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Abstract

Induced pluripotent stem (iPS) cells have an enormous potential for physiological studies. A
novel protocol was developed combining the derivation of iPS from peripheral blood with an
optimized directed differentiation to cardiomyocytes and a subsequent metabolic selection.
The human iPS cells were retrovirally dedifferentiated from activated T cells. The subse-
quent optimized directed differentiation protocol yielded 30-45% cardiomyocytes at day 16
of differentiation. The derived cardiomyocytes expressed appropriate structural markers
like cardiac troponin T, a-actinin and myosin light chain 2 (MLC2V). In a subsequent meta-
bolic selection with lactate, the cardiomyocytes content could be increased to more than
90%. Loss of cardiomyocytes during metabolic selection were less than 50%, whereas al-
ternative surface antibody-based selection procedures resulted in loss of up to 80% of cardi-
omyocytes. Electrophysiological characterization confirmed the typical cardiac features and
the presence of ventricular, atrial and nodal-like action potentials within the derived cardio-
myocyte population. Our combined and optimized protocol is highly robust and applicable
for scalable cardiac differentiation. It provides a simple and cost-efficient method without ex-
pensive equipment for generating large numbers of highly purified, functional cardiomyo-
cytes. It will further enhance the applicability of iPS cell-derived cardiomyocytes for disease
modeling, drug discovery, and regenerative medicine.
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Introduction

The groundbreaking discovery that somatic cells can be reprogrammed to a pluripotent state
has opened up new avenues for developing more physiologically relevant platforms for drug
discovery and toxicity screening, in vitro disease models and ultimately even patient-specific
cell therapies [1]. While the initial efforts to generate induced pluripotent stem (iPS) cells fo-
cused on human fibroblasts as the somatic source for reprogramming, successful generation of
iPS cells from other somatic cell types like pancreatic beta cells, gastric epithelial cells, hepato-
cytes, T and B lymphocytes, keratinocytes, neural progenitor cells and human renal epithelial
cells have been reported. [2-9]. Notably, the utilization of blood-derived cells, like T lympho-
cytes, offers an easy accessible and non-invasive starting material for reprogramming. Howev-
er, reprogramming efficiencies varies dramatically between different somatic cell types.

Pluripotent stem cells can be turned into cardiomyocytes utilizing either spontaneous or di-
rected differentiation methods. Spontaneous cardiac differentiation can be achieved by using
fetal bovine serum containing medium and co-culturing of iPS cells with mouse endoderm-like
(END-2) cells [10, 11]. However, these approaches only yield populations of 10% to 25% cardi-
omyocytes. More recently, directed cardiac differentiation methods mimicking developmental
processes during cardiogenesis were developed to direct iPS cells towards a cardiac fate. These
protocols are based on media supplemented with certain morphogens and growth factors, such
as activin A, bone morphogenic protein 4 (BMP-4), basic fibroblast growth factor (bFGF), vas-
cular endothelial growth factor (VEGF), and dickkopf-related protein 1 (DKK-1) [12-15]. Up
to 50% pure cardiomyocytes can be generated employing these differentiation strategies. The
remaining so-called contaminating cells consist mainly of fibroblasts, endothelial cells, or
smooth muscle cells [16]. In disease model systems, drug testing or regenerative medicine,
these mixed or impure cell populations may interfere. Moreover, for regenerative purposes not
only large quantities, but also highly purified cardiomyocyte populations are required [17]. Re-
cently, several different strategies for enrichment of cardiomyocytes have been developed.
These include the introduction of transgenic selection strategies via drug-selectable elements
[18, 19] or fluorescence-activated cell sorting (FACS) with different antibodies [16, 20]. These
methods differ largely in their methodological requirements, e.g. genetic manipulation of cells
and specialized and expensive instruments. Therefore, only a few laboratories have these meth-
ods available. The recently proposed metabolic selection based on media with either reduced
glucose or lactate as replacement for glucose provides an easy-to-use alternative [21-23]. These
methods exploit the ability of cardiomyocytes to metabolize other energy sources than glucose
whereas contaminating cell types dependent on glucose are eliminated.

Here, we report a combined and optimized protocol for the generation of iPS cells from
human peripheral blood mononuclear cells with a directed cardiac differentiation approach
and subsequent restrictive lactate purification. The validated combination of the above men-
tioned methods enables the generation of large quantities of highly pure cardiomyocytes as
needed for drug testing or regenerative medicine.

Methods and Materials
Isolation of PBMCs and T cell expansion

Protocols for derivation of blood samples, reprogramming of human peripheral blood mono-
nuclear cells (PBMCs) to induced pluripotent stem cells (iPS) and subsequent differentiation
were in accordance with the Declaration of Helsinki and were approved by the Ethics Commit-
tee of Medical Faculty of the University Hospital Regensburg, Germany, under the approval
number 11-101-0006. With informed written consent, PBMCs were isolated from whole blood
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samples derived from a female Caucasian donor by density gradient centrifugation with Ficoll-
Paque PREMIUM Reagent (GE-Healthcare) and Leucosep tubes (Greiner bio-one) according
to the manufacturer. The isolated PBMCs were either cultivated immediately for T cell prolifer-
ation or were cryo-conserved in the gas phase of liquid nitrogen. T cells were expanded as de-
scribed elsewhere [4]. In brief, PBMCs were cultivated in freshly prepared AIM-V medium
(Life Technologies) supplemented with pen/strep and L-glutamine (both from Life Technolo-
gies), 300 IU/mL rhIL2 (Peprotech) and 10 ng/mL soluble anti-CD3 antibody (eBioscience) for
three days in a 5% CO0, atmosphere at 37°C. For reprogramming of frozen PBMCs, the cultiva-
tion was prolonged from three to four days until T cell agglomerates were clearly visible. T cell
expansion was verified by flow cytometry staining with anti-human CD3 antibody (BD Phar-
migen) on a FACS Calibur instrument (BD Pharmigen).

Retroviral reprogramming of T cells

T cells were reprogrammed with retroviral pMXs-based vectors with human OCT3/4, SOX2,
KLF4, c-MYC (Addgene plasmids 17217, 17218, 17219, and 17220) as originally developed by
Takahashi et al. [1]. Retroviruses were produced by transient transfection of PLAT-A cells
(Cell Biolabs, INC.) with single retroviral vectors. In brief, 6 x 10° PLAT-A cells were seeded in
T75-cell culture flasks for each vector with DMEM supplemented with 10% FBS, 1 ug/ml
puromycin, 10 ug/ml pen/strep (all from Sigma Aldrich) and 10 pg/ml blasticidin S (Life Tech-
nologies). The next day, cells were washed with PBS and the transfection-mix was added, con-
taining 10 pug vector DNA, 30 pl Fugene (Promega) in 7 ml DMEM with 10% FBS according to
the manufacturer. Retroviral supernatants were collected after 48 h, sterile filtrated with

0.22 um ultra-low protein binding filter (Millipore) and stored at 4°C until use. 1 x 10° activat-
ed T cells were infected by combining 500 pl of each retroviral supernatant in presence of 4 pg/
ml polybrene (Millipore) and 300 IU/ml rhIL2 (Peprotech) in 24-well cell culture plates (day
0). After spinfection for 90 min at 1000 rpm, cells were incubated for 4h in a 5% CO0, atmo-
sphere at 37°C, followed by a half media exchange with DMEM with 10% FBS and 300 U
rhIL2/ml. The infection procedure was repeated the next day [4]. On day 3, cells were harvested
and seeded on MEF-coated 100 mm plates.

Derivation of iPS cells

On day 2 of the reprogramming procedure (Fig 1A) 9 x 10° irradiated CF-1 MEFs (BioChain)
were seeded per 100 mm cell culture plate in MEF medium containing DMEM supplemented
with 10% FBS and 1x non-essential amino acids (all from Sigma Aldrich). The next day, the
plates were washed with PBS and supplied with 7.5 mL fresh MEF medium. Retrovirally in-
fected T cells (day 3) were pelleted, 0.5-2.0 x 10° cells were re-suspended in 7.5 mL iPS medium
and added to the prepared MEFs. iPS medium consisted of DMEM/F12, 20% KOSR, 1 mM L-
glutamine (all from Life Technologies), 1x non-essential amino acids and 0.1 mM B-mercap-
toethanol (Sigma-Aldrich). From day 5 on forward, half medium exchanges were performed
every other day with iPS medium supplemented with 100 pg/mL bFGF (Peprotech). Fresh
MEFs were added to the plates after day 11 as required. Fully reprogrammed iPS colonies, usu-
ally visible between day 20-30, were identified based on their typical hESC morphology (well-
defined colony edges, tightly packed cells with prominent nucleoli and a high nucleus to cyto-
plasm ratio). iPS colonies were isolated and expanded in 12-well or 6-well plates on fresh MEF
feeder layers in iPS medium with bFGF. iPS cells were adapted to feeder-free conditions with
mTeSR1 (Stemcell Technologies) on Matrigel (BD Biosciences) between passages 3 to 5. Two
rounds of retroviral reprogramming were needed to generate 13 high quality iPS cell lines from
one donor.

PLOS ONE | DOI:10.1371/journal.pone.0126596 May 13,2015 3/21



@’PLOS | ONE

Purified Cardiomyocytes from Human iPS Cells

A PBMC

Spinfection Plating of

isolati ith Il
isolation wit . seTe o Half medium exchange with iPS medium + 100 pg/ml
from whole retroviral feeder bEGF -
blood supernatants  cells Svery otherday
I 1 | | 1 | ] | I I
* * *
Days -3 0 1 3 5 7 19 20" 21 23

N
L
* Appearance of iPS colonies and
isolation

{f A §E I o U
; [ T 15 0 7
H
¢ 1 Ae 8% '?rg
g 2 21 2 X v
83
E 8 OCT3/4-PE
g‘ /:'.‘"
28 \
8o
=7 98.8%
2]
l 50 100 150 200 20
§.
SSEA-1-FITC
°
£
5&
2]
°

SO —

Fig 1. Derivation of iPS cells from PBMCs and their characterization. A: Schematic diagram demonstrating the main steps of the reprogramming
procedure; B: Typical ESC colony appearance; C: Positive alkaline phosphatase assay (scale bar 200 um); D: Exclusion of chromosomal aberrations by
chromosome analysis (normal female karyotype 46,XX); E: Flow cytometry analysis of the marker OCT3/4 (for pluripotency) and SSEA-1 as differentiation
marker (dashed lines represent the respective isotype control); F: Immunofluorescent staining for the expression of the pluripotency markers NANOG, SOX-
2, OCT-4 and overlay with the control staining of the nucleus with DAPI (scale bar 200 um); G: PCR analysis of retroviral integration (1), expression of
retroviral (2) and endogenous (3) pluripotency genes with the housekeeping gene controls HPRT1 and B2M.

doi:10.1371/journal.pone.0126596.9001
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Characterization of iPS cells

Flow Cytometry Analysis. iPS cells were dissociated with accutase (Life Technologies),
washed and re-suspended in PBS + 2% BSA for surface staining overnight with the surface an-
tibodies mouse anti-SSEA-1-FITC, rat anti-SSEA-3-PE, and mouse anti-TRA-1-81-Alexa
Fluor 647 (Human Pluripotent Stem Cell Sorting and Analysis Kit, BD Bioscience, 10 pL
+ 100 pL buffer). For the intracellular marker mouse anti-Oct3/4-PE (BD Biosciences, 10 pL
+ 90 uL buffer) iPS cells were treated with the Cytofix/Cytoperm Kit (BD Biosciences) accord-
ing to the manufacturer. The next day, cells were washed and analyzed on a flow cytometer.

Immunocytochemical analysis. For intracellular staining, iPS cell colonies were fixed and
permeabilized using the Cytofix/Cytoperm Kit (BD Biosciences) according to the manufactur-
er’s recommendation. iPS colonies were overnight stained with directly conjugated mouse
anti-OCT4 Alexa Fluor 488 (Millipore, 1:100) mouse anti-NANOG Alexa Fluor 488 (Millipore,
1:100) and unconjugated mouse anti-SOX-2 (Millipore 1:100). The next day, secondary anti-
body staining with Alexa Fluor 647 (Life Technologies, 1:500) was performed on iPS colonies
previously stained with unconjugated SOX-2 antibody. Subsequently, all iPS colonies were also
stained with DAPI (NucBlue Fixed Cell Stain, Life Technologies) prior to fluorescent micro-
scopic analysis. Besides assessing the presence of typical intracellular pluripotency markers, iPS
colony surface marker detection was carried out using primary unconjugated mouse anti-
TRA-1-60 (Millipore, 1:100) and mouse anti-TRA-1-81 (Millipore, 1:200) followed by second-
ary antibody staining with Alexa Fluor 488 (Life Technologies, 1:500) and DAPI live cell
staining (NucBlue Live Cell Stain, Life Technologies) (data not shown). Fluorescence was mon-
itored with a Zeiss Observer Z1 microscope.

Alkaline phosphatase assay. The alkaline phosphatase (AP) assay was performed accord-
ing to the protocol provided by the manufacturer (Stemgent). In brief, iPS cells grown in 6-well
plates were washed with PBS prior to fixation at room temperature. After fixation, the cells
were washed again before applying freshly prepared AP substrate solution followed by incuba-
tion at room temperature protected from light. The staining reaction was stopped by aspirating
the AP substrate solution and washing the cells with PBS. Monitoring of the staining reaction
was performed with a Zeiss Observer Z1 microscope.

Karyotyping. iPS cells were plated on Matrigel-coated T25 flasks and cultivated for 2-3
days in mTeSR1 medium. Chromosome analysis was carried out according to established pro-
tocols. In brief, cells were synchronized using thymidine solution (Sigma-Aldrich) and subse-
quently treated with colcemid (Roche) for 10 min at 37°C. After detachment with trypsin—
EDTA, cells were centrifuged, and the cell pellet was re-suspended and maintained in hypoton-
ic solution (75 mM KCI) for 12 min at 37°C. Cells were then fixed in methanol and acetic acid.
Metaphase spreads were prepared on cover slips, dried overnight and Giemsa stained (Sigma-
Aldrich) after trypsin pre-treatment.

PCR and RT-PCR analysis. Genomic DNA was isolated from iPS cells using the AllPrep
DNA/RNA Mini Kit (Qiagen) according to the manufacturer’s protocol. The primers used to
confirm retroviral vector integration were originally designed by Takahashi et al. [1]. 50 ng of
genomic DNA was used as templates for PCR with HotStarTaq Master Mix Kit (Qiagen) at a
final volume of 25 pl. PCR products were electrophoretically separated in a 2% agarose gel.
Total RNA from iPS cells was isolated using the RNeasy Mini Kit (Qiagen) according to the
manufacturer. Subsequently, cDNA was made using the Affinity Script cDNA Synthesis Kit
(Agilent). To detect the expression of the endogenous pluripotency genes OCT3/4, SOX2, KLF4
and ¢-MYC, primers originally designed by Takahashi et al. [1] were used. Primer assays from
Qiagen were used for the housekeeping genes B2M and HPRT1. RT-PCR was performed with
10 ng RNA-equivalent and HotStarTaq Master Mix as described above.
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Cardiac Differentiation of iPS cells

iPS cells were dissociated with accutase followed by centrifugation at 1.200 rpm for 5 minutes.
Cell pellets were then re-suspended in mTeSR supplemented with 1 uM H1152 (Tocris) and 50
mg/mL of gentamicin (Sigma Aldrich) at a cell density of 1 x10° cells/mL [4]. For subsequent
differentiation, the cell suspension was transferred to ultra-low attachment flasks (BD Biosci-
ence) and cultured in a 5% CO0, atmosphere at 37°C. T25 ultra-low attachment flasks were filled
with 5 ml cell suspension, T75 flasks with 15 ml. On day 1 of differentiation, half of the medi-
um was removed and replaced with fresh medium containing 50% mTeSR, 45% DMEM (low
glucose), 5% FBS, 1 uM H1152, 100 ng/mL of bFGF and 25 pg /mL of gentamicin. The flasks
were then returned to the incubator, placed on an orbital shaker. The next day, 2/3 of the medi-
um was replenished with DMEM (low glucose) supplemented with 10% FBS, 50 ng/mL of
bFGF and 25 pg/mL of gentamicin. From day 3 to day 7 of differentiation, medium replenish-
ments occurred daily using DMEM (low glucose) with 10% FBS, 50 ng/mL of bFGF and 25 pg/
mL of gentamicin. In addition, during this time period, the differentiation medium contained 6
ng/mL of activin A and 10 ng/mL of BMP-4 [12]. From day 8 of differentiation, the cardiac
clusters were fed every other day with DMEM (low glucose) supplemented with 10% FBS and
25 ug/mL of gentamicin. Starting on day 14 of differentiation, the cardiac aggregates were cul-
tured at 20% O, and 7% CO,. Cardiac clusters usually began to spontaneously beat between
day 9 and 13 of differentiation. Flow cytometry analysis to detect the expression of cardiac-
specific markers was performed between day 16 and 18 of differentiation.

Purification of iPS cell-derived cardiomyocytes

Purification using magnetic-activated cell sorting (MACS)-based positive selection.
For magnetic-activated cell sorting (MACS)-based positive selection selection, PE conjugated
anti-CD172a (SIRPA, BioLegend) and anti-CD106 (VCAMI1, BioLegend) antibodies were used
[16, 20]. Cardiac aggregates were dissociated with 10x trypsin (Sigma Aldrich), run through a
30 um pre-separation filter and centrifuged. The resulting pellet was re-suspended in 300 pL of
MACS buffer (Miltenyi Biotec). For positive selection, 1 x 10° cells were labeled with 5 l of
CD172a or 20 pl of CD106 PE conjugated antibody for 20 min followed by incubation with
anti-PE-beads (Miltenyi Biotec) for additional 15 min. Next, the cells were washed by adding
2 mL of MACS buffer per 1x10” cells followed by centrifugation. The pellet was then re-
suspended in 80 uL of MACS buffer per 1x 10 cells and 20 uL of anti-PE-micro beads (Milte-
nyi Biotec). Incubation for 15 minutes at 4°C followed. In an additional wash step, 2 mL of
MACS buffer was added per 1x 10’ followed by centrifugation. The resulting pellet was re-
suspended in 500 pL of MACS buffer and dropped onto a primed MACS MS column (Miltenyi
Biotec). After washing the column three times with MACS buffer, the MACS purified cells
were recovered from the column using a plunger. CD172a or CD106 positive cells were pel-
leted, re-suspended in DS-CMM, counted, plated and analyzed by flow cytometry.

MACS-based depletion. To deplete contaminating cells, such as fibroblast, smooth mus-
cle cells and endothelial cells from the cultures, CD90 microbeads (Miltenyi Biotec) and PE la-
beled anti-CD140b (BD Pharmingen) were used as negative surface markers [16]. Magnetic
labeling with anti-PE micro beads was performed as described for the MACS-based positive se-
lection. To isolate the labeled cardiomyocytes the cells were run through an LD column (Milte-
nyi Biotec). After several washes with MACS bufter, the flow-through containing CD90 and
CD140b negative cells was collected, pelleted, re-suspended in DMEM supplemented with 10%
FBS counted, plated and analyzed by flow cytometry.

Metabolic selection with lactate. From day 16 to 18, the cultures were fed with lactate me-
dium composed of DMEM (no glucose) supplemented with 1% sodium DL-lactate solution

PLOS ONE | DOI:10.1371/journal.pone.0126596 May 13,2015 6/21



@’PLOS ‘ ONE

Purified Cardiomyocytes from Human iPS Cells

(60%, Sigma Aldrich) and 25 pg/mL of gentamicin [22]. For the first 2 days of purification, the
medium was replenished daily. Thereafter, medium exchanges occurred every other day. Lac-
tate medium-based purification was performed for a maximum of 7 days. Cardiac clusters
were then dissociated with 0.5% trypsin (Sigma Aldrich) and processed for flow cytometry
analysis to determine the amount of cardiac troponin T (¢TnT) positive cells as a marker for
cardiomyocyte content. Subsequently, the cells were plated in DMEM with 10% FBS and

25 pug/mL of gentamicin onto 0.1% gelatin-coated plates. After 2 days in culture, cultures
containing > 90% cTnT positive cells on the day of dissociation were maintained in DMEM
(low glucose) supplemented with 2.5% FBS and 25 ug/mL of gentamicin until further analysis.
Cultures yielding < 90% cTnT positive cells after 7 days of treatment with lactate medium
were subjected to additional lactate medium-based purification for 3-5 days before they were
also switched to DMEM (low glucose) supplemented with 2.5% FBS and 25 pg/ml gentamicin.

Cardiomyocyte characterization

Flow cytometry. Cardiac aggregates were dissociated with 0.5% trypsin followed by fixa-
tion and permeabilization using Cytofix/Cytoperm reagent (BD Biosciences) according to the
manufacturer. Cell were then stained with primary mouse anti-cTnT (Abcam, 1:500) overnight
followed by cardiomyocytes staining with the secondary antibody, goat anti-mouse IgG1
Alexa488 (Life Technologies, 1:500). After 1h of secondary antibody incubation, the cells were
washed and assayed on a flow cytometer.

Immunocytochemical analysis. In preparation for immunofluorescent staining, plated
cardiomyocytes were washed once with PBS. The cells were fixed and permeabilized by apply-
ing Cytofix/Cytoperm fiir 20 minutes. After fixation, the cells were washed with Permwash
(BD Biosciences) and stained with primary antibody dilutions for rabbit anti-cardiac troponin
T (Abcam, 1:200) mouse anti-o-actinin (Abcam, 1:1000), rabbit anti-myosin light chain 2
(MLC2v) (Proteintech, 1:200), rabbit anti-connexin 43 (Abcam, 1:1000) and rabbit anti-N cad-
herin (Abcam, 1:200) overnight. The next day, the cells were washed and stained with the re-
spective secondary antibodies anti-rabbit IgG Alexa594, goat anti-mouse IgG1 Alexa488,
donkey anti-rabbit IgG Alexa488 or goat anti-mouse IgG1 Alexa594 (all Life Technologies,
1:1000). Next, the stained cardiomyocytes were washed, stained with DAPI to visualize nuclei
and evaluated with a Zeiss Observer Z1 microscope.

Quantitative PCR analysis to assess cardiac specific marker expression. RNA from iPS
cell derived cardiomyocytes was isolated using the Ambion Cells-to-C, Kit (Life Technologies)
according to the manufacturer. Cardiomyocytes were dissociated as described above. To quan-
tify the expression of pan-cardiac marker cardiac troponin T (cTnT) and ventricular specific
marker myosin light chain 2 (MYL2) during cardiac differentiation, quantitative polymerase
chain reaction (QPCR) was performed using pre-designed TagMan assays (S1 Table). QPCR
reagents were assembled in 384-well plates using 10 uL Tagman Gene Expression Mastermix,
5 pL of nuclease free water, 1 uL of the Tagman Gene Expression Assay of choice and 4 uL of
cDNA. The PCRs were run on a ViiA7 real time instrument (Life Technologies) using the fol-
lowing program: 2 minutes at 50°C, 10 minutes at 95°C, 40 cycles of 95°C for 15 seconds and 1
minute at 60°C. Relative gene expression was calculated with the AACt method normalizing
target gene expression to B2M [24].

Patch-clamp experiments. Ruptured-patch whole-cell voltage-clamp was used to measure
membrane potential in current clamp configuration as previously described [25-29]. Briefly,
cardiomyocytes derived from iPS cells were mounted on the stage of a microscope (Zeiss Axio-
vert). Microelectrodes (4 MQ) were filled with 120 mmol/L K-aspartate, 8 mmol/L KCl, 7
mmol/L NaCl, 1 mmol/L MgCl,, 10 mmol/L HEPES, 5 mmol/L Mg-ATP, 0.3 mmol/L Li-GTP,
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1 mmol/L EGTA, 0.2 mmol/L CaCl, (free [Ca**]; 40 nmol/L) (pH 7.2, KOH). The bath solu-
tion contained 140 mmol/L NaCl, 4 mmol/L KCl, 1 mmol/L MgCl,, 2 mmol/L CaCl,, 10
mmol/L Glucose, 5 mmol/L HEPES (pH 7.4, NaOH). Access resistance was typically ~20 MQ
after patch rupture. Spontaneous action potentials (APs) were recorded immediately after
patch rupture and followed for about 2 min. Signals were filtered with 2.9 kHz and 10 kHz Bes-
sel filters, and recorded with an EPC10 amplifier (HEKA Elektronik, Lambrecht/Pfalz, Ger-
many) using the Patchmaster software. At least 10 action potentials in a row were averaged and
analysis was done using LabChart Pro software (ADInstruments) to determine the maximum
rate of rise of the AP upstroke (V,,.,), AP amplitude (APA), the AP durations (APDs) at 30,
50, 80, and 90% of repolarization (APD30, APD50, APD80, APD90) and the resting membrane
potential (RMP). For some experiments, APs were continuously elicited by square current
pulses of 1-2 nA amplitude and 1-5 ms duration at various basic cycle lengths. All experiments
were conducted at room temperature.

Intracellular calcium measurements using confocal laser microscopy. Intracellular cal-
cium ([Ca**];) signals were recorded after incubating cells with 10 pmol/L fluo-4 acetoxy-
methylester (Life Technologies) for 30 min on a laser scanning confocal microscope (Zeiss
LSM 700) as previously described [30]. Cells were washed with Tyrode’s solution. Fluo-4 was
excited via an argon laser (488 nm, 10 mW) and emitted fluorescence (F) was separated by a
variable secondary dichroic beam splitter (at 492 nm) and a 500 nm long-pass emission filter.
Changes in fluo-4 fluorescence (indicating fluctuation in cytosolic Ca**) were recorded in
frame and line scan mode while the cells were beating spontaneously. The images were ac-
quired and analyzed using Zeiss software and Image ]. Fluorescence signals were normalized to
basal cell fluorescence after fluo-4 loading (F,) and converted into [Ca®']; by the following
pseudo-ratio equation [31]: [Ca]; = Kq(F/Fg)/(Kq/[Cal;.rest + 1-F/F) with K4 = 1100 nmol/L
and [Cal;_rest = 100 nmol/L. In some experiments isoproterenol (1 nmol/L) was added to the
bath solution during recording. All experiments were conducted at room temperature.

Fluorescence recovery after photobleaching (FRAP) assay. Functional analysis of gap
junctions in isolated cardiac clusters was performed by measuring the cell-to-cell diffusion of a
fluorescent dye using a FRAP assay at room temperature. Briefly, cardiac clusters were loaded
with the membrane-permeant fluorescent dye fluo4-AM (5 pmol/L; Invitrogen) in Ca-free
Tyrode solution for 20 min at 37°C. After washing away the excess extracellular fluorescent dye
to prevent further loading, the cultures were bathed in Ca-free Tyrode solution and placed on
the stage of a Zeiss LSM 700 laser-scanning confocal microscope. Using Zeiss software, a rect-
angular region encompassing 95% of a single cell within a cell cluster was selected and its fluo-
rescence was bleached by a high-intensity laser pulse (488 nm, 3-5 s duration). This caused
immediate loss of fluo-4 fluorescence emission recorded through a 500 nm long-pass emission
filter after separation by a variable secondary dichroic beam splitter (at 492 nm). Fluo-4 redis-
tribution from adjacent unbleached cells through connexin pores into the bleached region of
interest (ROI) was recorded in subsequent confocal images acquired at 30 s intervals for up to
10 min. Fluorescence recovery within the ROI was plotted as a function of time and fit to a sin-
gle exponential function: Izor (t) = A [1 - exp’kt], where Izor (t) is the ROI fluorescence intensi-
ty at time t, A is the amplitude of fluorescence recovery, and k is the rate of recovery. The latter
is considered a measure of gap junction permeability [32].

Results

PBMCs were isolated directly after the blood samples were taken and were retrovirally
reprogrammed. iPS cell colonies started to appear 20 days post initial transduction of T
cells with the retroviral transcription factors and were isolated between 23 and 27 days after
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reprogramming (Fig 1A). All iPS colonies were initially identified based on morphological
characteristics, such as well-defined colony edges, tightly packed cells with prominent nucleoli
and a high nucleus to cytoplasm ratio (Fig 1B). Based on this assessment, a total of 13 iPS colo-
nies were isolated from the donor followed by expansion, characterization and cryo preserva-
tion (banking).

iPS cell characterization

To determine the quality of the generated iPS cell lines, alkaline phosphatase (AP) activity was
assessed. This test showed that AP is expressed uniformly high throughout the iPS colonies
(Fig 1C). Additionally, chromosome analysis was performed confirming a normal karyotype
for all iPS cell lines tested (Fig 1D). Flow cytometry analysis for the pluripotency marker Oct-
3/4 as well as the differentiation marker SSEA-1 revealed that all generated iPS cell lines

were > 95% positive for Oct-3/4 and < 5% positive for SSEA-1 indicative of high quality iPS
cells (Fig 1E). In addition, immunocytochemistry staining for the pluripotency markers
NANOG, SOX-2 and OCT-4 demonstrated that the iPS colonies uniformly expressed high lev-
els of these markers (Fig 1F). Lastly, integration of the retroviral reprogramming vectors and
their silencing as well as high levels of endogenous OCT-4, KLF-4, SOX-2 and c-MYC gene ex-
pression could be confirmed (Fig 1G).

Cardiac differentiation

Quality controlled iPS cells were then subjected to cardiac differentiation as depicted in Fig 2A.
Three different seeding densities (500,000 cells/mL, 1 x 10° cells/mL and 1.5 x 10° cells/mL) for
aggregate formation on day 0 of differentiation were initially tested across several iPS cells lines
by evaluating aggregate morphology and quantity. This test revealed that a starting seeding
density of 1 x 10° cells/mL was optimal for most cell lines as it resulted in homogeneous
aggregate populations.

The differentiation cocktail comprised 50 ng/mL of bFGF, 6 ng/mL of activin A and 10 ng/
mL of BMP-4. Initially, cardiac differentiation was carried out at 20% CO, resulting in variable
differentiation efficiencies (data not shown). However, once hypoxic conditions were imple-
mented by lowering O, to 5%, the efficiencies became more robust. In brief, iPS cells were dif-
ferentiated into cardiomyocytes at 5% O,, 7% CO, for the first 14 days of differentiation
followed by maintenance at 20% O,, 7% CO, thereafter. Overall, using a starting seeding densi-
ty of 1 x 10° iPS cells/mL in combination with 50 ng/mL of bFGF, 6 ng/mL of activin A and 10
ng/mL BMP-4 from day 3 until day 7 of differentiation followed by factor withdrawal from day
8 on forward under hypoxic growth conditions from day 0 to day 14 of differentiation repro-
ducibly resulted in 30-45% pure cardiomyocytes by day 16 of differentiation. This result was
obtained across different iPS cell lines as determined by flow cytometry analysis for cTnT ex-
pression (Table 1, S2 and S3 Tables). Beating aggregates routinely appeared from day 9 to 12 of
differentiation (Fig 2A, S1 and S2 Movies).

Investigation of cardiac-specific expression markers

Immunocytochemistry of plated cardiomyocytes was subsequently performed to assess the ex-
pression of the cardiac-specific markers cTnT, sarcomeric o-actinin and myosin light chain 2
(MLC2v) as well as connexin 43 and N cadherin. Co-expression of sarcomeric o -actinin with
cTnT, MLC2v as well as N cadherin and connexin 43 could be detected indicative of the pres-
ence of cardiomyocyte-specific sarcomeric and cytoskeletal structures (Fig 2B).

To characterize the iPS cell-derived cardiomyocytes for the expression of the cardiac specific
genes TNNT2 and MYL2, TagMan-based gene expression studies were performed. They
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Fig 2. Differentiation and characterization of iPS cell-derived cardiomyocytes. A: Schematic diagram
demonstrating the main steps of the procedure used for the direct differentiation of iPS cells to
cardiomyocytes. The main components of the media applied are noted above the time line. Cell suspensions
were kept on an orbital shaker at 5% O2 and 7% CO2 from day 1 to 14. Then the flasks with the cell
aggregates were moved to an orbital shaker at 20% 02 and 7% CO2; B: Immunofluorescent staining of
cardiomyocytes with a-actinin (ActN2), cardiac troponin T (cTNT), myosin light chain 2 (MLC2v), and N
cadherin (NCad)(scale bar 25 ym), cardiac troponin T and connexin 43 (Con43)(scale bar 50 um); C: TNNT2
and MYL2 gene expression in iPS cell-derived cardiomyocytes. Gene expression for both genes increases
until day 25 of differentiation.

doi:10.1371/journal.pone.0126596.g002

Table 1. Cardiomyocyte yields after enrichment by MACS or purification with lactate metabolic selection.

MACS positive selection (SIRPA)
MACS positive selection (VCAM1)
MACS depletion (CD90+CD140b)

before enrichment/purification

after enrichment/purification cells lost in %

totalcells % cTNT+ CcTNT+cells totalcells % CcTNT+ CcTNT+cells totalcells cTNT+ cells
9.4 x 10° 36.0
6.8x10°  36.3
9.3x 10° 23.3

3.4x10° 9.0x 10° 80.2 7.2x10° 90.4 78.6
2.5x10° 5.0x10° 89.1 45x10° 92.6 82.0
2.2x10° 1.4 x 10° 49.8 6.8 x 10° 85.2 68.3

Cell counts and percentages shown are from single representative direct differentiations. Detailed information including data from several enrichments or
purifications can be found in S2 and S3 Tables. Total cell counts and cTnT positive cell counts (cTnT+ cells) were calculated per T75 flask.

doi:10.1371/journal.pone.0126596.1001
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showed that the expression of the pan-cardiac marker TNNT2 increased as beating aggregates
appeared in the cultures (Fig 2C, left panel). TNNT2 expression continued to rise until day 25
of culturing. MYL2 expression was first detected on day 11 of differentiation and increased
thereafter (Fig 2C, right panel). During cardiac development as well as in the adult human
heart, the expression of this marker is restricted to the ventricles [33].

Application of different purification strategies

Initially, MACS-based purification was attempted since several recent publications reported
the successful enrichment of cardiomyocytes based on this strategy. Purification of cardiac
populations utilizes either SIRPA (CD172a) or VCAM1 (CD106) surface marker expression
while depletion of contaminating cell types relies on THY1 (CD140b) and PDGFRB (CD90)
expression. These markers are expressed on smooth muscle cells and fibroblasts respectively.
Using either positive or negative selection, enrichment of cardiomyocytes by 2-fold could be
achieved as determined by subsequent flow cytometry analysis for cInT (Table 1 and S2
Table). However, the final purities were still below 90%. In addition, the flow through con-
tained 20-30% cTnT positive cells (data not shown), indicating that the MACS column did not
sufficiently bind all labeled cardiomyocytes. Another drawback of MACS based purification by
positive selection with cardiomyocyte-specific antibodies or depletion of contaminating cells
was that 80-90% of total cells and 70-85% of cardiomyocytes were routinely lost in the process
(Table 1 and S2 Table), e.g. to obtain 1x 10° cardiomyocytes, an initial input of 13-15 x 10°
cells was needed. Finally, after plating on gelatin-coated plates, the purified cardiomyocytes did
not attach well resulting in additional cellular losses.

Therefore, a recently published purification strategy based on a restrictive medium was test-
ed [22]. This approach takes advantage of the cardiomyocytes’ distinct metabolic capabilities.
Several batches of iPS cell-derived cardiomyocytes were exposed to glucose-depleted lactate
medium from day 16 on forward. Prior to lactate exposure, the cardiomyocyte purity of a given
culture was determined via flow cytometry for cTnT marker expression. After 5-7 days of lac-
tate purification, cardiac enrichment was verified through ¢TnT marker expression using flow
cytometry. With starting purities between 30-45%, > 90% pure cardiomyocytes could be gen-
erated after 5-7 days of exposure to lactate (Fig 3A, Table 1, S3 Table). In addition, determined
cell counts and cTnT marker expression before and after lactate treatment verified that the
cells lost during this process were mainly contaminating cells and that only 50-65% of cardio-
myocytes were lost (Table 1, S3 Table).

The purified cardiomyocytes were subsequently plated and maintained without significant
purity losses. Cultures containing < 30% cardiomyocytes pre lactate treatment will not reach
the aforementioned purities within 7 days of lactate treatment (data not shown). Prolonged ex-
posure to lactate resulted in excessive cell clumping and cell death. Therefore we added a sec-
ond lactate purification to purify batches of cardiomyocytes with < 80% cTnT positive cells
after 7 days of metabolic selection. The cells were plated onto gelatin-coated plates followed by
a second lactate treatment as a monolayer for up to 5 days. Fig 3B gives an example for plated
cells before the second lactate purification step (see also S3 and S4 Movies). Staining with anti-
cTnT antibody demonstrates the cardiomyocytes content in the cell monolayer. After 5 days of
lactate exposure, only islands of beating clusters comprised of cardiomyocytes remained on the
plates (Fig 3C and S5 Movie) and were available for subsequent phenotypic characterization.

Functional characterization of iPS cell-derived cardiomyocytes

In order to investigate the electrical activity of differentiated cardiomyocytes, whole-cell patch
clamp technique was performed. Fig 4A shows original traces of spontaneous actions potentials
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Fig 3. Purification of iPS cell-derived cardiomyocytes with metabolic selection. A: Percentage of cTnT-positive cells in suspension culture before and
after metabolic selection with lactate medium; B: Plated cells from a suspension culture treated with metabolic selection with lactate for 3 days prior plating.
Immunofluorescent staining with cardiac troponin T (cTNT) and DAPI highlights the cardiomyocytes (scale bar 25 um for both); C: Purified cardiomyocytes

after additional metabolic selection with lactate medium for 8 days after plating (scale bar 50 um).

doi:10.1371/journal.pone.0126596.9003

(APs) recorded in current clamp mode. In the population of cells investigated (n = 8), 50% of
the cells displayed ventricular-like APs, while 37.5% had atrial-like AP and only 12.5% showed
action potentials that are consistent with nodal cardiomyocytes. Detailed analysis of resting
membrane potential (RMP), action potential amplitude (APA), maximal AP upstroke velocity
(APA) and action potential duration at 30%, 50%, 80% and 90% repolarization (APD 30, 50,
80 and 90) are shown in Table 2. For a subgroup of investigated cardiomyocytes, APs were elic-
ited using square current pulses at variable frequency (0.5-3 Hz). As shown in Fig 4B, a fre-
quency dependent shortening of the steady-state AP duration could be observed in the iPS cell-
derived cardiomyocytes. The underlying mechanism of rate-dependent shortening of AP dura-
tion includes an increase in slow delayed rectifier potassium current, Ix,, [34] and increased
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Fig 4. Action potentials characteristics of iPS cell-derived cardiomyocytes. A: Left panel shows exemplary original traces of APs of spontaneously
contracting cardiomyocytes. Distinct AP morphologies representing ventricular-, atrial-, and nodal-like cardiomyoctes were discriminated. Right panel shows
the proportional distribution. B: Original traces of APs induced by current injection (current clamp) at various frequencies. Interestingly, iPS cell-derived
cardiomyocytes responded to stimulation rates as high as 3 Hz. Mean data for AP duration at 30% and 90% repolarization (APD30 and 90, respectively)
showed a rate-dependent shortening in steady-state AP duration.

doi:10.1371/journal.pone.0126596.9004

Na-Ca exchanger current [35]. This suggests that the investigated cardiomyocytes may express
a functional IKs and Na-Ca exchanger current.

Intracellular Ca was measured in iPS cell-derived cardiomyocytes loaded with the Ca indica-
tor Fluo-4 AM (10 pmol/L, 10 min). Fig 5 shows original traces acquired in frame scan (A) and
line scan (B) mode. Original recordings of the dynamic changes in intracellular Ca are also
shown using high frequency frame scan mode (S6 Movie). Corresponding to spontaneous ac-
tion potentials, the iPS cell-derived cardiomyocytes show spontaneous rhythmic fluctuations
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Table 2. AP characteristics of iPS cell-derived cardiomyocytes.

APs (n =8) Cnm (PF) SAF
(Hz2)

Ventricular-like 99.2+294 05x0.1

(n=4)

Nodal-like (n=3) 257.7+86.0 0.6+0.3

Atrial-like (n=1) 36.0 1.1

MDP (mV) APA (mV) MaxdV/idt  APDsy(ms) APDs(ms) APDg(ms) APDgg (ms)
(VIs)

-45.0+96 771+127 11347 336.9+116.4 4148+ 1440 6053+137.5 737.7+95.9

-36.3+1.1 556+40 1.7+0.6 5566.9+170.4 817.0+311.1 1109+433.9 1187.0+466.0
-50.1 87.2 20.7 55.0 69.0 114.0 177.0

Data are mean + SEM. n indicates the cell number; C,: membrane capacitance; SAF: spontaneous AP frequency; MDP: maximum diastolic potential;
APA: AP amplitude; max dV/dt: maximum rate of rise of the AP upstroke; APD30/APD50/APD80: AP duration measured at 30%, 50%, 80% or 90%

repolarization, respectively.

doi:10.1371/journal.pone.0126596.1002

of the intracellular Ca concentration, i.e. Ca transients, indicative of functional excitation-
contraction-coupling [36]. Moreover, the spontaneous frequency and amplitude of these Ca
transients were increased in the presence of the B;-receptor agonist isoproterenol (10”7 mol/L;
Fig 5B). Isoproterenol also significantly enhanced the decay time of the Ca transient. This sug-
gests that the iPS cell-derived cardiomyocytes express B;-receptors and downstream mediators
required for the positive chronotropic, inotropic and lusitropic response.

Interestingly, iPS cell-derived cardiomyocytes also showed spatially and temporally ran-
domly distributed spontaneous Ca release events, called Ca sparks (Fig 5B). The latter occurs
due to spontaneous diastolic re-openings of cardiac ryanodine receptor clusters [36] and their
presence indicates a functional sarcoplasmic reticulum typically found in mature cardiomyo-
cytes. Analysis of fluorescence recovery after photobleaching confirmed the presence of func-
tional gap junctions (Fig 6). Interestingly, the rate constant of fluorescence recovery was very
similar to previously published data (k = 0.5/min)[30].

Discussion

Induced pluripotent stem (iPS) cell-derived cardiomyocytes are an important tool for investi-
gating disease model systems, regenerative medicine or drugs [17]. In initial studies, iPS-de-
rived cardiomyocytes originated from dermal fibroblasts [37-41]. In order to use more easily
accessible starting material, efforts were undertaken to obtain iPS from peripheral blood mono-
nuclear cells (PBMC)[4, 42-44]. In this study, the iPS cells serving as the starting material for
cardiac differentiation were very reproducibly generated from human PBMC, albeit the repro-
gramming efficiencies were relatively low ranging at 0.0001 to 0.002%. Microscopic and molec-
ular analyses revealed that all generated iPS cell lines had ES-like morphological characteristics
and were of high quality. This was evident from uniform expression of alkaline phosphatase
and high levels of pluripotent marker expression (> 95%). These data are in line with reports
of successful reprogramming of human peripheral blood cells into iPS cells [42, 43].

To efficiently and robustly differentiate these iPS cells into cardiomyocytes, previously de-
veloped protocols were optimized [12, 45]. In brief, to induce mesodermal specification, activin
A, BMP-4 and bFGF were added at defined time points and concentrations during the differen-
tiation process mimicking primitive streak formation and germ layer induction in vivo. Com-
bining this directed differentiation approach with hypoxic growth conditions resulted in a
cardiomyocyte yield of 30-45% around day 16. These cardiomyocytes beat spontaneously in
culture and expressed the appropriate structural markers ¢TnT, o -actinin, N cadherin, con-
nexin 43, and MLC2v as determined through protein and gene expression studies. Interesting-
ly, the expression of connexin 43 correlates with the presence of functional gap junctions,
being further confirmed by FRAP analysis (Fig 6).
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Fig 5. Spontaneous intracellular Ca fluctuations in iPS cell-derived cardiomyocytes. A: Exemplary
traces of fluo-4 fluorescence in an iPS cell-derived cardiomyocyte at low-diastolic (left) and high-systolic [Ca],
(right). Data was acquired in frame-scan mode (scale bar 10 ym). B: Original recording of a fast line-scan
image (lower panel) and derived fluo-4 fluorescence intensity as a function of time (upper panel). A typical Ca
transient is visible. In addition, spontaneous and localized diastolic Ca release, i.e. Ca sparks, are detectable.
Lower right panel shows a surface plot of a Ca spark. C: Original recordings of spontaneous Ca transients
(acquired in line-scan mode) at baseline and upon exposure to isoproterenol. Spontanous Ca transient
frequency increased from 0.33 t0 0.5 Hz.

doi:10.1371/journal.pone.0126596.9005
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Fig 6. Functional gap junctions in cardiac clusters. A: Original recording of a iPS cell-derived cardiomyocyte cluster loaded with the gap junction
permeable dye fluo-4 at baseline (left panel, scale bar 10 ym), immediate after photobleaching of a single cell (mid panel, arrow) and 10 minutes later (right
panel). B: Analysis of fluorescence intensity as a function of time at two regions of interest: the bleached cell and an adjacent donor cell. The fluorescence
recovery after photobleaching (FRAP) could be fit with a single exponential with a recovery rate constant k of 2.94 ms. The simultaneous drop in fluorescence
in the adjacent donor cell that could also be fit with a single exponential (k = 0.51 ms).

doi:10.1371/journal.pone.0126596.9006

Although cardiomyocytes were generated from PBMC derived-iPS cells in the above-men-
tioned studies, purification strategies were either not pursued or focused on antibiotic selection,
which required tedious upfront genetic engineering efforts [19].

At the beginning of this investigation, MACS-based purification was attempted as a strategy
for cardiomyocyte enrichment and purification. Dubois et al. and Uosaki et al. previously
showed that specific cell surface marker can be used to reach cardiomyocyte levels >95% [16,
20]. Although in our experiments MACS-based positive selection with either SIRPA or
VCAMI increased cardiomyocyte purity from about 36% to 80% and 89% respectively, up to
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80% of cardiomyocytes were lost during this selection procedure. MACS-based depletion with
CD90 and CD140b also resulted in a twofold increase of cardiomyocyte content, but did not
enable cardiomyocyte purification beyond 50% with again high losses of cardiomyocytes
(Table 1). Substantial cell loss was also reported by Dubois et al. [16] for magnetic bead sorting
with SIRPA. Uosaki et al. [20] did not specify the cell loss for magnetic bead sorting with
VCAMLI. In addition, we observed a drastically reduced viability post sorting. The MACS-
purified cardiomyocytes did not attach well and failed to beat indicative of compromised cellu-
lar fitness. Overall, considering that MACS-based purification requires expensive reagents,
such as large quantities of labeling antibodies, beads and sorting columns, this method of puri-
fication was not further pursued as a viable cardiac purification option. To our knowledge, the
reports by Dubois et al. and Uosaki et al. remain the only ones demonstrating successful
MACS-based purification of cardiomyocytes.

Besides MACS-based enrichment, cardiomyocytes can also be purified using restrictive
media with an essentially glucose free lactate supplemented medium [22]. This approach takes
advantage of the fact that cardiomyocytes can survive and function properly in the absence of
glucose by lactate metabolization via oxidative phosphorylation, while most other cell types
cannot. Using the lactate-based purification method, it was possible to enrich cardiomyocytes
to > 90% after 5-7 days of lactate medium exposure as based on flow cytometry analysis for
cTnT positive cells. Cardiomyocyte losses were substantially lower (<50%) when applying this
selection strategy compared to MACS-based purification (>70%). However, to achieve final
cardiomyocyte purity of > 90%, the cardiomyocyte content on day 17-20 prior to lactate treat-
ment had to be at least 40%. By plating cell populations with less than 80% pure cardiomyo-
cytes onto gelatin-coated dishes followed by 3-5 days of additional lactate treatment beginning
2 days post-plating, we developed a method for further purifying cultures that would otherwise
eventually been discarded due to overgrowing contaminating cells.

Electrophysiological characterization confirmed that the cardiomyocytes derived from iPS
cells exhibited similar action potential characteristics found in more mature cardiomyocytes.
Functional experiments revealed spontaneous action potentials and Ca transients indicating an
intact excitation-contraction coupling. The shape and morphology of the AP corresponds to a
cell population consisting of 50% ventricular cells, 37.5% atrial und 12.5% nodal cells. More-
over, we found evidence for the presence of a functional sarcoplasmic reticulum (i.e. Ca sparks)
and an intact ;-adrenergic response. Finally, we could show a frequency-dependent accelera-
tion of repolarization and a response to stimulation rates as high as 3 Hz. To our knowledge,
this is the first demonstration of iPS$ cell-derived cardiomyocytes capable of rhythmic activity
at such a high frequency in vitro.

The robust generation of large quantities of highly pure cardiomyocytes is crucial for their
subsequent application in disease modeling, drug discovery and toxicity testing as well as re-
generative medicine. Previously, the utility of iPS-cell derived cardiomyocytes in monogenetic
disease modeling has been demonstrated [37-39, 46-48]. Many of these diseases are caused by
mutations in ion channel encoding genes and can be recapitulated in vitro by performing
electrophysiological characterization studies on a small quantity of single cardiomyocytes.
However, to develop suitable in vitro disease models for conditions resulting from mutations in
sarcomeric and/or cytoskeletal genes which are involved in force generation and transmission
respectively, large numbers of purified cardiomyocytes grown as cardiac cell sheets are needed.

In the field of regenerative medicine, three dimensional sheets comprised of human iPS cell-
derived cardiomyocytes have already been developed in efforts to address the need for new
therapies for heart disease [49]. However, their delivery to the heart as well as their integration
into the diseased tissues still poses significant hurdles. In addition, iPS cell-derived cardiomyo-
cytes also show large potential as a tool for drug discovery and toxicity testing [50]. For the
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adaptation of iPS-cell derived cardiomyocytes for these applications, large quantities of highly
pure cells recapitulating normal human cardiac biology in vitro and meeting reproducibility re-
quirements are necessary.

Our combined protocol for a highly robust and scalable cardiac differentiation and purifica-
tion can provide a simple and cost-efficient method to yield the necessary cardiomyocyte
numbers.

Conclusion

We developed a novel protocol to generate highly purified human cardiomyocytes, which were
derived from iPS cells originating from peripheral blood mononuclear cells. It could be demon-
strated that the purity of the differentiated cell population improved dramatically to more than
90% cardiomyocytes. Our protocol combines a non-invasive source for generation of iPS cells
from PBMC, an optimized directed cardiac differentiation, and a purification based on lactate
medium. The latter neither requires laborious genetic manipulations nor expensive laboratory
equipment or reagents, but instead provides a simple, cost-efficient method to generate large
numbers of highly pure functional cardiomyocytes. This combined protocol will foster the use
of iP§ cell-derived cardiomyocytes for disease modeling, drug discovery, and regenerative
medicine.

Supporting Information

S1 Movie. Beating aggregates on day 39 after start of differentiation without metabolic se-
lection. Scale bar represents 200 pm.
(MOV)

$2 Movie. Beating aggregates on day 26 after start of differentiation without metabolic se-
lection. Scale bar represents 200 um.
(MOV)

S3 Movie. Plated cells on day 35 after start of differention before the second round of meta-
bolic selection. Scale bar represents 100 pm.
(MOV)

S$4 Movie. Plated cells on day 35 after start of differention before the second round of meta-
bolic selection. Scale bar represents 100 um.
(MOV)

S5 Movie. Beating cardiomyocytes after metabolic selection for nine days. Scale bar repre-
sents 100 pum.
(MOV)

$6 Movie. Ca transients and diastolic Ca sparks. Fluo-4 loaded cardiomyocytes show rhyth-
mic fluctuations in the cytosolic Ca concentration, i.e. Ca transients. Moreover, during diastole,
spontaneous elementary Ca release events from the sarcoplasmic reticulum, i.e. Ca sparks,

are visible.

(MOV)

S1 Table. List of pre-designed TagMan assays.
(DOCX)

$2 Table. Cardiomyocyte yields after enrichment by MACS positive selection or depletion.
(DOCX)
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