCD because it is based on true partitions of network. In
this paper, higher values of both evaluation criteria are regarded as indications of
better partitions.

Since multi-objective community detection algorithms can obtain multiple partitions in one
run, we use modularity as model selection criterion when it is adopted as quality metric, and
use NMI as model selection criterion when NMI is adopted as quality metric for all multi-ob-
jective community detection algorithms in this paper.

Influences of Parameters and Local Search Procedure
We will first discuss the influence of parameters of MMCD and validate the advantages of local
search procedure in MMCD. In order to analyze methods in details, artificial benchmark net-
work named GN benchmark proposed by Girvan and Newman [1] is adopted. The network
consists of 128 nodes which are divided into four communities with 32 nodes each. Edges are
randomly placed between nodes independently. Each node has an average degree of 16 and
shares a fraction 1 − μ of edges with the nodes of its community, and a fraction μ of edges with
the rest of the network. μ is called the mixing parameter. When μ< 0.5, the average number of
neighbors of each node inside its community is larger than that of neighbors belonging to the
rest communities, in which case the network has strong community structure. With the in-
crease of μ, the community structure will become vaguer and harder to detect by algorithms.
13 different benchmark networks with values of μ ranging from 0.0 to 0.6 with step size 0.05
are generated as GN benchmark datasets in our experiments. Experiments about influences of
parameters and local search procedure are carried out on GN artificial datasets.

In MMCD, the parameter Gmax is used to determine the maximum number of generations.
The parameter SD indicates the maximum size of dominant population. To simplify the discus-
sion, the maximum size of active population SA and size of clone population SC are set as SA =
SD/5 and SC = SD for all experiments in this paper. The parameterMI denotes maximum itera-
tions in local search procedure. Firstly, to test the influence of parameter Gmax on perfor-
mance of MMCD, the other two parameters are set as SD = 110 andMI = 1. After running the
algorithm 10 times with different Gmax, the average results are shown in Fig 5(a). The results
at the range of μ 2 [0.45,0.6] are amplified inside the figure. Since the size of benchmark net-
work is not large, the difference among the results is modest. However, it can be still observed
that when mixing parameter μ is above 0.4, the results with larger Gmax are generally better
than those with smaller Gmax except for a few cases such as Gmax = 8 at μ = 0.45 and at μ =
0.50. Since MMCD is a non-deterministic algorithm, these exceptions may be due to the
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nondeterminacy of the algorithm. The difference between results with larger Gmax gets
smaller. This phenomenon agrees with the general convergence rule that when objective func-
tion values are closer to their best values, they will converge more slowly or even stop converg-
ing. What’s more, we can see that our algorithm converges rather fast. In order to get the
balance between performance quality and running time, the Gmax is set to 10 for MMCD on
GN benchmark datasets.

Secondly, the influence of parameter SD is studied by letting it change from 30 to 150 with
interval 20 and fixing Gmax = 10,MI = 1. The whole average results and the part amplified re-
sults at the range of μ 2 [0.5,0.6] are shown in Fig 5(b). It is shown that when μ� 0.4, all of
them detect the true community structure. With the increase of μ, algorithms with larger SD
generally perform slightly better except for a few cases such as results of SD = 50 at μ = 0.5 and
of SD = 90 at μ = 0.55. In fact, larger population has bigger probability to include the better

Fig 5. BestNMI values averaged over 10 runs for MMCD. (a) Different number of generations; (b) Different maximum sizes of dominant population; (c)
Different maximum iteration numbers.

doi:10.1371/journal.pone.0126845.g005
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individual, but leads to longer running time at the same time. We set SD = 110 for MMCD on
GN benchmark datasets as it can get ideal results within reasonable running time.

Finally, the influence of maximum iterations of local search procedureMI is tested by fixing
SD = 110 and Gmax = 10. The whole results and the part amplified results are shown in Fig 5
(c). The results of differentMI are almost the same even when μ> 0.4. The tiny differences are
disordered which may result from nondeterminacy of MMCD. So the influence ofMI on
MMCD is negligible and it is set as 1 for all experiments in this paper.

The maximum iteration number of local search procedure has been proved to have little in-
fluence on performance of MMCD. It is natural to come up with the doubt whether the local
search procedure itself has influence on results of MMCD. In order to validate the effect of
local search procedure, we develop a multi-objective optimization version of MMCD by re-
moving the local search procedure and name it as MOA. MMCD and MOA with different gen-
eration numbers ranging from 1 to 80 with interval 1 are carried out on GN benchmark at μ =
0.2 ten times. The average best results of NMI and Q are displayed in Fig 6(a) and 6(b), respec-
tively. It is obviously shown that MMCD can find the true partition and obtain the largest
value of NMI and Q in just two generations. On the other hand, the increases of NMI and Q of
MOA are much slower and it can’t find the true partition even after 80 generations. What’s
more, the obvious fluctuation of the results of MOA indicates it is less stable than MMCD. In a
word, the convergence results, the convergence speed and the stability of MMCD are all superi-
or to MOA which demonstrates the positive effect of the local search procedure in algorithm.

Comparison with Other Methods
In this section, performance of MMCD on finding single community structure is illustrated by
comparing with other related methods. Three single objective optimization community detec-
tion methods named as CNM (A1), Louvain (A2), Infomap (A3), a single objective genetic al-
gorithm GA-Net (A4), a single objective memetic algorithmMeme-Net (A5), two multi-
objective genetic algorithms, MOGA-Net (A6) and MOCD (A7), and two simplified versions

Fig 6. BestNMI andQ values averaged over 10 runs for MMCD and MOA. (a) BestNMI values with different generation numbers; (b) BestQ values with
different generation numbers.

doi:10.1371/journal.pone.0126845.g006
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of MMCD named as MOA (A8) and LSA (A9) will be compared with MMCD (A10) on GN
benchmark, LFR benchmark and a variety of real-world networks.

CNM [33] is a modularity optimization algorithm for community detection. Louvain [34]
also optimize modularity but with a fast multistep greedy technique. Infomap [8] is based on
the information theory to minimize a description length of information flow on network. All of
three above methods are classic single objective optimization algorithms which are used to be
compared with evolution based community detection algorithms.

GA-Net [21] is a representative single objective genetic algorithm which adopts a genetic al-
gorithm to optimize a new objective function called community score. Meme-Net [14] is a sin-
gle objective memetic algorithm which combines genetic algorithm with hill-climbing local
search procedure to optimize the modularity. MOGA-Net [12] is a representative multi-objec-
tive evolutionary algorithm for community detection which optimizes two conflicting objec-
tives, community score and community fitness. MOCD [13] is also a multi-objective
evolutionary algorithm which optimizes two objectives similar to MMCD, i.e. two terms of
modularity. All of four above methods are evolution based community detection algorithms
from different perspectives.

As mentioned above, MOA is a simplified version of MMCD by removing the local search
procedure from MMCD. It is used to validate the importance of local search procedure. On the
other hand, LSA denotes a local search algorithm corresponding to local search part of
MMCD. Since LSA can only optimize single objective function, we choose modularity as its ob-
jective function. In fact, LSA is the modularity-specialized LPA (LPAm) [24] which is used to
test the importance of multi-objective scheme of MMCD.

Firstly, all algorithms are compared on GN benchmark dataset. The experimental parame-
ters of algorithms on GN benchmark dataset are listed in Table 5. Fig 7(a) summarizes the best
NMI values averaged over 10 runs for different algorithms on GN benchmark dataset. When
the mixing parameter μ is no bigger than 0.05, all algorithms can detect the true community
structure. However, with the increase of μ, the performance of GA-Net, MOGA-Net, MOCD
and MOA gradually decline. When the μ is no smaller than 0.25 and no bigger than 0.4, only
Infomap, Louvain and MMCD can detect the true community structure. As the μ further in-
creases, the network becomes vaguer and all algorithms can’t find the true partition. However,
from the curves we can see that the MMCD still has the largest NMI values which indicates it is

Table 5. Parameters of algorithms for GN and LFR benchmark datasets.

Algorithm Pop Gmax pc pm MI

GN LFR GN LFR GN LFR

GA-Net 100 200 100 200 0.8 0.2 — —

Meme-Net 100 200 100 200 0.8 0.2 — —

MOGA-Net 100 200 100 200 0.8 0.2 — —

MOCD 100 200 100 200 0.8 0.2 — —

MOA 100 200 100 200 — 0.01 — —

LSA — — — — — — 10 20

MMCD 100 200 10 20 — 0.01 1 1

Pop represents the population size (it is maximum size of dominant population for MOA and MMCD), Gmax denotes the maximum generation number, pc
and pm are the crossover and mutation probability, respectively. MI is the maximum iterations in local search procedure.—denotes that the value does

not exist.

doi:10.1371/journal.pone.0126845.t005
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superior to the rest algorithms on GN benchmark datasets with μ bigger than 0.4. Note that the
average NMI values of MOA, MOCD and MOGA-Net are much smaller than that of MMCD
when μ is bigger than 0.25, though their maximum generation numbers are much larger than
that of MMCD. This further demonstrates the positive importance of local search procedure in
MMCD, as MOA, MOCD and MOGA-Net do not have local search procedure.

Since the GN benchmark cannot reflect some important features of real-world networks,
another benchmark named as LFR [35] is also adopted to test different algorithms. The LFR
benchmark is similar to real-world networks by introducing heterogeneity into degree and
community size distributions of a network which are governed by power laws with exponents
τ1 and τ2, respectively. Each node shares a fraction 1 − μ of edges with the nodes of its commu-
nity and a fraction μ of edges with the rest of the network. μ is also called the mixing parameter.
Network structure becomes fuzzier as μ’s value gets larger. In our experiments, 17 networks
with the mixing parameter increasing from 0 to 0.8 with an interval of 0.05 are generated. Each
network contains 1000 nodes and the community size ranges from 10 to 50. The averaged de-
gree for each node is 20 and the max node degree is 50. τ1 = 2 and τ2 = 1.

The experimental parameters of algorithms for LFR benchmark dataset are listed in Table 5.
Fig 7(b) summarizes the best NMI values averaged over 10 runs for different algorithms on
LFR benchmark dataset. Infomap can’t detect the true community structure at μ = 0, but its
NMI value achieves 1 after μ = 0 until μ = 0.55. MMCD and LSA detect the true community
structure when the μ is no bigger than 0.2, and their NMI values are quite close to 1 until μ =
0.6. When μ surpasses 0.6, MMCD has the largest NMI value. However, two other multi-objec-
tive community detection methods, i.e. MOCD and MOA, have much poorer performance
than MMCD when μ is bigger than 0.2. Since the main difference between them and MMCD is
that they don’t have local search procedure, this illustrates the advantages of local search proce-
dure in MMCD again.

Fig 7. BestNMI values averaged over 10 runs for different algorithms on artificial datasets. (a) On GN benchmark dataset; (b) On LFR benchmark
dataset. Meme-Net and MOGA-Net can’t give outputs within a given time (4 hours).

doi:10.1371/journal.pone.0126845.g007

Multi-Objective Community Detection Algorithm

PLOSONE | DOI:10.1371/journal.pone.0126845 May 1, 2015 19 / 31



Real-world networks may have different properties compared with artificial benchmark
datasets, so all algorithms are further compared on a set of real-world networks. The descrip-
tion of each network is as follows.

Zachary’s karate club network (N1) [36] describes the friendships between 34 members of a
karate club. The network was divided into two groups after a dispute between the administrator
and the instructor.

Journal index network (N2) [37] consists of 40 journals as nodes from 4 different fields, i.e.
physics, chemistry, biology and ecology. Edges exist between journals if at least one article
from one journal cited an article in the other one during 2004.

Dolphin social network (N3) [38] consists of 62 bottlenose dolphins living in Doubtful
Sound, Zealand. The ties between dolphin pairs were established by observation of statistically
significant frequent association. The network naturally splits into two large groups.

Lesmis network (N4) [39] is a weighted network of coappearances of characters in Victor
Hugo’s novel “Les Miserables”. The network is regarded as unweighted one by set the weight of
all edges as 1 in this paper.

Polbooks network (N5) consists 105 nodes representing books about US politics sold by the
online book seller Amazon.com. Edges represent frequent co-purchasing of books by the same
buyers. Books were divided by Newman [40] into three groups according to their political
alignments, i.e. liberal, neutral and conservative.

Word adjacency network (N6) [41] is the network of common words in the novel “David
Copperfield” by Charles Dickens. Nodes represent the most commonly occurring adjectives
and nouns. Edges connect any pair of words that occur in adjacent position in the text of
the book.

American College Football network (N7) [1] represents American football games between
Division IA colleges during regular season Fall 2000. Nodes represent teams and edges repre-
sent the regular games between two teams. The teams are grouped into 12 conferences.

SFI network (N8) [1] represents collaborations between scientists at the Santa Fe Institute
during any part of calendar year 1999 or 2000. Edges connect any pair of scientists if they coau-
thored one or more articles during the same time period. The biggest component of the SFI
graph with 118 nodes is used in the experiment.

Jazz musicians network (N9) [42] includes 198 bands that performed between 1912 and
1940. An edge between two bands is established if they have at least one musician in common.
Neural network (N10) [43] represents the neural network of C. Elegans. Metabolic network
(N11) [44, 45] represents metabolic system of C. Elegans. Email network (N12) [46] represents
e-mail interchanges between members of the Univeristy Rovira i Virgili. Netscience network
(N13) [41] records coauthorship of scientists working on network theory and experiments.
Power network (N14) [43] represents the topology of the Western States Power Grid of the
United States.

All the networks above are obtained from Internet [47–49]. The basic information of these
real-world networks is shown in Table 6. All networks are divided into three groups according
to their sizes, i.e., set of networks with nodes number smaller than 150 is group one (G1 = {N1,
N2, N3, N4, N5, N6, N7, N8}), set of rest networks with nodes number smaller than 1000 is
group two (G2 = {N9, N10, N11}), and the rest is group three (G3 = {N12, N13, N14}). The ex-
perimental parameters of algorithms for three network groups are listed in Table 7. Since
MMCD converges faster, we adopt much smaller maximum generation number for it.

For each network, we run all algorithms 10 times and record the maximum and average re-
sults and standard deviations. The comparison results of modularity are shown in Table 8. As
CNM, Louvain and Infomap are deterministic algorithms, their standard deviations are 0 all
the time which means they don’t have stability problem. Standard deviations of these three
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algorithms are removed since they don’t need to test stability performance. Bold number in
each row denotes the best value in corresponding item. It can be seen from the Table 8 that
there are 42 items in total for all networks. MMCD acquires the best values in 29 items. Specifi-
cally, MMCD has better or equal values in all criteria compared to GA-Net and Meme-Net
which are two single objective evolutionary algorithms. Therein, Meme-Net is a single objective
memetic algorithm which includes a local search procedure. This illustrates the superiority of
multi-objective optimization strategy of MMCD. MMCD also has better or equal values in al-
most all criteria compared to MOGA-Net except in Qstd of N1, and it has better or equal per-
formance on almost all networks compared to MOCD except on N1 and N8. What’s more,
almost 90 percent of items of MOA are worse than MMCD and no item of MOA is better than

Table 7. Parameters of algorithms for real-world datasets.

Algorithm Pop Gmax pc pm MI

G1 G2 G3 G1 G2 G3 G1 G2 G3 G1 G2 G3 G1 G2 G3

GA-Net 100 200 300 100 100 200 0.8 0.8 0.8 0.2 0.2 0.2 — — —

Meme-Net 100 200 300 100 100 200 0.8 0.8 0.8 0.2 0.2 0.2 — — —

MOGA-Net 100 200 300 100 100 200 0.8 0.8 0.8 0.2 0.2 0.2 — — —

MOCD 100 200 300 100 100 200 0.8 0.8 0.8 0.2 0.2 0.2 — — —

MOA 100 200 300 100 100 200 — — — 0.01 0.01 0.01 — — —

LSA — — — — — — — — — — — — 10 10 20

MMCD 100 200 300 10 20 40 — — — 0.01 0.01 0.01 1 1 1

Pop represents the population size (it is maximum size of dominant population for MOA and MMCD), Gmax denotes the maximum generation number, pc
and pm are the crossover and mutation probability, respectively. MI is the maximum iterations in local search procedure. — denotes that the value does

not exist.

doi:10.1371/journal.pone.0126845.t007

Table 6. The basic information of the real-world networks used in this paper.

Network Nodes Edges hki
N1 34 78 4.588

N2 40 189 9.450

N3 62 159 5.129

N4 77 254 6.597

N5 105 441 8.400

N6 112 425 7.589

N7 115 613 10.66

N8 118 200 3.390

N9 198 2742 27.70

N10 297 2345 15.79

N11 453 2025 8.940

N12 1133 5451 9.622

N13 1589 2742 3.451

N14 4941 6594 2.669

Nodes and Edges represent nodes’ number and edges’ number of network, respectively. hki denotes the

average degree of the network.

doi:10.1371/journal.pone.0126845.t006
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Table 8. The maximum, average and standard deviation of best modularity values (Qmax,Qavg,Qstd) obtained over 10 runs on fourteen real-word
networks.

Network Criteria A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

N1 Qmax 0.3807 0.4188 0.4020 0.4198 0.4020 0.4156 0.4198 0.4198 0.4198 0.4198

Qavg 0.3807 0.4188 0.4020 0.4084 0.3990 0.4156 0.4198 0.4188 0.3850 0.4191

Qstd — — — 0.0087 0.0097 0.0000 0.0000 0.0024 0.0226 0.0015

N2 Qmax 0.4596 0.4783 0.4567 0.4783 0.4783 0.4783 0.4783 0.4783 0.4783 0.4783

Qavg 0.4596 0.4783 0.4567 0.4664 0.4675 0.4783 0.4783 0.4768 0.4783 0.4783

Qstd — — — 0.0132 0.0114 0.0000 0.0000 0.0031 0.0000 0.0000

N3 Qmax 0.4955 0.5188 0.5230 0.4950 0.5164 0.5253 0.5285 0.5285 0.5107 0.5285

Qavg 0.4955 0.5188 0.5230 0.4719 0.4989 0.5183 0.5265 0.5244 0.5001 0.5269

Qstd — — — 0.0137 0.0210 0.0070 0.0014 0.0032 0.0099 0.0014

N4 Qmax 0.5006 0.5583 0.5513 0.5402 0.5397 0.5476 0.5600 0.5537 0.5357 0.5600

Qavg 0.5006 0.5583 0.5513 0.5138 0.5247 0.5426 0.5570 0.5482 0.5318 0.5578

Qstd — — — 0.0250 0.0171 0.0060 0.0024 0.0029 0.0042 0.0023

N5 Qmax 0.5020 0.5268 0.5268 0.5076 0.5248 0.5267 0.5272 0.5271 0.5185 0.5272

Qavg 0.5020 0.5268 0.5268 0.4910 0.5151 0.5222 0.5265 0.5160 0.5014 0.5271

Qstd — — — 0.0152 0.0108 0.0058 0.0013 0.0017 0.0138 0.0001

N6 Qmax 0.2953 0.2886 0.0333 0.2199 0.1198 0.1746 0.2810 0.2526 0.2782 0.3082

Qavg 0.2953 0.2886 0.0333 0.1507 0.0166 0.1280 0.2634 0.2380 0.2679 0.3002

Qstd — — — 0.0315 0.0366 0.0229 0.0110 0.0094 0.0109 0.0036

N7 Qmax 0.5772 0.6043 0.6005 0.5798 0.6031 0.5960 0.6021 0.6044 0.6031 0.6046

Qavg 0.5772 0.6043 0.6005 0.5602 0.5895 0.5609 0.5874 0.5978 0.5863 0.6040

Qstd — — — 0.0171 0.0172 0.0184 0.0080 0.0067 0.0158 0.0006

N8 Qmax 0.7335 0.7506 0.6509 0.6060 0.7212 0.7484 0.7506 0.7466 0.6101 0.7487

Qavg 0.7335 0.7506 0.6509 0.5779 0.7076 0.7424 0.7500 0.7382 0.5671 0.7435

Qstd — — — 0.0200 0.0137 0.0048 0.0005 0.0077 0.0215 0.0031

N9 Qmax 0.4389 0.4451 0.4423 0.4049 0.4386 0.2952 0.4374 0.4430 0.4448 0.4451

Qavg 0.4389 0.4451 0.4423 0.2936 0.3717 0.2929 0.4279 0.4404 0.4375 0.4449

Qstd — — — 0.0412 0.0779 0.0084 0.0060 0.0023 0.0068 0.0002

N10 Qmax 0.3692 0.3835 0.3917 0.2808 0.3786 0.2433 0.3737 0.3710 0.3913 0.4061

Qavg 0.3692 0.3835 0.3917 0.2070 0.3096 0.1370 0.3440 0.3622 0.3647 0.4046

Qstd — — — 0.0627 0.0567 0.0691 0.0148 0.0075 0.0165 0.0017

N11 Qmax 0.4061 0.4320 0.4194 0.3082 \ 0.2728 0.3931 0.3825 0.3993 0.4415

Qavg 0.4061 0.4320 0.4194 0.2963 \ 0.2217 0.3845 0.3715 0.3905 0.4362

Qstd — — — 0.0075 \ 0.0272 0.0062 0.0099 0.0059 0.0037

N12 Qmax 0.5130 0.5720 0.5340 0.3122 \ 0.3475 0.4771 0.5219 0.5170 0.5749

Qavg 0.5130 0.5720 0.5340 0.2920 \ 0.3076 0.4433 0.4921 0.4930 0.5725

Qstd — — — 0.0116 \ 0.0215 0.0218 0.0223 0.0156 0.0018

N13 Qmax 0.9555 0.9592 0.9581 \ \ \ 0.9410 0.9394 0.8691 0.9394

Qavg 0.9555 0.9592 0.9581 \ \ \ 0.9269 0.9347 0.8629 0.9347

Qstd — — — \ \ \ 0.0071 0.0032 0.0039 0.0032

N14 Qmax 0.9341 0.9348 0.8175 \ \ \ 0.7372 0.6799 0.6269 0.8270

Qavg 0.9341 0.9348 0.8175 \ \ \ 0.7308 0.6721 0.6230 0.8224

Qstd — — — \ \ \ 0.0039 0.0043 0.0021 0.0030

— denotes the value is removed. \ denotes the corresponding algorithms can’t give outputs within a given time (3 hours). Bold number in each row

denotes the best value in corresponding item.

doi:10.1371/journal.pone.0126845.t008
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MMCD. Since above three multi-objective optimization methods don’t include local search
procedure, it demonstrates the advantages of the integrated local search procedure in MMCD.
Specifically, larger Qmax and Qavg values mean MMCD has better convergence ability and the
smaller Qstd values showMMCD is more stable. As for rest four single objective heuristic meth-
ods, only Louvain is competitive with MMCD. The Qmax and Qavg values of CNM on most net-
works are smaller than MMCD except on Netscience network and Power network. Similarly,
the Qmax and Qavg values on nearly all networks of Infomap are smaller than MMCD except on
Netscience network. Finally, that the Qmax and Qavg values of MMCD are larger than or equal
to those of LSA on all networks and the Qstd values of MMCD are smaller than those of LSA ex-
cept on Power network indicates that the evolutionary algorithm can help local search proce-
dure escape from local optima and get better global solutions.

Among real-world networks, Karate, Journal, Dolphins, Polbooks and Football networks
have ground-truth community structures. The comparison results of NMI on these five net-
works are shown in Table 9. Standard deviations of three deterministic algorithms are removed
as well. Bold number in each row denotes the best value in corresponding item. From the
Table 9 it is obviously shown that the NMImax and NMIavg values of single objective optimiza-
tion algorithms (i.e. CNM, Louvain, Infomap, GA-Net, Meme-Net and LSA) on most real-
world networks are much lower than those of multi-objective optimization methods with only
a few exceptions. The reason is that they try to optimize only one objective function (modulari-
ty, map equation, modularity density, etc.) and get only single solution. If the objective function
can’t exactly describe the network properties, the sole solution will not match the true partition.
This observation demonstrates the drawbacks of single objective optimization methods men-
tioned in the previous section. The advantage of local search procedure is further proven by
comparing MMCD with MOA. All NMIavg values of MOA except that on Karate network are
smaller than those of MMCD and all NMIstd values of MOA are larger than those of MMCD
which illustrate the wonderful effects of local search procedure on convergence ability and sta-
bility of MMCD. Besides, MMCD is comparable with MOGA-Net and MOCD on NMI values.

Table 9. The maximum, average and standard deviation of bestNMI values (NMImax, NMIavg, NMIstd) obtained over 10 runs on five real-word net-
works with known true partition.

Network Criteria A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

N1 NMImax 0.5767 0.4469 0.5925 0.5657 1.0000 1.0000 0.8361 1.0000 0.5235 1.0000

NMIavg 0.5767 0.4469 0.5925 0.5272 0.6333 1.0000 0.8361 0.9039 0.4781 0.8689

NMIstd — — — 0.0339 0.1289 0.0000 0.0000 0.1221 0.0318 0.0691

N2 NMImax 0.8791 1.0000 0.7500 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

NMIavg 0.8791 1.0000 0.7500 0.9691 0.9250 1.0000 1.0000 0.9354 1.0000 1.0000

NMIstd — — — 0.0542 0.1208 0.0000 0.0000 0.0401 0.0000 0.0000

N3 NMImax 0.4378 0.3645 0.3655 0.3440 0.4556 1.0000 0.8809 0.8809 0.3333 1.0000

NMIavg 0.4378 0.3645 0.3655 0.2853 0.3857 0.9808 0.8809 0.6358 0.2960 0.9167

NMIstd — — — 0.0270 0.0469 0.0606 0.0000 0.1413 0.0214 0.0575

N5 NMImax 0.5079 0.4759 0.4759 0.3595 0.4363 0.5979 0.6065 0.6007 0.3720 0.5765

NMIavg 0.5079 0.4759 0.4759 0.3330 0.3858 0.5885 0.5763 0.5060 0.3273 0.5716

NMIstd — — — 0.0184 0.0367 0.0104 0.0132 0.0510 0.0197 0.0056

N7 NMImax 0.6698 0.8529 0.9232 0.9268 0.8955 0.9065 0.9158 0.8847 0.9239 0.9397

NMIavg 0.6698 0.8529 0.9232 0.8630 0.8455 0.8358 0.8812 0.8154 0.8858 0.9261

NMIstd — — — 0.0418 0.0491 0.0362 0.0221 0.0504 0.0410 0.0053

— denotes the value is removed. Bold number in each row denotes the best value in corresponding item.

doi:10.1371/journal.pone.0126845.t009
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Hierarchical Community Structures of Network
Not only MMCD can figure out high quality community structures, but also the population na-
ture of its solutions can help find multi-resolution community structures in one run. Firstly, a
simple hierarchical extension of the GN benchmark is adopted as hierarchical artificial network
with built-in hierarchical community structures [50]. The network consists of 256 nodes which
are arranged in 16 communities with 16 nodes each. The 16 communities are further grouped
into four supercommunities, each of which has four smaller communities. The structure with
16 communities is regarded as level 1 community structure and the one with four supercom-
munities is regarded as level 2 community structure. Communities in level 1 and level 2 struc-
tures are called level 1 and level 2 communities, respectively. Each node shares average of 10
edges with the nodes in its level 1 community and 5 edges with nodes in three other level 1
communities in its level 2 community. In addition, each node has average of 2 edges with the
rest of the network.

The MMCD is carried out on hierarchical GN benchmark once. The nondominated front of
final solution population is shown in Fig 8(a). By analyzing the solution population, two com-
munity structure levels are both exactly found out. The arrow symbols with numbers of com-
munity in Fig 8(a) and 8(b) indicate the solutions corresponding to two community partition
levels. Two representative community structures with 16 smaller communities and 4 larger
communities found by MMCD are plot in Fig 9. In addition to two representative community
structure levels, we further analyze the other solutions obtained by MMCD. The relationships
between some objective values and the number of communities are shown in Fig 8(b). NMI − 1
and NMI − 2 denotes NMI values between the partitions found by MMCD and the true level 1
and level 2 community structures, respectively. It is shown that level 2 community structure
has the largest modularity (Q) value which indicates that single modularity optimization algo-
rithms may fail to figure out the level 1 community structure. In fact, the modularity of level 1
community structure even is not the second largest one. The modularity values of all partitions
with community numbers between 4 and 16 are close to 0.6. These partitions are formed by

Fig 8. Results of MMCD on hierarchical GN benchmark. (a) Nondominated front of final solution population; (b) Relationships between some objective
values and the number of communities.

doi:10.1371/journal.pone.0126845.g008
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merging several smaller level 1 communities together, so they are all reasonable partitions be-
sides the level 1 and level 2 community structures. However, for those partitions with low mod-
ularity values, some tightly connected level 1 communities are split. They are unreasonable
community structures. So modularity can be used to select reasonable partitions from the solu-
tion population obtained by MMCD. IntraQ and InterQ are two objective functions of
MMCD. From the diagram, we can see that IntraQ decreases monotonically with the number
of communities while InterQ increases monotonically. This observation agrees with the prop-
erty mentioned in the previous section that the maximization of IntraQ and InterQ tend to
find communities of opposite sizes. The NMI − 1 value and NIM − 2 value also have an oppo-
site change trends along community numbers within range from 4 to 16 which means higher
similarity with level 1 community structure will inevitably leads to lower similarity with level 2
community structure at the range [4, 16].

We further illustrate the advantages of MMCD for identifying multi-resolution structures
on real-world networks. The MMCD is carried out on each real-world network once. Fig 10(a)
shows the nondominated front of MMCD on Karate network. Fig 10(b)–10(d) correspond to
three solutions labeled as I-III in nondominated front, respectively. Fig 10(b) divides network
into two communities exactly as true partition and its modularity value is 0.3715. The maxi-
mummodularity value found by MMCD is 0.4918 whose corresponding community structure
is in Fig 10(c). In fact, Fig 10(c) further divides each community in Fig 10(b) into two smaller
ones. The partition with the maximum modularity may not correspond to true partition in re-
ality, so algorithms only optimizing modularity may fail to find out the true partition of a net-
work. Fig 10(d) is another structure obtained with three communities whose modularity is
0.4020.

Fig 11(a) displays the nondominated front of Journal network. Community structure in Fig
11(b) corresponds to solution I in Fig 11(a) which has the maximal NMI value and maximal
modularity value at the same time. Fig 11(c) and 11(d) are two other partitions corresponding
to solution II and III, respectively. The upper two communities in Fig 11(b) are mainly about
physics and chemistry respectively, and the lower two communities are mainly about biology
and ecology respectively. From the perspective of relations between disciplines, the upper two
communities have stronger connections and can be merged into a larger community, and it is
the same to the lower two communities.

Fig 12(a) shows the nondominated front obtained on Dolphins network. Partitions corre-
sponding to maximal NMI value (solution I) and maximal modularity value (solution II) are il-
lustrated in Fig 12(b) and 12(c). Fig 12(c) divides the larger community in Fig 12(b) into four
smaller ones. Fig 12(d) is another obtained solution with three communities corresponding to
solution III in Fig 12(a) whose modularity value is 0.4932. The structure of Fig 12(d) is just

Fig 9. Two representative community structures obtained by MMCD on hierarchical GN benchmark.

doi:10.1371/journal.pone.0126845.g009
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between the structures of Fig 12(b) and Fig 12(c). It divides the larger community in Fig 12(b)
into two smaller ones and merges four smaller communities in Fig 12(c) into two larger ones.

The nondominated front obtained on Football network is shown in Fig 13(a). Groups of
nodes gathered together represent true communities of Football network in Fig 13(b)–13(d).
MMCD do not obtain the exactly true partition. The maximal NMI value obtained in one run
is 0.9304 of solution I and the corresponding partition is shown in Fig 13(b). The number of
communities in Fig 13(b) is 12 which is the same as true partition, however it misclassifies sev-
eral nodes in two small communities in the middle of the network because such two communi-
ties are loosely connected inside themselves. Fig 13(c) shows the partition corresponding to
solution II with the maximal modularity. Two small communities in the middle of the network
disappear and their nodes are included into other communities. Solution III also has relative
large modularity value and its community structure is illustrated in Fig 13(d). It has six com-
munities. The main difference between solution III and two previous partitions is that it merges
eight communities into four larger ones, each of which roughly consists of two smaller

Fig 10. Results of MMCD on Karate network. (a) Nondominated front; (b)-(d) correspond to three solutions labeled as I-III in nondominated front,
respectively. Squares and circles represent true communities. Different colors denote communities obtained by MMCD.

doi:10.1371/journal.pone.0126845.g010
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communities. By examining the names of football teams in the network carefully, some inter-
esting phenomena are discovered. It is reasonable to assume that the names of teams reflect the
location of them, e.g., Utah in yellow community in Fig 13(c) is in Utah of America. Based on
this assumption, it can be observed that teams in each community detected by MMCD are
mainly from the states near each other with only a few exceptions. For example, teams named
Utah, NevadaLasVegas, NewMexico, ColoradoState, Wyoming, SanDiegoState, NewMexicoS-
tate, UtahState and so on in yellow community in Fig 13(c) are mainly from the southwest re-
gion of USA according to their names. Teams named WashingtonState, Washington, Oregon,
OregonState, UCLA, California, ArizonaState and so on in pink community in Fig 13(c) are
mainly from the pacific region of USA. In fact, the pacific region is adjacent to southwest re-
gion in America, so it is reasonable that the yellow community and pink community in Fig 13

Fig 11. Results of MMCD on Journal network. (a) Nondominated front; (b)-(d) correspond to three solutions labeled as I-III in nondominated front,
respectively. Circles, Squares, diamonds and triangles represent physics, chemistry, biology and ecology journals in true partition, respectively. Different
colors denote communities obtained by MMCD.

doi:10.1371/journal.pone.0126845.g011
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(c) are merged together in Fig 13(d). Other communities have the similar phenomena. This ob-
servation agrees with the common schedule arrangements of sports such as Divisions in Na-
tional Basketball Association (NBA).

Conclusions
In this paper, we formulate community detection as a multi-objective optimization problem
which regards the two contradictory parts of modularity function as two objective functions. In
order to optimize such two objective functions effectively, a multi-objective memetic algorithm
named as MMCD is proposed. MMCD combines multi-objective evolutionary mechanism
with a local search procedure which helps algorithm to locate better solutions more effectively.
An effective local search procedure is designed by addressing three issues, i.e., determining ini-
tial individuals, defining appropriate fitness function and designing effective local search strate-
gy. The extensive experiments on both artificial and real-world networks demonstrate the
advantages of MMCD from three aspects. The integrated local search procedure is proven to
speed up the convergence to optimal solutions and make the algorithm more stable. What’s
more, experiments show that MMCD not only can find good community structures effectively,

Fig 12. Results of MMCD on Dolphins network. (a) Nondominated front; (b)-(d) correspond to three solutions labeled as I-III in nondominated front,
respectively. Squares and circles represent true communities. Different colors denote communities obtained by MMCD.

doi:10.1371/journal.pone.0126845.g012

Multi-Objective Community Detection Algorithm

PLOSONE | DOI:10.1371/journal.pone.0126845 May 1, 2015 28 / 31



but also can figure out hierarchical structures which are useful to analyze networks in multi-
resolution levels. Some meaningful extensions can be made to MMCD in the future. There are
only two objective functions considered in MMCD. When more objective functions are incor-
porated, the nondominated front will be much more complicated. How to calculate the normal
line direction of nondominated front effectively is still an open question.
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