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Abstract

In this paper, the fractional-order generalized Laguerre operational matrices (FGLOM) of
fractional derivatives and fractional integration are derived. These operational matrices are
used together with spectral tau method for solving linear fractional differential equations
(FDEs) of order v (0 < v < 1) on the half line. An upper bound of the absolute errors is ob-
tained for the approximate and exact solutions. Fractional-order generalized Laguerre pseu-
do-spectral approximation is investigated for solving nonlinear initial value problem of
fractional order v. The extension of the fractional-order generalized Laguerre pseudo-spec-
tral method is given to solve systems of FDEs. We present the advantages of using the
spectral schemes based on fractional-order generalized Laguerre functions and compare
them with other methods. Several numerical examples are implemented for FDEs and sys-
tems of FDEs including linear and nonlinear terms. We demonstrate the high accuracy and
the efficiency of the proposed techniques.

Introduction

FDEs describe accurately many models in science and engineering such as bioengineering ap-
plications, porous or fractured media, electrochemical processes, viscoelastic materials [1-7].
Indeed most of FDEs do not have exact solutions. Therefore, there have been great attempts to
develop numerical methods to solve them. Several analytical and numerical techniques for
solving FDEs are proposed in [8-19].

Spectral methods are efficient techniques for solving differential equations accurately see for
instance [20-27]. Bhrawy and Abdelkawy [4] proposed the formulation of Jacobi pseudospec-
tral scheme for solving multi-dimensional fractional Schrodinger equations subject to different
boundary conditions. The operational matrices for fractional variable-order of the derivative
and integral of Jacobi polynomials were derived and used based on Jacobi tau scheme to solve
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the variable-order FDEs [28]. Recently, new accurate Petrov-Galerkin spectral solutions for
FDEs are developed and analyzed in [29]. Moreover, spectral pseudospectral technique was in-
vestigated in [30] to approximate the solution of fractional integro-differential equation.

In the context of numerical methods for solving differential equations in the half-line, the
first attempts to use Laguerre polynomials in the implementation of spectral methods to solve
differential equations was the work of Gottlieb and Orszag [31]. After that, a series of published
papers have appeared describing a range of various spectral methods based on Laguerre basis
functions. Mikhailenko [32] developed an efficient algorithm based on the spectral Laguerre
approximations of temporal derivatives for time-dependent problems. The authors of [33] pro-
posed a new orthogonal family of generalized Laguerre functions to approximate the solution
of differential equations of degenerate type. Xiao-Yong and Yan [34] investigated a pseudos-
pectral scheme based on a class of modified generalized Laguerre to introduce a very efficient
method for solving second-order differential equation in a long-time interval. Gulsu et al. [35]
presented the Laguerre collocation method for solving a class of delay difference equations.
Tatari and Haghighi [36] proposed an efficient mixed spectral collocation scheme to solve ini-
tial-boundary value problems in which Legendre and generalized Laguerre polynomials were
used to discretize space and time variables.

On the other hand, results on numerical methods for FDEs seem to be lacking in the litera-
ture. In recent years, some authors have presented the generalized and modified generalized
Laguerre spectral tau and collocation techniques for solving several types of linear and nonline-
ar FDEs on the half-line, (see [37, 38] and the references therein). However, it is also a very im-
portant task to develop the spectral techniques to obtain highly accurate solutions of FDEs on
the half-line. Therefore, we present in this article a new family of orthogonal functions defined
on the half-line namely, fractional-order generalized Laguerre functions.

In the present paper, we aim to construct the fractional-order generalized Laguerre opera-
tional matrices, of fractional derivative and integration, which are used to produce two efficient
fractional-order generalized Laguerre tau schemes for solving numerically linear FDEs with
initial conditions. We also aim to propose a new fractional-order generalized Laguerre colloca-
tion (FGLC) scheme for approximating the solution FDE of order v (0 < v < 1) with nonlinear
terms. This approach is based on the operational matrix of fractional derivatives of these new
functions, in which the nonlinear FDE is collocated at the N zeros of the fractional-order gener-
alized Laguerre functions (FGLFs) defined on the interval (0, co). The resulting algebraic equa-
tions plus one algebraic equation (obtained from the initial condition), constitute (N+1)
nonlinear algebraic equations. These equations may be solved by the Newton’s iterative tech-
nique to find the unknown fractional-order generalized Laguerre functions coefficients. We ex-
tend the application of FGLC method based on FGLFs to solve a system of linear FDEs with
fractional orders less than 1. Several numerical examples are implemented to confirm the
high accuracy and effectiveness of the new methods for solving FDES of fractional order
v(0<v<l).

The remainder of this paper is organized as follows: we start by presenting some necessary
definitions of the fractional calculus theory. In Section 3, we define the fractional-order gener-
alized Laguerre functions. Section 4 is devoted to derive the main theorem of the paper which
provides explicitly an operational matrix of fractional-order derivatives of the FGLFs. In Sec-
tion 5, we derive an operational matrix of fractional-order integrals of the FGLFs. In Section 6,
we apply the spectral methods based on the derived operational matrices FGLFs for solving
FDEs and systems of FDEs including linear and nonlinear terms of fractional order less than 1.
Several examples to illustrate the main ideas of this work are presented in Section 7. Finally
Section 8 outlines the main conclusions.
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Preliminaries and Notations

We start this section by reviewing some definitions of fractional derivatives and integrals
which will be employed in the sequel.

Definition 2.1. The Riemann-Liouville integral J* f(x) and the Riemann-Liouville fractional
derivative D" f(x) of order v > 0 are defined by

1 * v—1
I'f(x) = —/ x—t tydt, x>0,
16 = o [ 07w 0
Ifx) = fx),
and
D'f(x) =J""D"f(x) = ;/x (x — t)miv*lﬂ (t)dt, x>0 (2)
N CT(m—v)J, dtm ’ ’
respectively, where m—1 < v < m, m € N" and I'(.) denotes the Gamma function.
Definition 2.2. The Caputo fractional integral and derivative operator satisfies
, F(g+1)
vy — S+
N T FS TR ®)
0, for f €N, and f < [v],
D¥ =0 T(p+1) 4)

TG+i-v) 7, for BE N, and B> [v] or ¢N and B > |v],

where |v] and [v] are the floor and ceiling functions respectively, while N= {1, 2, ...} and N
={0,1,2,...}.
The Caputo’s fractional differentiation is a linear operation,

D'(4f (x) + ug(x)) = AD'f(x) + uD'g(x), (3)

where A and y are constants.
If m-1 <v<m,m¢€ N, then

DT'f(x) =f(x),  ]'D'f(x) =f(x) — mz F9(0%) ’li, x> 0. (6)

Convert multi-order FDE into a system of FDE
Consider the multi-order FDE

D'u(x) = f(x,u(x), D u(x),...,Du(x)),u®(0) =¢, k=0,1,...,m, (7)

where m < v <m+1,0 < 8; <, < ... <, <v. This equation may be converted to a system
of FDEs, as follows. Let ©; = u and assume

Douy = u,. (8)
Case (i) If m—1 < §; < 6, < m, then assume
D>y, = u,. (9)

Cases (ii) Consider m—1 < §; < m < 8,. If §; = m—1, then assume D 1y, = u,. If m—1 < 8,
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< m < &,, then assume

D"y, = u,. (10)

similar steps can be converted the initial value problem Eq (7) to a system of FDE.

Fractional-Order Generalized Laguerre Functions
We recall below some relevant properties of the generalized Laguerre polynomials (Szego [39]
and Funaro [40]). Let A = (0, 0o) and w'®(x) = x* ¢ “be a weight function on A. Consider the

following inner product and norm
1

() = () ) w0 0) e, [l = ()2,
A
Next, let L") (x) be the well-known generalized Laguerre polynomials. We know from [39]
that for a > -1,

L(D‘)

i+1

1 . x . . .
(x) = H_—l[(2l +a+1-—x)LP(x) - i+l x)], i=1,2,..., (11)

where L (x) = 1and L (x) = 1 + o — x.
The set of generalized Laguerre polynomials is a L2, (A)-orthogonal system, thus

/ LY (x) L (x)w (x)dx = I, (12)
0

T(ktotl
where h, = [0,

The analytical form of the generalized Laguerre polynomial on the interval A is given by

L (x) =zl:(—1)kr(k+2(f$j(:l_)k)! oA =01 (13)

The special value

q (“) — (_ qi_q (l_]_1)| (a) i

where L;“) (0) = I}(é:g;,), will be of important use later.

Various kind of Laguerre polynomials/functions are used extensively in approximation the-
ory and numerical analysis, for the interested reader see, [41-46], and the references therein.

Definition of FGLFs

Now, we define a new fractional orthogonal functions based on generalized Laguerre polyno-
mials to obtain the solution of FDEs more accurately. The FGLFs may be given by considering
the change of variable t = x* and A > 0 on generalized Laguerre polynomials. Let the FGLFs
LY (x") be denoted by L (x), thanks to Eq (11), then L (x) can be obtained from

; 1 . ] )
L) = g [@id et 1= 0 -+l @], =12, (19)
1

where L (x) = 1and L (x) = 1 4+ o — .
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According to Eq (13), the analytic form of L"” (x) of degree iA is given by

A " T(i+o+1) :
L (x) =) (=1) *i=0,1,... 1
0= e o Y =0 (16)
Lemma 3.1 The set of fractional-order generalized Laguerre functions is the L , , (A)-orthog-
onal system,
/ L;“";') (x)LE (x)w™? (x)dx = h, (17)
0

I'k+a+1) K

where W' P(x) = A x4 e gnd b, = k! ’ J=5

0, j#k

Proof. The proof of this lemma can be accomplished directly by using the definition of
FGLFs and the orthogonality property of generalized Laguerre polynomials.

The approximation of functions
Let u(x) € L2, (A), then u(x) may be expressed in terms of FGLFs as

we) = el ),
j=0 (18)
5 = h_/ u(x)L](“"')(x)w(“=’“)(x)dx, ] =0,1,2,---.
kJo

In practice, only the first (N+1)-terms fractional-order generalized Laguerre functions are con-
sidered. Then we have

uy(x) = ZCJL’M (x) = C'¢(x). (19)

where the fractional-order generalized Laguerre coefficient vector C and the fractional-order
generalized Laguerre vector ¢(x) are given respectively by
C" = Jlepryeenyeyls

o(x) = [L7 (), L (x), ..., Ly (0]

Definition 3.1 (Generalized Taylor’s formula). Suppose that D* u(x) € Clo, L] fork=0,1,
... N, then we have

(20)

N Xk . x(N+1A ;
u(x):;mD u(0 )+mD u(n),

0

where 0 < n < x,Vx € [0, L], Also, one has

N+

"W o O B Rm i D

N kA
k=0

where E; > |D™*D* u(n)|. In case of A = 1, the generalized Taylor’s formula is the classical Tay-
lors formula.
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Now, the following Theorem presents an upper bound for estimating the error based on the
expansion in terms of FGLFs.

Theorem 3.2 Suppose that D* u(x) € Clo, L] fork=0,1,...,N, (3+2N+a) > 0 and IP’(;,‘"') =

Span{Lé“';‘) (x),---, L") (x)} If un(x) = CT ¢(x) is the best approximation to u(x) from P37,

then the error bound is presented as follows

VI(3+2N +0a) E,

T(NA+1)

[ (x) = uy () Lo <

where E; > D™D y(x)|, x € [0, L].
Proof. Considering the generalized Taylors formula

N ki N+

u(x) = Zkav“(m) +mD u(n),

k=0

where 0 < 17 < x, Vx € [0, L], making use of Definition 3.1, we obtain

ki N2

'T(N+1)A+1)

X

u(x) — ;mm(m) <E

Since un(x) = CT ¢(x) is the best approximation to u(x) from Pﬁ‘z), then by the definition of the
best approximation, we have

Viy(x) € PYY, || u(x) = uy(x) [leo < 1 u(x) = vy () llyen-

It turns out that the previous inequality is also true if

N ki
k=

X ; )
— E 7Dk/~ + ]P’(W').
VN(X) - F(k/l"‘ 1) M(O ) € N

Accordingly, we obtain

2

[ ux) —uy(®) [Fen <

u(x) - ;r(%;l)pkiu(ow

wlnd)
iEE /00 x2(N+1)).x(oc+1))v—le—x’idx (21)
T(N+1)A+1)7 )
E; T(3+2N +0)
[(NZ+1)°

Now by taking the square roots, the theorem can be proved. Hence, an upper bound of the ab-
solute errors is obtained for the approximate and exact solutions.
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Fractional-Order Generalized Laguerre Operational Matrix of
Fractional Derivatives

Let u(x) € L2, (A), then u(x) may be expressed in terms of fractional-order generalized
Laguerre functions as

ulx) = Z W)
(22)
1 , s

G = / u(OL ()W (x)dx, j=0,1,2, .

In practice, only the first (N+1)-terms fractional-order generalized Laguerre functions are con-
sidered. Then we have

j{:azf“” = C"¢(x). (23)

where the fractional-order generalized Laguerre coefficient vector C and the fractional-order
generalized Laguerre vector ¢(x) are given respectively by

C' = [epepnayls
_ ) (2.4) () [ \]T (24)
¢(X> - [L(J (X), Ll (X), e 7LN (X)] ’
then the derivative of the vector ¢(x) can be expressed by
dg(x)
— DW 25
22— D), (25)

where D is the (N+1)x(N+1) operational matrix of first-order derivative. If we define the g
times repeated differentiation of fractional-order generalized Laguerre vector ¢(x) by D? ¢(x).

D'¢(x) ~ D (x), (26)

where g is an integer value and D@ is the operational matrix of differentiation of ¢(x).
Theorem 4.1 Let ¢(x) be fractional-order generalized Laguerre vector defined in Eq (24) and
also suppose 0 < v < 1 then

D'g(x) =~ Do (x), (27)

where D™ is the (N+1) x (N+1) operational matrix of fractional derivative of order v in the
Caputo sense and is defined as follows:

0 0 0 . 0
S,(1,0,4)  S,(1,1,4)  S,(1,2,4) ... S,(1,N,7%)

D" = (28)
S,(,0,2)  S,(i,1,2)  S,(,2,4) ... S,(i,N, 1)
S,(N,0,2) S,(N,1,7) S,(N,2,2) ... S,(N,N,Z)
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where

D AT +a+1) TOk+1) T(k—24tats+1
i ZZ()]( ) Dk +1) T (k== )
’ skl i—k! (j—s)! T(Ak—v+1) T(k+a+1) T(a+s+1)

k=1 s=0

Proof. The analytic form of the fractional-order generalized Laguerre functions L'"” (x) of
degree i is given by Eq (16), Using Eqs (4), (5) and (16) we have

~ i [i+a+1) *
DL (x) = 1) D'x*
7 () ;< S TR Thrarn OF
. (29)
I Ti+a+1DT(Jk+1) P
= 2V R TG =y ) TRaas © 0 TN

Now, approximate x** ™ by N+1 terms of fractional generalized Laguerre series yields
/k‘*ZbLDU (30)

where b; is given from Eq (22) with u(x) = ¥ and

v
j JAT(k—=4o0+s+1
b= (-1 ( 2 ) (31)
— G=—s)! (N T(s+a+1)’
Employing Eqs (29)-(31) we get
N
DL (x) =Y 8,(i.j, AL (), i=1,---,N, (32)
=0
where
k+s v
(=) jl T(i+ o+ 1) T3k +1) F(k—1+oc+s+1)
(o 4 ;;s' Kb(Gi—k! G—s)! T(Ak—v+1) T(k+oa+1) T(a+s+1)
Accordingly, Eq (32) can be written in a vector form as follows:
DL (x) ~ [8,(i,0,1),8,(i,1,2),8,(,2,2), ..., S,(i, N, D)]p(x),  i=1,...,N. (33)

Eq (33) leads to the desired result.

Fractional-Order Generalized Laguerre Operational Matrix of
Fractional Integration
We aim to construct an operational matrix of fractional integration for fractional-order gener-
alized Laguerre vector.

If J7 §(x) is the q (g is an integer value) times repeated integration of fractional-order gener-
alized Laguerre vector ¢(x), then

Ji6(x) = PW(x), (34)

where P is the operational matrix of classical integration of ¢(x).
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Theorem 5.1 Let ¢(x) be the fractional-order generalized Laguerre vector and 0 < v < 1 then
J'é(x) = PYo(x), (35)

where P is the (N+1) x (N+1) operational matrix of fractional integration of order v and 0 < v
< 1 in the Riemann-Liouville sense and is defined as follows:

Q.(0,0,4) Q0,1,4) 9(0,2,2) --- Q(0,N,2)
Szv(1707i) S)v(171,2J gzv(172ai) T Szv(laPJ,i)
PV = (36)
Qv(i7 0, ;“) Qv(i7 1, ;“) Qv(i’ 2, ;“) T Qv(ia N, j~)
Q»(Nﬂoﬂj‘) Q»(Nﬂ:l?i) Q\<N727i) Qt(N7N7}”)
and
. (=) T(i+a+1) ! T(kA+1)
SEV(L],Z) = .
;F(k—l—ot—&—l) (i—k) K T(kA4+v—+1) o)
37
i (—1) F(r—&-k—&—%—i—a—&-l)
X ;
— G- T(r+a+1)
Proof. From Eqs (16) and (3), we have
: d I'i+a+1) K
\VL<'°<«/~) — _1 k v, kA
L) ;( TR Thktasn) ¥
. (38)
d Ii+oa+1) F'(kA+1) o
_ -1 k ki+v — 1.---.N.
;( TR Tl v D Tktas © 0 0L

The approximation of x***" using N+1 terms of fractional-order generalized Laguerre series,
yields

N

=D 6L ), (39)

j=0

kA+v

where ; is given from Eq (22) with u(x) = ™", that is

j AT(r+k+stat1
r A

6= (-1) — , j=1,2,---.N. (40)
J ; G=—r)!rT(r+a+1)
Thanks to Eqs (38) and (39), gives
5 N "
PLE () = Q)L (x), i=0,1,---,N, (41)
=0
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where

- o (D)'T(+a+1) ! T(ki+1)
Q)4 = ZF(k+o¢+1) Gk K T(kitvtl)

k=0

f(—l)'l"(r—l—k—I—%—&-oH—l) N
% ; G- ATrtary 7057

The vector form of Eq (41) is
PLE(x) 2 [9,,0,2),2,0,1,2),Q,,2,2), -, Q (LN, A)] 6lx),  i=0,1,-+,N. (42)

Eq (42) leads to the desired result.

Application of Fractional-Order Generalized Laguerre Operational
Matrices for FDEs

The main aim of this section is to propose two different ways to approximate linear FDEs
using the fractional-order generalized Laguerre tau method based on fractional-order Laguerre
operational matrices of differentiation and integration such that it can be implemented effi-
ciently. Also, we propose a new collocation method for solve nonlinear FDEs and systems of
FDEs based on the fractional-order generalized Laguerre ffunctions.

Operational matrix of fractional derivatives

A direct solution technique is proposed here, to solve linear FDEs using the fractional-order
generalized Laguerre tau method in combination with FGLOM.
Let us consider the linear FDE

D'u(x) + yu(x) = g(x), in A = (0,00), (43)
subject to
u(0) = u,, (44)

where y is a real constant coefficient and also 0 < v < 1, while D" u(x) = u”(x) is the Caputo
fractional derivative of order v.

Now we will implement an efficient algorithm to solve the fractional initial value problem;
Eqs (43)-(44). We approximate u(x) and g(x) by fractional-order generalized Laguerre polyno-
mials as

u(x) ~ ZC,LE“’;') (x) = C'¢(x), (45)

8(x) =~ Z&-LE“‘;’) (x) = G'o(x), (46)

where vector G = [gy, . . ., gN]T is known and C = [cq, . . ., cy]” is an unknown vector.
By using Theorem 4.1 (relation Eqs (27) and (45)) we have

D'u(x) ~ C"D'¢(x) = C"DY p(x), (47)

PLOS ONE | DOI:10.1371/journal.pone.0126620 May 21,2015 10/283
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Employing Eqs (45)-(47), the residual Ry(x) for Eq (43) can be written as
Ry(x) = (C™DY + yC" — G")o(x). (48)

The application of spectral tau scheme, see [47], provides a system of (N) linear equations,
(Ry(x), L (x)) = / w* (x)Ry(x)L*" (x)dx =0  j=0,1,...,N. (49)
0

Substituting Eq (45) in Eq (44) yields
u(0) = C"DY¢(0) = u,. (50)

The combination of Eqs (49) and (50) gives a system of algebraic equations, which may be
solved by any direct solver technique to obtain the spectral solution uy(x).

Operational matrix of fractional integration

Here, the fractional-order generalized Laguerre tau scheme in conjunction of the derived oper-
ational matrix is proposed for solving the linear FDEs. The basic steps of such scheme are: (i)
The aforementioned fractional differential equation is converted into a fractional integrated
form equation by making use of fractional integration for this equation. (ii) Subsequently, this
integrated form equation is approximated by expressing the numerical solution as a linear
combination of fractional-order generalized Laguerre functions. (iii) Finally, the problem is
transformed into a system of algebraic equations by using the operational matrix of fractional
integration of fractional-order generalized Laguerre functions.

In order to show the importance of FGLOM of fractional integration, we apply it to solve
the following FDE:

D'u(x) + yu(x) = f(x), in A =(0,00), (51)
with initial condition
u(0) = u,, (52)

where ¥ is a real constant coefficient and also 0 < v < 1. Moreover, D" u(x) denotes the Caputo
fractional derivative of order v for u(x) and the value 1, describes the initial condition of u(x).
If we apply the Riemann-Liouville integral of order v on Eq (51) and after making use of Eq
(6), we get the integrated form of Eq (51), namely

() = (0 %+ 7u(x) = T ), (53

this implies that

u(x) + 7 u(x) = g(x). (54)
where
g() = J'F(x) + ZJ—,
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Now, approximating u(x) and g(x) by employing the fractional-order generalized Laguerre
functions as

uy(x) = Y el (x) = CTo(x), (55)

i=0

8(x) = ZgiLE“’)“’ (x) = G'¢(x). (56)

In virtue of Theorem 5.1 (relation Eq (35)), the Riemann-Liouville integral of order v of Eq
(55), can be obtained from

J'uy(x) ~ C''¢(x) ~ CTPY (). (57)
Employing Eq (55) the residual Ry(x) for Eq (54) can be written as
Ry(x) = (C" +yC"P"Y — G")¢(x). (58)

Finally, applying the spectral tau method to the residual gives
(Ry(2), L (x)) o) = / Ry(x) w*(x) L™ (x)dx =0,  j=0,1,---,N. (59)
0

Also from Eq (55) into Eq (52) yields
u(0) = C"¢(0) = u,. (60)

Eqgs (59) and (60) generate N of linear equations.

Nonlinear initial FDEs

Regarding the nonlinear fractional initial value problems on the semi-infinite domain, we in-
vestigate the spectral fractional-order generalized Laguerre collocation FGLC scheme in com-
bination with FGLOM of fractional derivative to obtain an accurate approximate solution
un(x). The problem is collocated at N nodes of the fractional-order generalized Laguerre-Gauss
interpolation defined on A. The resulting equations along with the algebraic equation resumed
form the initial condition consist an algebraic system of (IN+1) equations which may be solved
numerically by Newton’s iterative method.

Consider the nonlinear FDE

D'u(x) = F(xv u(x)>7 in A = (0, OO), (61)
with initial conditions Eq (44), where F can be nonlinear in general.

In order to use FGLOM for this problem, we first expand u(x) and D" u(x) as Egs (45) and
(47) respectively. By substituting these approximations into Eq (61) we have

CTD(")qb(x) ~ F(x, CT¢(x)). (62)
Substituting Eqs (45) and (26) into Eq (44), we obtain
u(0) = C"¢(0) = u,. (63)

Collocating Eq (62) at the zeros of the fractional-order Laguerre functions provides N equa-
tions together with one equation from Eq (63) consist a system of N+1 nonlinear equations.
Consequently, the solution ux(x) may be archived by implementing Newton’s iterative scheme.

PLOS ONE | DOI:10.1371/journal.pone.0126620 May 21,2015 12/23
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Corollary 6.1 In particular, the special case for generalized Laguerre polynomials may be ob-
tained directly by taking A = 0 in the fractional-order Laguerre functions, which are denoted by

LY (x). However, the classical Laguerre polynomials may be achieved by replacing A = 1 and o =
0, which are used most frequently in practice and will simply be denoted by Li(x).

FGLC method for solving systems of FDEs

We use the FGLC method to numerically solve the general form of systems of nonlinear FDE,
namely

D'iu(x) = Fi(x, u,(x), ty(x),...,u,(x)), x€A, i=1,...,n, (64)
with initial conditions
u,(0) = uy, i=1,...,n, (65)

where 0 < v; < 1.
Let

uy(x) = Z%‘L}M) (x), (66)

j=0

The fractional derivatives D" u(x), can be expressed in terms of the expansion coefficients
a;j using Eq (27). The implementation of fractional generalized Laguerre collocation method to
solve Eqs (64)-(65) is to find u;n(x) € Qn(A) such that

Dty () = By, ()t (), oyt (), % € A, (67)

is satisfied exactly at the collocation points xff\,’,z, k=0,1,---,N—1,i=1, -, n, which imme-

)

diately yields

N N N
S DL = B> a L .Y L ),

j=0 j=0 =0

J J J (68)
Y e ),

with Eq (65) written in the form

N
Y a L 0)=uy,  i=1n (69)

=0

This means the system Eq (64) with its initial conditions have been reduced to a system of n(N
+1) nonlinear algebraic Eqs (68)-(69), which may be solved by using any standard
iteration technique.

lllustrative Examples

We present in this section, several illustrative examples by implementing the proposed spectral
algorithms in this article. These examples are chosen such that their exact solutions are known.
The results for these examples demonstrate that the proposed methods are accurate, effective
and convenient.

PLOS ONE | DOI:10.1371/journal.pone.0126620 May 21,2015 13/28
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Example 1 Consider the equation

I'(3 .
D'u(x) +u(x) = % X7+ O<v<l, xeA,

the exact solution is given by u(x) = x.

Now, we implement the spectral tau scheme based on the FGLOM of fractional derivative
with N = 6, then the approximate solution can be expanded as

x) = ZC,-LE“’;‘) (x) = C"o(x).

If we choose 4 = 2 and v = }, then

0 0 0 0
1 1 1 1
s(L,0,-) S(1,1,-) S.(1,2,=) ... S,(1,6,-
\7( ) 73) v< ) 73) V( ) 73> V( 3 73> go
: : gl
D(‘) = 1 1 1 1 s G = gz s
S,{4,0,- , 1, 2,2 N AR
(03) () s(i2) - sfiey)
86
S,[6,0 ! S,(6,1 L S,(6,2 1 S,(6,6 1
v 9 Uy 3 v ) 73 v ) 73 v ) 73
where gjand S,(i, j, 1) are defined in Eqs (22) and (28).
Using Eq (49), we obtain
1 1 1 1
¢ +S, (1 0 3)c] +$ <2,0,§)c2+8 (3 0, >03+S‘ (4,0,§>c4+8‘ (5,0,§>ca+s‘ (6,0,§>c6 = g,
1 1 1 1 1 1
¢ +S, (17 1,§> ¢+, (2, 1,§> ¢, + S, (3, 1,5)63 +, (4, 1,5) +3S, (5,1 §> ¢+, (6, Lg)% = g,
1 1 1 1 1 1
6 +S\,(1,2,§)c1 +5, (2,2,§>c2 +5, (3,2,5)c3 +5, (4,2,5) +5, (5,2 g)g +5, (6,2,5)(:G = g,
(70)
1 1 1 1 1 1
¢ +S, (1,3,§)c1 +8, <2,3,§)c2 +8, (3,37§)c3 43, (47 3,§> +8, (5,3 §>cd +8, (673,§>c6 = g,
1 1 1 1 1 1
¢+ S (1747§> ¢+ S\- (27 4>§> 6+ Sv (3,4,5)(:3 + S‘ (47475) ¢+ S\ (57 4, g) 6+ S\ <6>4a§)c6 = &
1 1 1 1 1
c5+S\,(1,5,§)cl+S‘.(2,5,§>CZ+S(35 )cs—&-S( )C4+S(5,5 g)c)—l—S‘(6,5,g)c(j = g,
The treatment of initial condition using Eq (44), yields
6+ (4 1), + (0 + 1) (o4 2) o+ (0 + 1) (o + 2)(a +3)L3 n e+ 1)(o+2) (o + 3)(a + 4) 64
2 6 24 (71)
(e +1)(ee+2)(a+3)(a+4)(a+5) (o0 + 1) (o + 2) (o + 3) (o + 4) (o + 5) (e + 6)
* 120 Gt 720 %=0

Solving the resulted system of algebraic Eqs (70)-(71) provides the unknown coefficients in
terms of o.
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Table 1. The values cy, ¢4, C», . . . and cg for different values of a at v

@w N = olq

Co
720
5040
20160
60480

doi:10.1371/journal.pone.0126620.t001

C4
-4320
-15120
-40320
-90720

1for Example 1.

Cz C3 Cy Cs Ce

10800 -14400 10800 -4320 720
25200 -25200 15120 -5040 720
50400 -40320 20160 -5760 720
90720 -60480 25920 -6480 720

Accordingly, the approximate solution can be written as

(%) = ZO:CL(%> (x) = x2.

Tables 1 and 2 list the values of ¢y, ¢, ¢, 3, ¢4 ¢5 and cg with different choices of o and two
choices of v = 1/3 and v = 1/4. Indeed, we can achieve the exact solution of this problem with
all choices of the fractional-order generalized Laguerre parameter a.

Example 2 Consider the equation

r4) ., T2
Ta—vw" ~

D'u(x) + u(x) = 0<v<l, =x€eA,

the exact solution is given by u(x) = x’—x.
If we apply the technique described in Section 6.2 based on the FGLOM of fractional inte-
gration with N = 6, then the approximate solution can be written as follows

uy(x) = Y el (x) = C"o(x),

i=0

Weput A = jand v = J, we have

1 1 1 1
Q -] Q 1,-] Q 2,= Q -
1(0, 0, 2) 1(0, 72> 1(0, 72) 1(0, 6, 2)
2 2 2 2
&o
() 1 1 \ 1 .
P 2) _ Ql <l, 0, 2> Ql (i, 175) Ql (l, 2, 2) Ql (i, 6:5) ,G=| &
2 2
1 1 1 1 .
Q -] Q 1.-] Q 2,= o Q -
1(6, 0, 2> 1(6, 72) 1<6, ,2) 1(6, 6, 2)
2 2 2 2
where g;and Q,(i, j, 1) are defined in Eqs (22) and (36).
PLOS ONE | DOI:10.1371/journal.pone.0126620 May 21,2015 15/283



@’PLOS ‘ ONE

New Operational Matrices for Solving Fractional Differential

Table 2. The values cg, ¢4, Co, . ..

@w N = olq

Co
720
5000
20000
60000

doi:10.1371/journal.pone.0126620.t002

and cg for different values of aatv = }for Example 1.

Cq
-4300
-15000
-40000
-90000

Cz C3 Cy Cs Ce

10800 -14000 10800 -4300 720
2500 -25000 15000 -5000 720
50000 -40000 20000 -6000 700
90000 -60000 30000 -6000 700

Using Eq (59), we obtain the following:

1 1 1 1
1+Ql(0’0’§) cO+Ql<1,O,§)cl+Ql<2,07§)c2+...+Ql<6,0,§)cb %,
2 2
1 1 1
Ql 0,1,5 ¢, + 1+Ql CI+Q1 2,175 +Q1 6,1,5 C =&
2 2 2
1 1 1 1
Ql 0,2,5 C0+Ql 17275 C1+ 1+Ql 225 +Ql 6,2,5 Cb gr)’
2 2 2
(72)
1 1 1 1
91(0,37§)CO+.. ¥ 1+§21(3,3,§) C3+Ql(4,3,§)c4+...+Ql(6,3,§>cﬁ:gS,
2 2 2 2
1 1
Ql<0747§>co+“ =+ 1+Ql(3’4’§) C1+Ql(5,4,§)ca+91<6,4 ) s
2 2 2 2
1 1 1 1
Ql (0,5,§> +... +Ql <4,5,§)C4 + |1 +Ql <5,5,§) Cs +Ql (6’575)% =g,
2 2 2 2

with v = 1/2. Now, by applying Eq (60), we have

(0 4+ 1) (o +2) (0 +1)(o+ 2) (o + 3)

AN L) 22 D NCESVCES (RS R

6 24 !
N (o0 + 1) (o +2) (o0 + 3) (e + 4) (o + 5)(: N (0 +1)(a+2)(o+3) (ot + 4) (o + 5) (o + 6) .
120 ° 720 '

Finally, solving the resulted system of algebraic Eqs (72)-(73) provides the unknown coeffi-
cients with v = 7 and various choices of .
Thus we can write

1
()
E L ¥ (x) =% —x,

and ¢ for several choices of a. Indeed, we can achieve
the exact solutions of this problem for all choices of the fractional-order generalized Laguerre
parameters a.

Table 3 presents the values ¢, ¢y, ¢, - - -

PLOS ONE | DOI:10.1371/journal.pone.0126620 May 21,2015
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Table 3. The values cy, ¢4, C2, . . . and cg for different values of aat v = %for Example 2.

a Co Cq

0 718 -4316
1 5034 -15114
2 20150 -40310
3 60500 -90700

doi:10.1371/journal.pone.0126620.t003

Cz C3 Cy Cs Ce

10798 -14400 10800 -4320 720
25200 -25200 15120 -5040 720
50400 -40320 20160 -5760 720
90700 -60500 25920 -6480 720

Example 3 We next consider the following problem
D'u(x) + u(x) = g(x), u(0) =1, x € [0,100], (74)

where

1 * N
g(x) = cos(yx) —i—m/o (x—1t)" " u(t)dt

and the exact solution is given by u(x) = cos(yx).

The solution of this problem is obtained by applying the technique described in Section 6.2
based on the FGLOM of fractional integration. The maximum absolute error for y = 0.01, 4 =
3 and various choices of N and o are shown in Table 4. Moreover, the approximate solution ob-
tained by the proposed method for « = 0,4 =2,y = 0.1 and two choices of N is shown in Fig
1 to make it easier to compare with the analytic solution. From this figure, we see the coherence
of the exact and approximate solutions.

Example 4 Consider the following nonlinear initial value problem

D'u(x) 4 2u*(x) = T(v + 2)x + 2(x"*)%, 0<v<l,

whose exact solution is given by u(x) = x"*".

Table 5 shows the absolute error function of using spectral fractional-order generalized
Laguerre collocation FGLC scheme in combination with FGLOM of fractional derivative with
v, 4 and two choices of o at N = 16 in the interval [0, 40]. Fig 2 displays the absolute error func-
tion for N=6,a=0,4 =2and y=0.1

Example 5 Consider the FDE

3
D*u(x) + D§u(x) +ulx)=x"+2+ Exé, u(0) =0, w(0) =0, (75)

3

r'(3)

the exact solution is given by u(x) = x*.

Table 4. Maximum absolute error for y = 0.01, /. = 1 and different values of N and ain x € [0, 100] for Example 3.

N a error

2 1.46.1072

4 0 3.30.1073

6 8.80.107*

8 1.12.107"¢

doi:10.1371/journal.pone.0126620.1004

a error a error a error
2.09.1072 2.41.1072 2.18.1072

1 6.62.1073 2 1.13.1072 3 2.03.1072
1.90.1072 3.00.1073 4.00.1072
1.13.1071° 1.97.1071° 1.93.107'¢
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T T T T T T T
1.0 — —
0.5 -
° L 4

~ 00

= ks =t
: Exact solution :
-0.5 — -
- uy (x) at N=4 i
i uy (x) at N=6 |
-1.0— =

| L | | L | L | L

Fig 1. Comparing the exact solution and approximate solutions at N = 4, 6, where a=0, . = 2 and y = 0.1, for problem Eq (74).

20 30

X

40

doi:10.1371/journal.pone.0126620.g001

We convert Eq (75) into a system of FDEs by changing variable u;(x) = u(x) obtaining:

Di (x) = uy(x)

Dity(x) = uy(x)

1 (76)
Dauy(x) = u,(x)
1 F(3) 1
Do, (x) = —uy(x) —u, (x) +x2+2 4+ —2x2
() = —uy(x) = u, () R
Table 5. Maximum absolute error with various choices of v, Aand aat N =16 in x < [0, 40], for Example
4.
X v A a=0 a=2
1 1.19.107"° 1.80.107"*
10 1.04.107"2 1.10.1071°
20 0.5 0.5 9.84.10712 1.88.107""
30 2.80.107"" 3.88.107"°
40 1.97.107" 1.07.107"°
doi:10.1371/journal.pone.0126620.t005
PLOS ONE | DOI:10.1371/journal.pone.0126620 May 21,2015 18/23
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Fig 2. Graph of the absolute error functionforN=6,a=0, /. = %and y=0.1, for Example 4.

doi:10.1371/journal.pone.0126620.9002

with initial conditions

1 (0) = u(0), uy(0) =0, uy(0) = w/(0), uy(0) = 0. (77)

The maximum absolute error for y(x) = y;(x) using FGLC method at N = 4 and various
choices of a are shown in Table 6. It is clear that the approximate solutions are in complete
agreement with the exact solutions.

Example 6 Consider the initial value problem

D*u(x) — DO u(x) + gD“)u(x) + DB y(x) + é ulx) =f(x),  u(0)=0,  u(0)=0,(78)

with an exact solution u(x) = x? 4 x°.

Table 6. Maximum absolute error using FGLC method with various choices of a at N = 4 for Example 5.
a E

3.76.107"
2.84.107"
2.88.107"
5.39.107'°
6.63.107"
6.73.107"

o 1=

o

W N = e

doi:10.1371/journal.pone.0126620.t006
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Table 7. Absolute error using FGLC method with various choices of a, N =10 and v = A = 0.5 for Example 6.

SCT (N = 64) [48]

a =%
221078 2.6.1071°

doi:10.1371/journal.pone.0126620.t007

FGLC method (N = 10)

a=0 a=1 a=2 a=3

a=1
1.0.107"® 3.0.1072 3.9.10712 7.3.10712 8.0.107'2

We convert Eq (78) into a system of FDEs by changing variable u;(x) = u(x) obtaining:

L
D2u, (x) = u,(x)

1
D2u,(x) = uy(x)
1 (79)
D2uy(x) = u,(x)
! 6 |
D2”4(x) = ”4(x) - gu:;(x) - uz(x) - gul(x) +f(x)7
with initial conditions
u,(0) = u(0), u,(0) =0, uy(0) = u/'(0), u,(0) = 0. (80)

In Table 7, we list the results obtained by the fractional-order generalized Laguerre general-
ized collocation (FGLC) method with various choices of @, N = 10, and v = 1 = 0.5. The present
method is compared with the shifted Chebyshev spectral tau (SCT) method given in [48]. As
we see from Table 7, it is clear that the result obtained by the present method for each choice of
the parameter « is superior to that obtained by SCT method. Fig 3 shows the absolute error
function at N = 10, @ = 0 and v = A = 0.5. The obtained results of this example show that the
present method is very accurate by selecting a few number of fractional-order generalized
Laguerre generalized functions.

Conclusion

We have defined new orthogonal functions namely FGLFs. The fractional operational matrices
of Caputo fractional derivatives and Riemann-Liouville fractional integration were established
for these functions. Two efficient spectral tau techniques were proposed based on these frac-
tional operational matrices for solving linear FDEs of order v (0 < v < 1) on the half line.

In addition, we have developed the fractional-order generalized Laguerre pseudo-spectral
approximation for solving the nonlinear initial value problem of fractional order v. This tech-
nique was extended to solve systems of FDEs. The results of the proposed spectral schemes
based on FGLFs were compared with other methods. Several numerical examples were imple-
mented for FDEs and systems of FDEs including linear and nonlinear terms to demonstrate
the high accuracy and the efficiency of the proposed techniques. The main idea and techniques
developed in this work provide an efficient framework for the collocation method of various
nonlinear FDEs on the half line. We also assert that the proposed technique can be extended to
solve the one- and two-dimensional space/time fractional partial equations on the half line,
(see [49-53]).
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Fig 3. Graph of the absolute error function for N =10, a=0 and v = A = 0.5, for Example 6.

doi:10.1371/journal.pone.0126620.g003
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