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Abstract
The ability of target proteins to bind structurally diverse compounds and compounds with

different degrees of promiscuity (multi-target activity) was systematically assessed on the

basis of currently available activity data and target annotations. Intuitive first- and second-

order target promiscuity indices were introduced to quantify these binding characteristics

and relate them to each other. For compounds and targets, opposite promiscuity trends

were observed. Furthermore, the analysis detected many targets that interacted with com-

pounds representing a similar degree of structural diversity but displayed strong tendencies

to recognize either promiscuous or selective compounds. Moreover, target families were

identified that preferentially interacted with promiscuous compounds. Taken together, these

findings further extend our understanding of the molecular basis of polypharmacology.

Introduction
Polypharmacology is an emerging theme in pharmaceutical research and chemical biology
based upon the premise that compounds frequently act on multiple targets [1–5], thereby trig-
gering complex functional responses and pharmacological effects. Compound promiscuity, de-
fined as the ability of small molecules to specifically interact with multiple targets, provides the
molecular basis of polypharmacology [6,7]. On the other hand, since there are many more ac-
tive compounds than targets available, polypharmacology also requires the ability of targets to
specifically bind multiple (and structurally distinct) ligands. In other words, many pharmaceu-
tically relevant proteins must be “good” small molecule targets. Otherwise, polypharmacology
on a larger scale would be difficult to rationalize. An analysis of compounds active against the
current spectrum of pharmaceutical targets has revealed that many targets recognize large
numbers of structurally diverse compounds [8], which is well in accord with assumed ligand-
target interaction characteristics underlying polypharmacology, as discussed above.

While compound/drug promiscuity has been the topic of a number of investigations and re-
views [5–7], promiscuity at the target level has thus far only been little explored in a systematic
manner. Compound promiscuity can be quantified by collecting available high-confidence
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activity/target annotations, thereby providing a conservative estimate of the degree of promis-
cuity [5,6]. Analogously, one might estimate target promiscuity by counting the number of
known structurally distinct active compounds for a given target for which well-defined activity
measurements are available. Such simple measures are sufficient to assign different promiscuity
levels to active compounds and targets on the basis of currently available data or aid in the gen-
eration of compound-based target or drug-target networks. However, they do not provide any
information about the potential interplay of promiscuity at the ligand and target levels.

Having studied compound promiscuity from different viewpoints [6,7], we have been inter-
ested in exploring target promiscuity taking compound promiscuity information into account.
Specifically, we have asked the questions if there might be detectable tendencies for targets to
either recognize promiscuous or selective compounds and how such tendencies might relate to
the ability of targets to interact with increasing amounts of structurally diverse compounds.
The analysis presented herein was designed to address these and related questions and has
yielded in part surprising results, as detailed in the following.

Material and Methods

Data collection
From the latest version of ChEMBL (release 20) [9], compounds were extracted for which di-
rect interactions (i.e., assay relationship type “D”) with human targets at the highest level of
confidence (i.e., assay confidence score 9) were reported. Only “single protein” targets were
considered. Two different types of potency measurements, including (assay-independent)
equilibrium constants (Ki) and (assay-dependent) IC50 values, were separately collected (be-
cause these types of measurements should not be directly compared). To ensure high data con-
fidence, only explicitly defined potency values were retained. All approximate measurements
such as “>”, “<”, or “*” were discarded. Compounds with multiple Ki or IC50 values for the
same target were selected if all values fell within the same order of magnitude. Then, the geo-
metric mean of all values was calculated as the final potency annotation. In addition, only com-
pounds with at least 1 μM potency (i.e., pKi or pIC50� 6) were considered. Furthermore, all
targets with active compounds were organized into target families following the protein classi-
fication hierarchy of ChEMBL and UniProt family annotations [10].

On the basis of these selection criteria, two activity measurement-dependent data sets were
generated, including a Ki and an IC50 value-based set. If a compound was annotated with both
Ki and IC50 values, it was assigned to both sets. In addition, from all qualifying compounds,
molecular scaffolds were extracted by removing all side chains and retaining ring systems and
linkers between them [11]. Scaffolds were isolated to represent structurally distinct compound
series. In addition, scaffolds were further reduced to cyclic skeletons (CSKs) by converting all
heteroatoms to carbon and all bond orders to one [12]. Hence, each CSK represented a set of
topologically equivalent scaffolds.

Assessment of target promiscuity
To assess the degree of target promiscuity, different indices were defined, as illustrated in Fig 1.
On the basis of high-confidence compound activity data assembled from ChEMBL, the activity
profile of a compound was generated by collecting all available target annotations. Accordingly,
for each compound, the number of its known targets was counted to yield the compound pro-
miscuity index (CPI). In the example in Fig 1, compound 1 is active against three targets, yield-
ing a CPI value of 3. Furthermore, compounds active against the same target were grouped.
For example, in Fig 1, target TA interacts with four compounds (1, 6, 9, 10) and target TC with
a distinct set of three compounds (2, 4, 5). For each target, the number of unique scaffolds
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representing active compounds was determined as the first-order target promiscuity index
(TPI_1). Furthermore, CPI values of all compounds known to interact with a given target were
summed and the average CPI value was calculated to yield the second-order target promiscuity
index (TPI_2). For example, in Fig 1, the four compounds active against target TA contain
three unique scaffolds, resulting in a TPI_1 value of 3. In addition, these four compounds have
a total of nine target annotations, yielding a TPI_2 value of 2.3 for TA. By contrast, compounds
2, 4, and 5 are exclusively active against TC, resulting in a TPI_2 value of 1 for TC.

Results and Discussion

Activity data and compound sets
Initially, we briefly summarize the results of data selection and curation and the assembly of
the data sets upon which our subsequent promiscuity analysis was based.

Fig 1. Calculation of first- and second-order target promiscuity indices. Shown is a workflow that illustrates how first- and second-order target
promiscuity indices are calculated. On the basis of compound activity data, the activity profile of a compound is generated by collecting all available target
annotations (top). Accordingly, for each compound, the number of targets it is active against is counted to yield the compound promiscuity index (CPI). Then,
all compounds active against the same target are grouped (bottom). For each target, the number of unique scaffolds contained in its ligands is determined as
the first-order target promiscuity index (TPI_1). Furthermore, CPI values of all compounds interacting with a given target are summed and the average CPI
value is calculated as the second-order target promiscuity index (TPI_2).

doi:10.1371/journal.pone.0126838.g001

Quantifying Target Promiscuity

PLOS ONE | DOI:10.1371/journal.pone.0126838 May 22, 2015 3 / 14



Organization of compound data sets. On the basis of the data selection and curation cri-
teria detailed above, two sets of compounds were assembled for which high-confidence activity
data for human targets were available by separately considering Ki and IC50 measurements, as
reported in Table 1. In this context, it is also noted that records of inactivity in target-based as-
says were not available for compounds selected for promiscuity analysis. The Ki value-based set
consisted of 43,086 compounds active against 613 targets. These compounds formed a total of
67,049 compound-target interactions and were represented by 16,071 unique scaffolds and
7880 CSKs. The IC50 set was much larger than the Ki set, containing 75,244 compounds anno-
tated with 1069 targets forming nearly 95,000 compound-target interactions. The IC50 set com-
pounds yielded 28,875 scaffolds and 12,856 CSKs (Table 1).

Compound, scaffold, and CSK distributions. Fig 2 reports the distribution of com-
pounds, scaffolds, and CSKs over different target proteins. For ~35% (Ki set) and ~31% (IC50

set) of all targets, only one to five compounds were available, as reported in Fig 2A. For the ma-
jority of the targets, 10 or more active compounds were available. Moreover, 32 targets (i.e.,
~5%; Ki) and 36 targets (~3%; IC50) with more than 500 active compounds were identified. Fig
2B and 2C reveal comparable distributions for scaffolds and CSKs for the Ki and IC50 sets. For
large numbers of target proteins, active compounds were found to contain one to five scaffolds
or CSKs. In particular, for ~20% (Ki) and ~16% (IC50) of the targets, only one scaffold or CSK
was available. On average, compounds active against each target yielded 45 and 38 scaffolds
and 29 and 25 CSKs for the Ki and IC50 value-based sets, respectively, reflecting the average de-
gree of scaffold diversity across current pharmaceutical targets. Compared to the IC50 set, tar-
gets in the Ki set were generally associated with more compounds, scaffolds, and CSKs. Targets
for which fewer than 10 active compounds were available were not further considered (given
their low degree of exploration). The final Ki and IC50 data sets assembled for promiscuity anal-
ysis comprised 354 and 649 targets, respectively.

Promiscuity indices
Concept. Different promiscuity indices were defined for our analysis, as illustrated in

Fig 1. Counting the number of target annotations for a given compound yielded the compound
promiscuity index (CPI), a standard measure for assessing the degree of compound promiscuity
that is often applied [6]. Furthermore, to assess target promiscuity, two indices were defined.
For each target, the number of unique molecular scaffolds from all active compounds was de-
termined, yielding the first-order target promiscuity index (TPI_1). This index accounted for
the ability of a target to interact with structurally diverse compounds. We note that this index
did-by design- not consider the number of compounds represented by each scaffold, which

Table 1. Data sets.

Number of Ki IC50

Compounds 43,086 75,244

Targets 613 1069

Interactions 67,049 94,508

Scaffolds 16,071 28,875

CSKs 7880 12,856

For the Ki and IC50 value-based data sets, the number of compounds, targets, and compound-target

interactions is reported. In addition, the number of unique scaffolds and cyclic skeletons (CSKs) obtained

from active compounds is provided.

doi:10.1371/journal.pone.0126838.t001
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would often bias the statistics. For example, if a scaffold represented 10 related active analogs,
it was considered equivalent to a scaffold representing two actives. Hence, the total number of
different core structures recognized by a given target was accounted for by TPI_1 (not the abso-
lute number of compounds represented by them). In addition, CPI values of all compounds ac-
tive against a target were summed and the average CPI value was calculated to yield the second-
order target promiscuity index (TPI_2). Thus, TPI_2 accounted for the degree of promiscuity
among all compounds active against the target. Accordingly, different from TPI_1, the total
number of active compounds was taken into consideration in the calculation of TPI_2. The
minimal value of TPI_2 was 1, indicating that all compounds active against a given target were
exclusively active against this target. By contrast, a TPI_2 value of 5 would indicate that com-
pounds active against the target were on average active against five targets. Therefore, compari-
son of TPI_1 and TPI_2 revealed if a target that interacted with a certain amount of
structurally distinct compounds might preferentially bind promiscuous compounds (with
multi-target activities) or more selective compounds. These comparison can be extended to
multiple targets, for example, targets with the same or similar TPI_1 values (i.e., targets binding
compounds with a comparable level of scaffold diversity) or entire target families. For example,
in Fig 1, targets C and D interact with compounds represented by a single scaffold, thus

Fig 2. Distributions of compounds, scaffolds, and cyclic skeletons. The percentage of targets with increasing numbers of (A) compounds, (B) scaffolds,
and (C) CSKs is reported for the Ki (red) and IC50 (blue) data sets.

doi:10.1371/journal.pone.0126838.g002
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yielding the same TPI_1, but different TPI_2 values (i.e., 1.0 vs. 2.7) because these active com-
pounds have different promiscuity.

We also note that the conventional CPI definition applied here does not take into account if
targets of promiscuous compounds are related to each other or not. However, it has recently
been shown that only ~2% of bioactive compounds are promiscuous across different unique
target families on the basis of high-confidence activity data (as used herein) [7]. Thus, most
promiscuous compounds act on related targets, as quantified by CPI calculations. This also has
implications for the consideration of other possible compound promiscuity measures. For ex-
ample, one could envision introducing a CPI variant to account for activity against unique tar-
get families, rather than individual targets. However, given the very low promiscuity rate across
different families, most values of this CPI variant would be one (and hence not suitable for
TPI_2 calculations).

Distribution of promiscuity indices. For 354 (Ki) and 649 targets (IC50) with at least 10
active compounds, the distribution of TPI_1 and TPI_2 values is reported in Fig 3. The value
distributions were comparable for the Ki and IC50 sets. The TPI_1 value distribution in Fig 3A
shows that the majority of targets had active compounds yielding more than 10 distinct scaf-
folds. The average TPI_1 value was 77 and 61 for the Ki and IC50 sets, respectively, indicating
that many targets bound structurally diverse compounds (i.e., active compounds had many dif-
ferent core structures). Fig 3B shows the TPI_2 value distribution. Similar to previous studies
reporting that ~35% of active database compounds had multi-target activity [1,7], our CPI cal-
culations revealed that ~33% of compounds in the Ki but only 17% in the IC50 set were active
against more than one target. The average CPI values were 1.6 (Ki) and 1.3 (IC50).

In light of these findings, one might also anticipate obtaining comparably low TPI_2 values.
Surprisingly, however, only ~18% of all targets interacted with compounds having exclusive
single-target activity (i.e., producing a TPI_2 value of 1). By contrast, more than 80% of the tar-
gets interacted with one or more compounds having multi-target activity. For ~36% (Ki) and
~30% (IC50) of the targets, TPI_2 values larger than 2 were obtained (with average TPI_2 val-
ues of 2.1 and 2.0 for the Ki and IC50 sets, respectively). Hence, essentially opposite promiscuity
trends were observed for compounds and targets. Whereas the majority of compounds was
only active against a single target, most targets bound varying numbers of
promiscuous compounds.

Comparison of TPI_1 and TPI_2 values
Relationships between TPI_1 and TPI_2 values were further analyzed. As shown in Figs 4A
and 5A for the Ki and IC50 sets, respectively, there was no apparent correlation between these
two target promiscuity indices. Targets with TPI_1 values of less than 200 had a much broader
distribution of TPI_2 values than targets with largest TPI_1 values (> 200). Furthermore, heat
map representations of promiscuity index combinations were generated for targets from the Ki

and IC50 sets, shown in Figs 4B and 5B, respectively. In these heat maps, rows represent seven
ranges of TPI_2 values and columns six ranges of TPI_1 values. Each cell indicates the number
of targets having corresponding TPI_1 and TPI_2 values. In addition, each row reflects the dis-
tribution of TPI_1 values for targets having comparable TPI_2 values and each column the dis-
tribution of TPI_2 values for targets having similar TPI_1 values.

For the Ki set (Fig 4B), targets interacting with compounds containing up to 200 distinct
scaffolds displayed many different TPI_2 values covering five or six value ranges. The overall
largest TPI_2 value (11.1) was observed for the histamine H2 receptor with a set of 26 antago-
nists (represented by 24 scaffolds). Hence, these antagonists were highly promiscuous. The ma-
jority of the targets produced low to intermediate TPI_2 values ranging from 1 to 3. The five
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most populated cells in the heat map contained 211 targets (i.e., ~60%). A subset of 117 targets
with active compounds containing at most 20 scaffolds yielded TPI_2 values between 1 and 2.

Table 2 lists 10 exemplary targets from the Ki set that yielded the same or very similar
TPI_1 values of varying magnitude but significantly different TPI_2 values. For example, com-
pounds active against dihydroorotate dehydrogenase and NADPH oxidase 5 contained the
same number scaffolds. However, inhibitors of dihydroorotate dehydrogenase had no other re-
ported activities (TPI_2 value of 1.0), whereas all inhibitors of NADPH oxidase 5 had multi-
target activity, resulting in a TPI_2 value of 3.4. In addition, for two related G protein coupled
receptors (GPCRs; purinergic receptor P2Y12 and alpha-2c adrenergic receptor), known antag-
onists contained comparably large numbers of scaffolds (142 vs. 149), but their TPI_2 values
differed significantly (1.0 vs. 5.9). Thus, purinergic receptor P2Y12 antagonists were exclusively
active against this target, whereas 87.5% of the alpha-2c adrenergic receptor antagonists had
multi-target activity.

Fig 3. Distribution of target promiscuity indices. Shown is the distribution of (A) TPI_1 and (B) TPI_2 values for 354 targets from the Ki (red) and for 649
targets from the IC50 set (blue), respectively. For each of these targets, at least 10 active compounds were available.

doi:10.1371/journal.pone.0126838.g003

Quantifying Target Promiscuity

PLOS ONE | DOI:10.1371/journal.pone.0126838 May 22, 2015 7 / 14



Fig 4. Comparison of promiscuity indices for targets in the Ki set. (A) For 354 targets from the Ki set, their TPI_1 and TPI_2 values are compared. Each
dot in the scatter plot represents a target. The correlation coefficient (R2) for TPI_1 and TPI_2 values is provided. (B) Relationships between TPI_1 and
TPI_2 values are captured in a heat map in which cells are colored according to the population density of targets. In addition, the number of targets is
reported for cells that were populated with more than 20 targets using white numbers.

doi:10.1371/journal.pone.0126838.g004
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Fig 5. Comparison of promiscuity indices for targets in the IC50 set. For 649 targets from the IC50 set, their TPI_1 and TPI_2 values are compared. The
representation is according to Fig 4.

doi:10.1371/journal.pone.0126838.g005
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For the IC50 set (Fig 5B), observations similar to the Ki set were made. Four targets were
identified that produced TPI_2 values greater than 10 including alpha-1d, -2b, and -2c adren-
ergic receptors and fibroblast growth factor receptor 3. Compounds active against these targets
contained nine to 43 scaffolds. As reported in Table 3, a variety of targets were identified hav-
ing the same or very similar TPI_1 but significantly different TPI_2 values.

Taken together, these results revealed that many different targets that recognized ligands
with comparable degrees of structural diversity displayed markedly different tendencies to
preferentially interact with selective or promiscuous compounds; a rather unexpected finding.

Table 2. Targets with comparable TPI_1 and different TPI_2 values (Ki set).

ChEMBL Target ID Target name #Cpds TPI_1 TPI_2 MT-Cpds

1966 Dihydroorotate dehydrogenase 17 5 1.0 0%

1926497 NADPH oxidase 5 15 5 3.4 100%

3232687 Apelin 13 10 1.0 0%

2938 Protein kinase C gamma 12 10 5.0 100%

4360 Monocarboxylate transporter 1 33 20 1.0 0%

1937 Histone deacetylase 2 32 20 4.0 100%

3717 Hepatocyte growth factor receptor 107 54 1.0 0%

1850 Dopamine D5 receptor 100 50 5.0 97.0%

2001 Purinergic receptor P2Y12 529 142 1.0 0%

1916 Alpha-2c adrenergic receptor 281 149 5.9 87.5%

Listed are 10 exemplary targets from the Ki set that yielded the same or very similar TPI_1 values (of varying magnitude) but significantly different TPI_2

values. For each target, its ChEMBL ID, name, and the number of active compounds (#Cpds) are provided together with TPI_1 and TPI_2 values. In

addition, the percentage of compounds active against multiple targets (MT-Cpds) is given. “0%” means that all compounds only have reported activity

against the given target but no others.

doi:10.1371/journal.pone.0126838.t002

Table 3. Targets with comparable TPI_1 and different TPI_2 values (IC50 set).

ChEMBL Target ID Target name #Cpds TPI_1 TPI_2 MT-Cpds

1163101 Inositol-requiring protein 1 14 5 1 0%

2154 Group IIE secretory phospholipase A2 13 5 4.6 100%

3593 Lanosterol synthase 16 10 1 0%

3935 Serine/threonine-protein kinase Aurora-C 16 10 4.4 56.3%

1919 Voltage-gated calcium channel subunit alpha-2-1 37 25 1 0%

2056 Dopamine D1 receptor 44 26 8.7 77.3%

1921 Vasopressin V1b receptor 103 49 1 0%

287 Sigma opioid receptor 64 49 5.5 56.3%

5555 Acyl-CoA desaturase 300 144 1 0%

216 Muscarinic acetylcholine receptor M1 252 147 3.6 79.0%

Listed are 10 exemplary targets from the IC50 set that yielded the same or very similar TPI_1 values (of varying magnitude) but significantly different

TPI_2 values. For each target, its ChEMBL ID, name, and the number of active compounds (#Cpds) are provided together with TPI_1 and TPI_2 values.

In addition, the percentage of compounds active against multiple targets (MT-Cpds) is given. “0%” means that all compounds only have reported activity

against the given target but no others.

doi:10.1371/journal.pone.0126838.t003
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Target family promiscuity
In light of these observations, the distribution of TPI_2 values was analyzed for 10 target fami-
lies from the Ki set and 14 families from the IC50 set, which contained at least 10 targets each,
as reported in Table 4. As discussed in the following, target families displayed very different
promiscuity patterns.

Fig 6 reports the intra-family distribution of TPI_2 values in a pie chart format. In Fig 6A
(Ki set), three target families (ID 59, 64, and 208) that contained 11 or 12 targets yielded dis-
tinct intra-family TPI_2 distributions. For the chemokine receptor family (ID 64), ~1/3 of the
targets only interacted with selective compounds (TPI_2 value of 1) while ~2/3 yielded TPI_2
values between 1 and 2, due to ligands with multi-target activity. For the nuclear hormone re-
ceptor family (208), no target was found to only interact with selective compounds. Fig 6B
(IC50 set) reveals comparable results for four families (ID 64, 143, 222, and 234) with 10 or 11
targets including chemokine receptors, which displayed varying preferences for selective or
multi-target compounds.

Several of the target families in Table 4 were closely related to each other including different
GPCR, kinase, or protease families. For related families, different promiscuity patterns also
emerged. For example, four GPCR families (ID 64, 165, 183, and 281) were associated with
both the Ki and IC50 sets and showed different distributions of TPI_2 values. The degree of tar-
get promiscuity increased from the chemokine (64) over the lipid-like ligand (165) and short
peptide (281) to the monoamine (183) receptor family. Hence, targets in these families showed
an increasing tendency to bind promiscuous ligands. Furthermore, the serine/threonine (275)
and tyrosine (319) kinase families displayed similar distributions of TPI_2 values for the IC50

set (Fig 6B) that notably differed from the PI3/PI4-kinase family (222).

Table 4. Target families.

Target family ID Target family #Targets

Ki IC50

59 Carbonic anhydrases 12 -

64 Chemokine receptors 11 10

73 Cysteine proteases - 17

75 Cytochrome P450 isoforms - 16

143 Histone deacetylases - 11

165 Lipid-like ligand receptors 16 26

180 Metallo proteases 19 24

183 Monoamine receptors 35 30

208 Nuclear hormone receptors 12 21

222 PI3/PI4-kinases - 10

234 Phosphodiesterases - 11

275 Ser_Thr protein kinases 24 88

278 Serine proteases 28 20

281 Short peptide receptors 45 47

319 Tyr protein kinases 14 48

Listed are 15 target families that contain 10 or more targets. For each family, its ID according to Fig 6 is

given and the number of targets in the Ki and IC50 sets is reported. “-” indicates that there are fewer than 10

targets for the corresponding family in the Ki or IC50 set. For these families, the distribution of TPI_2 values

is reported in Fig 6.

doi:10.1371/journal.pone.0126838.t004
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Fig 6. Target family promiscuity. The distribution of targets with varying TPI_2 values is reported in pie charts for (A) 10 target families from the Ki set and
(B) 14 families from the IC50 set that contain at least 10 individual targets. Each color-coded pie chart segment reports the proportion of targets with TPI_2
values falling into a specific range. Seven value ranges are defined and colored-coded, as indicated on the right. For each family, an ID (bold) and the
number of targets are provided. For example, “59: 12”means that family 59 contains 12 targets (Ki set). Target families are listed in Table 4.

doi:10.1371/journal.pone.0126838.g006

Quantifying Target Promiscuity

PLOS ONE | DOI:10.1371/journal.pone.0126838 May 22, 2015 12 / 14



Finally, the analysis of TPI_2 value distributions also identified target families with an over-
all strong preference to interact with promiscuous compounds including, for example, the car-
bonic anhydrase (Fig 6A; ID 59), histone deacetylase (Fig 6B; 143), or monoamine receptor
family (Fig 6A and 6B; 183). In particular, histone deacetylases and monoamine receptors con-
tinue to be high-profile therapeutic targets and medicinal chemistry efforts are often heralded
to identify new active compound classes for them. However, targets in these families are shown
to display a strong tendency to recognize promiscuous compounds and are likely to be involved
in many polypharmacological effects. The characteristics should be considered in the context
of drug development.

Conclusions
An intuitive methodological framework has been introduced to systematically explore target
promiscuity. Although the exploration of polypharmacology has thus far mostly focused on
compound promiscuity, differences in the ability of targets to interact with small molecules in-
evitably also make important contributions to the formation of polypharmacological networks.
For our analysis of target promiscuity, simple first- and second-order target promiscuity indi-
ces were designed to quantify the tendency of targets to recognize structurally diverse and pro-
miscuous compounds and relate these characteristics to each other. Care was taken to select
high confidence activity data and target annotations as a basis for the analysis. Because assay-
independent Ki and assay-dependent IC50 values cannot be directly compared, Ki- and IC50-
based data sets were separately generated and yielded similar results in promiscuity analysis.
However, for compounds and targets, opposite promiscuity trends were detected. The majority
of compounds were only active against a single target, whereas most targets bound varying
numbers of promiscuous compounds. On the basis of TPI_1 calculations, many targets inter-
acted with compounds representing different levels of scaffold diversity. TPI_2 calculations
then revealed that many targets preferentially bound either selective or promiscuous com-
pounds. Importantly, a variety of targets with ligands of comparable structural diversity dis-
played markedly different preferences to interact with compounds having single- or multi-
target activity. This was also observed for targets capable of binding structurally highly diverse
compounds. Furthermore, preferences for binding of selective vs. promiscuous compounds
emerged at the level of target families that mostly interacted with promiscuous compounds.
Structural features of targets or families that correlate with their propensity to interact with
promiscuous vs. selective compounds are currently unknown, which provides opportunities
for future research.

Taken together, the findings reported herein further improve our understanding of promis-
cuity at the level of targets and refine our view of the molecular basis of polypharmacology. In
addition, through calculation and comparison of target promiscuity indices, as introduced
herein, it can easily be estimated how likely it might be to identify selective compounds for a
target of interest on the basis of available compound activity data for this and closely related
targets. Furthermore, targets that are most likely to contribute to polypharmacology networks
can also be identified via the same route. These practical applications should be of considerable
interest in pharmaceutical research.
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