@’PLOS ‘ ONE

CrossMark

click for updates

E OPEN ACCESS

Citation: Kim H, Choi K-I, Choi S-1(2015) A Memory-
Efficient Deterministic Finite Automaton-Based Bit-
Split String Matching Scheme Using Pattern
Uniqueness in Deep Packet Inspection. PLoS ONE
10(5): €0126517. doi:10.1371/journal.pone.0126517

Academic Editor: Francesco Pappalardo, University
of Catania, ITALY

Received: November 3, 2014
Accepted: April 2, 2015
Published: May 4, 2015

Copyright: © 2015 Kim et al. This is an open access
article distributed under the terms of the Creative
Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper.

Funding: This work was partly supported by ICT
R&D program of the Ministry of Science, ICT &
Future Planning/Institute for Information &
communications Technology Promotion, Republic of
Korea (14-000-05-001, Smart Networking Core
Technology Development), and Basic Science
Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of
Science, ICT & Future Planning (NRF-
2012R1A1A1002993). The funders had no role in

RESEARCH ARTICLE

A Memory-Efficient Deterministic Finite
Automaton-Based Bit-Split String Matching
Scheme Using Pattern Uniqueness in Deep
Packet Inspection

HyunJin Kim', Kang-ll Choi?, Sang-ll Choi®*

1 School of Electronics and Electrical Engineering, Dankook University, Yongin-si, Republic of Korea,

2 Advanced Communications Research Laboratory, Electronics and Telecommunications Research
Institute, Daejeon, Republic of Korea, 3 Department of Applied Computer Engineering, Dankook University,
Yongin-si, Republic of Korea

* choisi@dankook.ac.kr

Abstract

This paper proposes a memory-efficient bit-split string matching scheme for deep packet in-
spection (DPI). When the number of target patterns becomes large, the memory require-
ments of the string matching engine become a critical issue. The proposed string matching
scheme reduces the memory requirements using the uniqueness of the target patterns in
the deterministic finite automaton (DFA)-based bit-split string matching. The pattern group-
ing extracts a set of unique patterns from the target patterns. In the set of unique patterns, a
pattern is not the suffix of any other patterns. Therefore, in the DFA constructed with the set
of unique patterns, when only one pattern can be matched in an output state. In the bit-split
string matching, multiple finite-state machine (FSM) tiles with several input bit groups are
adopted in order to reduce the number of stored state transitions. However, the memory re-
quirements for storing the matching vectors can be large because each bit in the matching
vector is used to identify whether its own pattern is matched or not. In our research, the pro-
posed pattern grouping is applied to the multiple FSM tiles in the bit-split string matching.
For the set of unique patterns, the memory-based bit-split string matching engine stores
only the pattern match index for each state to indicate the match with its own unique pattern.
Therefore, the memory requirements are significantly decreased by not storing the match-
ing vectors in the string matchers for the set of unique patterns. The experimental results
show that the proposed string matching scheme can reduce the storage cost significantly
compared to the previous bit-split string matching methods.

Introduction

Nowadays, one of the most powerful methods of ensuring network security and quality of ser-
vice (QoS) is DPI, in which the payloads are analyzed to determine whether target patterns are
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matched or not in the application layer. In many cases, target patterns are composed of multi-
ple characters; therefore, the string matching engine is an essential component of modern DPI
[1]. With the advance of networking services, the number of target patterns increases and the
length of the pattern, which means the number of characters in it, can vary dramatically.

In order to overcome the problem of diverse pattern lengths, DFA-based string matching
approaches have been developed. Even though there have been several recent attempts to re-
duce the memory requirements in field programmable gate array (FPGA) devices in [2-4] and
ternary content-addressable memory (TCAM) in [5], DFA-based string matching using gener-
al or static memory blocks can provide several advantages; firstly, the deterministic transition
step is achieved between states, regardless of the input symbols. Secondly, the number of out-
put transitions from a state can be fixed. Therefore, both the regularity and scalability can be
guaranteed in DFA-based string matching. Memory-based string matching with distributed
block memory is simple to implement. As shown in [6], if a redundant memory block is pro-
vided, the updatability can be increased. Even though it has several advantages, as mentioned
above, sparse memory usage is one of main problems in DFA-based string matching.

In the Aho-Corasick algorithm described in [7], the number of state pointers in each state is
256 for ASCII (8 bits) input, which imposes a significant burden on the memory requirements
of the DFA-based string matching engine. Bit-split string matching reduces the number of
state pointers using multiple FSM tiles with several input bit groups [6]. In the bit-split string
matching engines described in [6], the output state should have a partial matching vector
(PMV); the full matching vector (FMV) is obtained by performing a bitwise AND operation
between the PMVs from the FSM tiles, where each bit in the FMV represents whether its own
pattern is matched or not. Because the memory requirements for storing PMV's are propor-
tional to the numbers of states and patterns to be mapped in a string matcher, several previous
string matching schemes reduce the memory requirements by sharing PMVs [8,9].In [8], a
separate PMV table is adopted for each FSM tile, where the memory requirements of the PMV
table is proportional to the square number of patterns in a string matcher. In [9], PMVs are
shared between FSM tiles in the bit-split string matcher. Therefore, only one PMV table is
adopted in a string matcher to reduce the memory requirements. In [10], considering pattern
lengths, heterogeneous string matchers with different maximum number of states and patterns
to be mapped are adopted. However, many memory blocks for storing PMVs are still required
in [8-10].

When multiple patterns are matched in a state of the bit-split DFA, the multiple patterns
are elements in the set with non-unique patterns. For example, let us assume that there are four
patterns {“abcd,”, “cd,”, “d,” “fg”} in a set of patterns. If a pattern “abcd” is matched, patterns
“cd” and “d” can be matched simultaneously in each FSM tile. Because these three patterns are
not unique, the four patterns can be elements of the set with non-unique patterns. For a set
with non-unique patterns, the bit-split string matching techniques with PMV's such as those
described in [6, 8] can be applied to recognize which patterns are matched simultaneously. For
a set of unique patterns, only the unique matching index for a matched pattern is stored for
each output state, which reduces the memory requirements by not storing the PMVs.

This paper proposes a memory-efficient DFA-based string matching scheme that reduces
the memory requirements by not storing the matching vectors. In the proposed scheme, the
proposed pattern grouping divides a set of all target patterns into the set with non-unique pat-
terns and set of unique patterns. For the set with non-unique patterns, the bit-split string
matching technique with PMVss is applied. On the other hand, in the DFA for the set of unique
patterns, only a single pattern is matched in each state. For the set of unique patterns, because
the bit-split string matchers store only the pattern matching index, the memory requirements
can be reduced by not storing the PMVs. The experimental results show that the proposed
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scheme can be effective in reducing the memory requirements. In the experiments, the Snort
[11] and ClamAYV [12] rule sets are adopted. In addition, several statistically generated rule sets
are used to analyze the pattern uniqueness. The proposed scheme can be applied to other bit-
split DFA-based string matching architectures and pattern mapping approaches such as those
described in [13-15].

This paper is organized as follows: firstly, previous works are reviewed to show the effective-
ness of the bit-split string matching. Then, the background of this paper is explained in detail.
In the section of background, several definitions and lemmas are provided to clarify the pro-
posed scheme. In addition, the pattern uniqueness in the bit-split string matching is explained.
In the following section, the parallel memory-based bit-split string matching architecture for
the set of unique patterns and set with non-unique patterns is described. Then, the proposed
pattern grouping and mapping algorithms for obtaining the set of unique patterns and map-
ping target patterns are explained. Finally, the experimental environments and results are pro-
vided. In addition, the analysis of the pattern uniqueness and practical implementation issue
are discussed.

Previous Works

In the survey of [1], string matching schemes were classified into three types: automaton-
based, heuristic-based, and filtering-based string matching schemes. A heuristic-based string
matching scheme can accelerate the search by skipping characters not in a match. One of well-
known heuristic-based string matching schemes is the Boyer-Moore algorithm [16]. By per-
forming comparisons at different alignments of a pattern and text to be searched, occurrences
of the pattern can be searched. With the information obtained by preprocessing the pattern,
many alignments can be skipped. However, in the worst case, there are no skipped characters.
When the pattern length and number of characters in a text are assumed as m and n, the time
complexity can be O(nm) in the worst case. Therefore, as shown in [1], heuristic-based string
matching scheme is not suitable in DPI because algorithmic attacks can degrade overall perfor-
mance in the string matching engine. Even though the string matching with multiple patterns
can be possible in heuristic-based string matching [17], multiple processing elements or cores
should be equipped. Therefore, it is expected that heuristic-based scheme is not effective for a
large number of target patterns.

Due to the parallelized string matching with multiple patterns, automaton-based or filter-
ing-based string matching schemes are preferred. Filtering-based string matching scheme
adopts hashing [18] or bloom filter [19], which are memory-efficient in processing bit vectors.
The filtering-based string matching scheme can quickly exclude input data that do not contain
patterns to be matched. Because the efficiency of the filtering-based scheme is based on the as-
sumption that patterns are rarely matched in payloads, the filtering-based string matching
scheme might suffer from algorithmic attacks in the worst case scenario.

On the other hand, in automaton-based string matching scheme, multiple patterns are
mapped using states and state transitions between states. Especially, DFA-based string match-
ing scheme performs a fixed number of state transitions at a time. Therefore, linear worst-case
performance can be guaranteed. In addition, target patterns crossing multiple payloads can be
matched because each state contains the information of input sequence. However, the DFA-
based string matching scheme has large memory requirements to store the information of
states and state transitions for each state. The Aho-Corasick algorithm was proposed for biblio-
graphic string searches with compressed DFAs [7]. In the Aho-Corasick algorithm, a DFA
should contain failure pointers from each state to the longest suffix state or matched subpat-
terns. By sharing common prefixes, the number of states in a DFA is reduced; therefore, the
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information of states can be compressed. In the traditional Aho-Corasick algorithm, however,
due to the large number of state transitions (e.g. 256 for the input symbol of ASCII character
code), the memory requirements for storing state transitions in each state are great.

Automaton-based string matching scheme can be implemented using general memory. For
example, two-dimensional memory architecture is adopted in the implementation of the Aho-
Corasick algorithm. A memory-based string matching engine can have both updatability and
flexibility because memory contents are easily updated with a memory interface. Due to the
large memory requirements for storing state transitions, several researches have been studied
to reduce the number of stored state transitions. In [2, 20, 21], by adopting configurable logics
and distributed memory in an FPGA, only the state transitions towards non-initial states are
stored. However, compared to the memory-based string matching engine, the flexibility and
updatability in an FPGA cannot be sufficient. In [5, 22], TCAM is adopted for compressing the
information of state transitions in a DFA-based string matching. However, due to the high
price and power consumption of TCAM, the usage of TCAM in the DFA-based string match-
ing can be limited.

In order to reduce the memory requirements for storing state transitions, bit-split DFA-
based string matching was proposed in [6]. By splitting one or more than one ASCII character
code into several bit groups, multiple DFAs are constructed for each input bit group, so that
the total number of state transitions in each state could be reduced. In addition, multiple ho-
mogeneous string matchers are operated in parallel, where a small number of target patterns
are mapped onto each string matcher. Therefore, the regularity can be guaranteed in the imple-
mentation. In addition, by changing memory contents using a spare string matcher in real
time, high updatability can be achieved. In order to identify matched target patterns in a state,
each state should contain its own match vector with a set of bits or PMV, where the value of
each bit indicates whether the related target patterns are matched or not in the state. Therefore,
the memory requirements for storing match vectors might be significant.

Several bit-split string matching schemes were developed to reduce memory requirements.
However, several works are related only to the pattern sorting based on the original bit-split
string matching. The original bit-split string matching in [6] increases the number of shared
states in each string matcher using the lexicographical pattern sorting. The variety of target pat-
tern lengths, however, causes unbalanced memory usage between string matchers because the
number of mapped target patterns onto each string matcher could vary. In addition, our several
previous researches focus on only the pattern sorting that decides the order of patterns to be
mapped onto a string matcher [14, 15, 23]. In these researches, by balancing memory usage be-
tween string matchers, memory requirements are significantly reduced. However, the problem
of large memory requirements for storing match vectors is not considered.

In the previous works in [6, 13, 24, 25], several architectures based on the bit-split string
matching scheme were proposed. In [13, 24], the memory requirements for storing state transi-
tions towards initial states are reduced. In [6, 25], a multi-byte string matching is performed by
multiplying the number of memory blocks. Even though the previous works related to the pat-
tern grouping and architectures mentioned above have developed new bit-split string matching
schemes, a string matcher should have memory blocks for storing match vectors, which can be
the disadvantage in the new architectures based on the bit-split string matching scheme.

Several approaches to reduce the memory requirements for storing match vectors were pro-
posed. In [10], the architecture with heterogeneous string matchers is adopted to enhance the
efficiency of memory usage for mapping target patterns with various lengths. In [10], for the
patterns with short pattern lengths, the FSM tile with a small number of states and PMVs is
adopted. On the other hand, for the patterns with long pattern lengths, a large number of states
and PM Vs is adopted. By increasing the number of patterns to be mapped in the string
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matchers for short target patterns, the number of bits in a PMV for long target patterns can be
reduced in the string matchers. However, if the number of patterns with short pattern lengths
is not large, the reduced memory requirements are not sufficient. In [8], the memory require-
ments for storing match vectors are reduced by relabeling states and eliminating the match vec-
tors of non-output states. However, each FSM tile has its own match vector table in order to
share match vectors between states, which can increase the number of memory block cells. In
[9], multiple FSM tiles share the same match vector table in order to minimize the memory re-
quirements. However, multiple memory accesses should be serially performed by obtaining
multiple match vectors in a match vector table, which degrades overall performance. In addi-
tion, the previous studies cannot eliminate the memory requirements for storing match vectors
in a string matcher.

Background

In this section, the description of the pattern uniqueness based on the ASCII character input is
shown. Then, the concept of the pattern uniqueness in the bit-split string matching is explained
with several examples.

Non-unique and unique patterns

In the DFA-based string matching technique, the information used for representing which pat-
terns are matched should be provided for each state. In this case, the memory requirements for
storing the information can depend on the uniqueness of the patterns in a set. A set of target
patterns can be divided into the set with non-unique patterns and set of unique patterns. A
non-unique pattern is defined as follows:

Definition 1. For the sequence of input symbols, the non-unique pattern can be the suffix of
other patterns, or other patterns can be the suffixes of the non-unique pattern in the set with
non-unique patterns.

In the example of an ASCII input sequence, Let us assume that there are four patterns in the
set with non-unique patterns {“abed,”, “cd,”, “d”, “fg”}. In the example, patterns “cd” and “d”
are suffixes of a pattern “abcd.” In the set with non-unique patterns, it is possible that not all of
patterns are non-unique. However, multiple patterns can be matched at the same time for the
set with non-unique patterns because a pattern and its suffix are matched simultaneously.
Lemma 1 is provided to show the characteristics of the pattern matching identification for the
set with non-unique patterns:

Lemma 1. When the number of patterns in the set with non-unique patterns is N, the number
of bits required for representing which patterns are matched is N.

Proof. Let us assume that its related pattern is matched when a bit for the pattern matching
identification is one. When N patterns are elements of the set with non-unique patterns, it is
possible that a pattern can be the suffix of the other N — 1 patterns in a state. For the state men-
tioned above, N bits are required for N patterns in order to identify that all patterns are
matched in the state. Therefore, N bits are required to represent which patterns are matched.

In the example of four patterns mentioned above, the number of required bits for the pat-
tern matching identification can be four. Considering Lemma 1, as the number of patterns in
the set with non-unique patterns increases, the memory requirements for the pattern matching
identification in a state increase proportionally to the number of patterns. On the other hand,
the unique pattern is defined as follows:

Definition 2. For the sequence of input symbols, the unique pattern is not the suffix of any
other pattern, and the other patterns are not suffixes of the unique pattern in the set of unique
patterns.
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unique patterns

non-unique abced
patterns a:)fg
cig
( abcd )
e abfg
o cfg
* fg non-unique
* gd patterns
N J o
cd
d

Fig 1. Example of pattern grouping.
doi:10.1371/journal.pone.0126517.g001

Considering Definition 2 of the unique pattern, there is only one pattern matched in a state
for the set of unique patterns. Therefore, there is no need to adopt multiple bits to represent
which patterns are matched. For the set with non-unique patterns, each bit is used for its relat-
ed pattern matching identification. On the other hand, for the set of the unique patterns, only
the binary index is required to represent which pattern is matched for a state. If there are N
unique patterns in a set, the size of the binary index is log, N.

Grouping for obtaining a set of unique patterns

Initially, a set of all target patterns could be the set of non-unique patterns, because a pattern
can be suffix of any other target pattern in the set of all target patterns. In order to obtain a set
of unique patterns, all of the target patterns can be grouped into two sets by considering the
uniqueness of patterns. Fig 1 shows an example of pattern grouping for six patterns.

Considering Definition 1, the original set of target patterns is for the non-unique patterns.
For example, patterns “fg” and “cd” are the suffixes of patterns “abfg” and “abcd,” respectively.
In this case, if patterns {“fg,” “cd,” “d”} are excluded from the original set, a set of patterns
{“abcd,” “abfg,” “cfg”} can be the set of the unique patterns. These excluded patterns can be the
elements of the set with non-unique patterns because “d” is the suffix of “cd.” In other words,
patterns “d” and “cd” are non-unique patterns.

Fig 2 shows an example of the DFA for the original six target patterns in Fig 1, where the
failing pointers are not shown for clarity. The arrow means the state transition according to the
input symbol shown on the arrow. State S is the initial state. In addition, the double-circled
states Sy, Se» So» S11, S12, and S5 are the output states, where their related patterns in the curly
brackets are matched in the output states, respectively. Multiple patterns are matched in Sy, Se,
So, and Sy,. Therefore, when the DFA is constructed with the six target patterns, the patterns
are the elements of the set with non-unique patterns.
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@ a—>@—b~>@—c—>@—d {abcd, cd, d}

. d{d} f\@79 {abfg, fg}
fg {cfg, fa}
d

{cd, d}

Fig 2. Example of DFA for all of target patterns in Fig 1.
doi:10.1371/journal.pone.0126517.9002

After grouping the target patterns, the set of non-unique patterns and set with non-unique
patterns are obtained. Fig 3 shows an example of the DFAs for the obtained two sets. Unlike
the DFA in Fig 2, only one pattern is matched in the output state in Fig 3(a), which means the
DFA for the set of unique patterns. On the other hand, multiple patterns can be matched in the
output state S, for the set with non-unique patterns, as shown in Fig 3(b).

Bit-split string matching using pattern uniqueness

In order to reduce the hardware cost in the DFA-based string matching engine, the bit-split
string matching engine based on the Aho-Corasick algorithm [7] was proposed in [6]. Fig 4
shows the architecture of the bit-split string matching engine described in [6]. By splitting one
ASCII character code into several bit groups, multiple FSM tiles are constructed for each input
bit group in order to reduce the number of state transitions in each state. In Fig 4, two bits are
inputted for each FSM tile, where the number in parentheses refers to the bit position of an
input symbol from the LSB (least significant bit) in the ASCII code. In addition, the target pat-
terns are lexicographically grouped and then each set of the grouped target patterns is mapped
onto one homogeneous string matcher.

The pattern identification in the multiple FSM tiles of a string matcher requires that each
state contains the match vectors for the target patterns mapped on the string matcher. As
shown in Fig 4, by performing a bitwise AND operation between the PMV's from the FSM tiles,
the FMV is obtained. Each bit within it represents whether its related pattern is matched or
not. Because the number of bits in a PMYV is proportional to the number of patterns, the mem-
ory requirements for storing the PMVs might be significant.
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g {abfg}
-5 —g(5y) tc'

(a)

d )

c\@—d {cd, d}

(b)

Fig 3. Example of DFAs after considering the pattern uniqueness. (a) DFA for the set of unique patterns;
(b) DFA for the set with non-unique patterns.

doi:10.1371/journal.pone.0126517.g003

Because the target patterns are mapped onto multiple FSM tiles, the pattern grouping for
the bit-split string matching considers all cases for the input bit groups. The unique pattern of
the bit-split string matching is defined in Definition 3.

Definition 3. In the set of unique patterns of the bit-split string matching, the unique pattern
is not the suffix of any other pattern, and the other patterns are not the suffixes of the unique pat-
tern for any of the DFAs with input bit groups.

Lemma 2 is provided in order to show the characteristics of the pattern uniqueness for the
bit-split string matching.

Lemma 2. For the DFAs for the unique patterns of the bit-split string matching, there is no
need to adopt the match vector.

Proof. In the DFA with each bit group, only one pattern is matched in an output state.
Therefore, for the unique patterns of the bit-split string matching, only one pattern can be
matched at a time, thus allowing the match vector for the unique patterns of the bit-split string
matching to be removed.
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Bit-level Parallel String Matching Engine

— String Matcher 1
%f Tile 0 Tile 2
o
g two-bit input two-bit input
3 (7, 6) % (3, 2)
A PMV 0|~ ~{PMV 2
< Y
<) Tile 1 Tile 3
2
two-bit input two-bit input
(5, 4) (5] %1(1,0)
PMV 1 ~PMV 3
Y Y
8 : Full Match Vector 1 ,
String Matcher 2
8 Full Match Vector 2 R
String Matcher e )
8 p Full Match Vector e ,

Fig 4. Bit-split string matching engine.
doi:10.1371/journal.pone.0126517.g004

Considering Lemma 2, the uniqueness in the bit-split string matching is different from that
of the traditional DFA with the ASCII input sequence. The example of three patterns “abcd,”
“abfg,” and “cfg” in Fig 3 is based on ASCII or 8-bit input; therefore, the patterns are unique
when ASCII code input is assumed. However, the patterns are not unique in the bit-split archi-
tecture with several input bit groups. In order to explain the pattern uniqueness in the bit-split
string matching architecture, another example for the bit-split architecture with four FSM tiles
has been added. The ASCII binary codes of characters ‘a,” ‘b, ‘c,” ‘d,” f,” ‘g,” and ‘h’ are shown in
Table 1.

For the bit-split string matching architecture, two input bits are adopted for each FSM tile.
In the example, the i-th bit from the LSB is grouped with the (7 — 7)-th bit in order to balance
the change in each bit position, as shown in [13]. Table 2 shows multiple bit-split patterns with
two-bit vectors for patterns “abcd,” “abfg,” and “cfg,” where pattern; ; means that the i-th and
j-th bits are adopted in the pattern with two-bit vectors. In addition, the right arrow, —, means
the sequence of two-bit vectors. As shown in Table 2, pattern, ; for patterns “abcd” and “abfg”
is the same. Therefore, for the bit-split string matching with two-bit input, patterns “abcd” and
“abfg” are not unique. In addition, pattern, ; of pattern “cfg” is the suffix of pattern, ; for pat-
terns “abcd” and “abfg.” Therefore, pattern “cfg” can also be not unique.
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Table 1. ASCII binary codes.

char. value char.
a 01100001, b
c 01100011, d
e 01100101, f
g 01100111, h

doi:10.1371/journal.pone.0126517.t001

value

01100010,
01100100,
01100110,
01101000,

Table 2. Bit-split patterns with two-bit vectors for patterns “abcd,” “abfg,” and “cfg”.

pattern bit-split pattern

abcd pattern; o
patterng 1
patterns »
patterny 3

abfg pattern; o
patterng 4
patterns »
pattern, 3

cfg pattern; o
patterng 4
patterns »
pattern, s

doi:10.1371/journal.pone.0126517.t002

two-bit vectors

01 — 00 — 01 — 00
10— 11— 11— 10
10 - 10 —» 10 — 11
00 — 00 — 00 — 00
01 — 00 — 00 — 01
10— 11— 11 — 11
10— 10— 11— 11
00 — 00 — 00 — 00
01 — 00 — 01
11 —-11 - 11
10— 11— 11
00 — 00 — 00

On the other hand, let us assume that there is a set of patterns “abth” and “cfg” instead of
patterns “abcd,” “abfg,” and “cfg.” As shown in Table 3, no pattern; ; of “cfg” is the suffix of
any pattern; ; for “abfh.” Therefore, for the bit-split string matching with two-bit vectors,

“abfh” and “cfg” are unique patterns in the example.

Proposed Parallel String Matching Engine
Proposed architecture

Fig 5 shows the proposed parallel string matching architecture. For the set with non-unique
patterns, the traditional bit-split string matchers with PMVs in [8] are applied, where separate

Table 3. Bit-split patterns with two-bit vectors for patterns “abfh” and “cfg”.

pattern bit-split pattern two-bit vectors

abfh patterny o 01 — 00 — 00 — 00
patterng 4 10—-11—-11 - 10
patterns » 10—-10—-11 - 10
pattern, s 00 — 00 — 00 — 01

cfg pattern; o 01 — 00 — 01
patterng 4 11 —-11 - 11
patterns » 10— 11— 11
pattern, 3 00 — 00 — 00

doi:10.1371/journal.pone.0126517.t003
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Non-unique String Matchers
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i =? ||| Comparator E
oo Stg matcher " i——> Matching
: Index
SO e e

Fig 5. Proposed string matching architecture.

doi:10.1371/journal.pone.0126517.g005

PMV tables are adopted in each FSM tile. Considering the previous works in [6], the number
of state transitions can be minimized when four DFAs are adopted. Therefore, four FSM tiles
have two-bit inputs for each DFA. Considering the balanced inputs for each FSM tile, two bits
for an FSM tile input can be selected from both of the MSBs (most significant bits) and the
LSBs of the byte input alternately [13].

Fig 6 shows the FSM tile in a string matcher for the set with non-unique patterns. Each row
represents a state, where the state transitions and vector pointer for the state are stored. With
the partial input from the payloads, the next state transition is selected, where the next state
transition means the address of the next state in the FSM tile. Parameters S and P are the maxi-
mum numbers of states in an FSM tile and mapped patterns in a string matcher, respectively.
The vector pointer in each state indicates its own PMV in the separate PMV table. The num-
bers in the first row mean the sizes of the state transition, vector pointer, and
PMV, respectively.

Fig 7 shows the FSM tile in a string matcher for the set of unique patterns. For the set of
unique patterns, unlike previous works in [6, 8—10], the PMVs are not stored; instead, only the
unique partial matching index (PMI) for each state is stored in each FSM tile in order to show
which pattern is matched. The PMIs from the FSM tiles are compared in order to check wheth-
er all of the PMIs are equal or not; if all of the PMIs are the same, the generated matching
index indicates its own matched pattern.
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Fig 6. FSM tile in a string matcher for the set with non-unique patterns.

doi:10.1371/journal.pone.0126517.9g006

Implementation of proposed string matching engine

Considering the architecture in Fig 5, the proposed string matching engine can be imple-
mented with multiple memory blocks. Therefore, in order to implement the proposed engine
with multiple embedded memory blocks, the application specific integrated circuit (ASIC) and
FPGA are preferable. Depending on string matcher types, an FSM tile can have different num-
ber of memory block cells. In an ASIC, multiple embedded memory macro cells are placed and
routed according to semiconductor process. On the other hand, an FPGA can have a fixed
number of block memory cells, which are configured into string matchers. In an FPGA such as
[26], because the unit size of one block memory cell is predetermined in an FPGA, more than
one unit block memory cell can be adopted in an FSM tile. Figs 5, 6 and 7 show that the over-
head of combinational logics in the proposed string matching is small. In an ASIC, the combi-
national logics are implemented using several standard cells. On the other hand, lookup tables
(LUTs) are adopted for configuring combinational logics in an FPGA.

Next State Pointers PMI

”00231 ”OC]zS-I ”OC]zS-| ”ngs-| ”092P1 0

1

—> | T I I D :
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Fig 7. FSM tile in a string matcher for the set of unique patterns.

doi:10.1371/journal.pone.0126517.g007
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A prototype of the original bit-split string matching is shown in [6], where the FSM tile uses
block memory cells of an FPGA device. In the bit-split string matching engine in [6], where the
memory block of an FSM tile can be configured. In the memory block, both the PMV and next
states for a current state exists in a row. Therefore, the PMV and next states can be accessed at
the same time.

In the proposed string matching engine, the FSM tile in each non-unique string matcher
has a separate PMYV table. Therefore, an FSM tile has two separate memory blocks for two ta-
bles of state transitions and PMVs. Unlike the original bit-split string matching in [6], the
PMYV for a state is accessed using the vector pointer in the state transition table. Therefore, the
latency for accessing the PMV table is required. However, because the PMV table is separated,
the latency does not affect the state transition in a state transition table. In addition, because
the time to provide the PMV for a current state can be delayed by one or two cycles regularly, it
is expected that there is no critical effect caused by the delayed PMV in terms of performance
or throughput. On the other hand, hardware complexity increases due to the separation of
memory blocks for storing the PMV table. Considering the combinational logics for accessing
the next states and vector pointer, critical path can be related to the multiplexor for state transi-
tions. Because no specific combinational logics are required between vector pointers and PMV
table, the increased hardware complexity for the separate PMV table cannot be serious. In each
unique string matcher, only one memory block is adopted for implementing an FSM tile. Be-
cause separate PMV tables are not needed, there is no increased hardware complexity, com-
pared to the original bit-split string matching.

Pattern Grouping and Mapping

In the proposed string matching engine, memory contents of FSM tiles are generated by pat-
tern grouping and mapping. After introducing initialization of the string matching engine, de-
tails of pattern grouping and mapping are described.

Initialization of string matching engine

By mapping a rule set of target patterns, the proposed string matching engine is configured,
where memory contents for FSM tiles are required. The memory contents are obtained from
target patterns using pattern grouping and mapping. After grouping all of the target patterns
into the set of unique patterns and set with non-unique patterns, each set is mapped onto mul-
tiple string matchers. For the multiple string matchers, the patterns are partitioned into multi-
ple groups. Each partitioned group is mapped onto a string matcher by repeating the pattern
mapping for each string matcher. It is noted that the pattern grouping and mapping are not
performed in real time. Instead, a tool for the pattern grouping and mapping generates memo-
ry contents for target patterns, which are provided for the initialization of string matching en-
gine. The generated memory contents are stored in main memory or on disk. A host processor
or controller can manage the initialization with the stored memory contents. In the initializa-
tion, memory contents are uploaded in each FSM tile through an interface between host and
string matching engine. After uploading the memory contents, string matching can

be performed.

Pattern grouping

In order to map all of the target patterns onto two different types of string matchers, they are
grouped into the set of unique patterns and set with non-unique patterns. The pseudo code of
the pattern grouping algorithm used for obtaining the set of unique patterns and set with non-
unique patterns, Tynigue a0d Top — unique» i described in the algorithm in Table 4. Because the
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Table 4. Proposed pattern grouping algorithm.

1: Sort patterns T in ascending order of pattern lengths
2: Tunfque —0

3: Tnon—unique —0

4:foreachtin T do

5: T—T-{t}

6: if (Is_Unique(t, T)) then

7. Tunique = {Tuniquer {th

8: else

9: Tnon — unique < {Tnon — unique» {t}}
10: end if

11: end for

12: Return Tynigue @Nd Tron — unique

doi:10.1371/journal.pone.0126517.t004

probability of matching with multiple short patterns in a state can be high, patterns T are
sorted in ascending order of their lengths. Then, we check whether pattern ¢ is unique among
the patterns in a set of patterns T using the Is_Unique(t, T) function in line 6 of the algorithm
in Table 4. In order to speed up the pattern grouping, the Is_Unique(t, T) function considers
several characteristics. It is assumed that the pattern length of pattern #; is shorter than or equal
to that of pattern ¢, By evaluating the Is_Unique(t;, T) function, the uniqueness of pattern t; is
checked against any other patterns including pattern ¢, Therefore, after evaluating the Is_Uni-
que(t;, T) function, there is no need to check the pattern uniqueness between t; and ¢; again,
which reduces the number of patterns to be checked in the Is_Unique(t;, T) function. The re-
duction of the number of patterns to be checked is described in line 5 of the algorithm in

Table 4. In addition, when applying the Is_Unique(t, T) function, if pattern ¢ is turned out to be
the suffix of any other pattern, the Is_Unique(t, T) function does not continue to check the pat-
tern uniqueness against other patterns.

On the other hand, from Definition 3, the pattern uniqueness is considered for all sets with
the split input symbols. If it is unique, pattern t becomes an element in the set of unique pat-
terns T,,ique Otherwise, pattern ¢ becomes an element of the set with non-unique patterns T,
— unique- BY repeating this process, all of the patterns are grouped. Using the obtained two sets,
the patterns are mapped onto string matchers.

Pattern partitioning and mapping

The pattern partitioning algorithm is represented in Table 5 as follows: the set of unique pat-
terns and set with non-unique patterns, T uigue and Top — unique a0d their string matcher pa-
rameters, My ,igue and M,,,,, _ unique> 4T€ used as the input parameters in the pattern
partitioning. There are two main loops for partitioning the patterns in each set. For the set of
unique patterns, firstly, all of unique patterns are lexicographically sorted, which increases the
probability of there being shared common prefixes in each string matcher. Then, a procedure
called Pattern_Mapping, which denotes the pattern mapping process, is called to obtain the
contents of the FSM tiles for a string matcher, fsms. In addition, the unmapped patterns, T,
are returned. The FSM tile contents for the string matcher are stored in vec_fsms,igu.. The
loop for the set of unique patterns is repeated until there are no more unmapped

unique patterns.
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Table 5. Proposed pattern partitioning algorithm.

: T, — Lexicographical_Sort(T nique)

: while T, # ¢ do

fsms, T, «— Pattern_Mapping(T., Munique)
vec_fsmSypique = VEC_fSMSynique + fSMS

: end while

: Ty < Lexicographical_Sort(Tnon - unique)

: while T, # ¢ do

fsms, T, — Pattern_Mapping(Ty, Mnon — unique)

9. vec_fsmSpon — unique = VEC_fSMSpon — unique + fSMS
10: end while
11: Return vec_fsmsique and vec_fsmspop — unique

doi:10.1371/journal.pone.0126517.t005

The second loop is repeated in order to obtain the contents of the FSM tiles for the set with
non-unique patterns. The process for the next loop is similar to that of the first loop, as shown
in the algorithm of Table 5. Finally, the FSM tile contents, vec_fsms,igu. and vec_fsms o, —
unique are returned for the adopted multiple string matchers.

The procedure of pattern mapping, Pattern_Mapping, can generate the contents of the FSM
tiles for a string matcher based on the lexicographical sorting in [6]. In the pattern mapping,
several hardware resource limitations such as the maximum numbers of patterns to be
mapped, P, and states, S, are considered in the pattern mapping. The pattern mapping maxi-
mizes the number of patterns mapped onto a string matcher as follows: Firstly, the list of the
sorted patterns is provided as the input of this procedure. The contents for the FSM tiles are
built with the front k patterns determined from the inputted list. In the first iteration, k is set to
P. If the required number of states among the obtained DFAs for the FSM tiles is greater than
that available in a homogeneous FSM tile, S, the patterns could not be mapped onto the string
matcher. In this case, after decreasing k by one, the process mentioned above is iterated until
the required number of states in each FSM tile is smaller than S. After the iteration is complet-
ed, the failing pointer addition is performed. Then, the unmapped target patterns and contents
of the FSM tiles for the string matcher are returned.

Algorithm complexity of pattern grouping and mapping

In the pattern grouping algorithm, the uniqueness of each pattern is checked against all of the
target patterns. Firstly, in the pattern grouping, all patterns are sorted in ascending order of
their lengths. In this case, the time complexity of pattern sorting with pattern lengths is O(N -
log, N), where N is the number of all target patterns. After sorting N patterns, patterns are in-
dexed by t1, t,,. . ., ty — 1, tn. In the evaluation of the Is_Unique(t;, T) function for the shortest
pattern, the pattern uniqueness is evaluated with N — 1 pairs. On the other hand, the evaluation
of the Is_Unique(ty _ 1, T) function checks the pattern uniqueness with one pair of t5 _ ; and
tn- In addition, there is no pair to be checked in the evaluation of the Is_Unique(ty, T) function.
Therefore, the time complexity of this process is O(W) = O(N?). Considering the pattern
sorting and repeated evaluations of the Is_Unique(t, T) function, the time complexity of the
pattern grouping can be O(N?).

After grouping all of target patterns into the set of unique patterns and set with non-unique
patterns, these two sets are used as the input parameters for the pattern partitioning. Due to
the hardware resource parameters, the numbers of mapped patterns and states in each FSM tile
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are limited. Therefore, the pattern mapping for a string matcher shows constant time complex-
ity, O(1). In addition, the complexity of the while loop in the pattern mapping can be O(N) be-
cause the entire set of patterns is mapped onto multiple string matchers. Therefore, when the
maximum length of patterns is limited, the time complexity for partitioning the entire set of
patterns can be O(N). On the other hand, the time complexity of lexicographical sorting in the
pattern partitioning algorithm can be O(N - log, N). However, because there are large constant
factors in the pattern mapping, if the number of target patterns is not sufficiently large, the pat-
tern sorting will not be a dominant factor in the time complexity. Therefore, it can be conclud-
ed that the time consumed for obtaining the contents of FSM tiles is proportional to N.

Experimental Results and Discussion
Experimental environments

The proposed pattern matching scheme was evaluated using a C++ library. The pattern group-
ing and mapping were performed using a machine with Intel Xeon E31270 CPU, 8 Gbytes
main memory, and CentOS 6.5 Linux operating system [27]. Four sets of target patterns de-
noted as backdoor, deleted, spyware, and web-client were extracted from the Snort v2.8 rules
[11]. For the evaluation of the set with many patterns, a set of total patterns denoted as total
was extracted from all of the Snort v2.8 rules [11]. In addition, a rule set from the ClamAV
0.95.3 [12] denoted as clamAV was adopted.

Table 6 shows the characteristics of the target pattern rule sets, where num(patterns) and
num(bytes) mean the number of target patterns and total sum of characters of each rule set, re-
spectively. In addition, max(/) and avg(/) are the maximum pattern length and average pattern
length, respectively. The column in the rightmost (o) describes the standard deviation of
pattern lengths.

For the apples-to-apples comparisons, the lexicographical pattern mapping in [6], which
has been used for other string matching schemes, was adopted. Based on the design analysis for
the bit-split string matching in [6], each FSM tile took a two-bit input. In order to ensure that
the implementation was realistic, the unit size of memory cells was considered. In the experi-
ments, 1-Kbit, 2-Kbit, 4-Kbit, and 8-Kbit unit sizes of block memory cells were assumed. These
assumed memory sizes can be found in commercial FPGA devices. For example, considering
the block memory in the Cyclone II of Altera [26], the unit size of each block memory cell was
assumed to be 4 Kbits. The memory requirements can be calculated using the number of re-
quired memory cells. Several parameters were swept to obtain the optimal parameter values
with the minimum number of memory blocks. For the Snort rule sets, the maximum number
of states in an FSM tile, S, was 128 or 256. The maximum number of mapped patterns in a
string matcher P was 16, 32, 48, or 64 when S was 128. When S was 256, P was 32, 64, 96, or

Table 6. Characteristics of target pattern rule sets.

rule name num(patterns)
backdoor 955

deleted 615

spyware 2,299
web-client 1,657

total 7,784

clamAV 28,786

doi:10.1371/journal.pone.0126517.t006

num(bytes) max(/) avg(/) o

8,875 94 9.3 7.5
7,399 72 12.0 11.0
26,103 94 114 8.1
67,527 92 40.8 22.8
144,958 122 18.6 18.0
1,921,305 210 63.2 40.8
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Table 7. Required numbers of memory cells according to hardware limitations and unit sizes of memory cells.

S Mem

128 1 Kbits
2 Kbits
4 Kbits
8 Kbits

S Mem

256 1 Kbits
2 Kbits
4 Kbits
8 Kbits

16

20
12

32
44
24
16
12

doi:10.1371/journal.pone.0126517.1007

Pron - unique Punique

32 48 64 16 32 48 64
24 32 36 16 20 20 20
16 20 20 8 12 12 12
12 12 12 4 8 8 8
8 8 8 4 4 4 4
64 96 128 32 64 96 128
56 76 104 40 40 40 40
28 40 52 20 20 20 20
16 24 28 12 12 12 12
12 16 16 8 8 8 8

128. On the other hand, for the ClamAYV rule set, considering the maximum target pattern
length of 210, only 256 was adopted for S.

Experiments with Snort and ClamAV rule sets

The evaluations were performed taking into consideration the experimental environments
mentioned above. In the experiments with the Snort rule sets, the numbers of memory cells
were minimized when S was 128. For the ClamAYV rule set, the experiments were performed
when S was 256. Therefore, Table 7 shows the required number of memory blocks obtained by
sweeping the parameters for a string matcher when S was 128 and 256. The data shown in
Table 7 proves that the string matcher for the set of unique patterns can reduce the memory re-
quirements, compared to that for the set with non-unique patterns. In addition, the memory
requirements did not increase proportionally to P, which proves that the memory requirements
of the unique PMIs were small.

According to the algorithm in Table 4, the set with non-unique patterns and set of unique
patterns were obtained. Table 8 shows the numbers of patterns in the two sets for the six rule
sets. The ratio of unique patterns to all of target patterns in a rule set was from 32.7% to 95.4%.
Due to the long average pattern lengths of web-client and clamAV, the ratio of unique patterns
was high. Considering the experimental results in Table 8, minimizing the memory require-
ments using the set of unique patterns could be an effective strategy. Compared to the previous
bit-split string matching, additional time was required in the pattern grouping. The pattern
grouping for all Snort rule sets was finished within 1 second. For the ClamAYV rule set, due to

Table 8. Numbers of patterns in the set with non-unique patterns and set of unique patterns.

set

backdoor
deleted
spyware
web-client
total
clamAV

#non-unique patterns #unique patterns ratio (uniquef/total) Tgrouping (S€C)
643 312 32.7% 0.01

334 281 45.7% 0.01

1,476 823 35.8% 0.02

370 1,287 77.7% 0.06

4,446 3,338 42.9% 0.28

1,324 27,462 95.4% 15.7

doi:10.1371/journal.pone.0126517.t008
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Table 9. Total memory requirements according to different unit sizes of memory cells.

1 Kbits

backdoor
deleted
spyware
web-client
total
clamAV

2 Kbits

backdoor
deleted
spyware
web-client
total
clamAV

4 Kbits

backdoor
deleted
spyware
web-client
total
clamAV

8 Kbits

backdoor
deleted
spyware
web-client
total
clamAV

non-unique unique total memory

#matchers P #matchers P

21 32 35 16 136 KB

38 32 11 16 112 KB

51 32 106 16 374 KB

91 16 642 16 1,547 KB

228 32 928 16 2,601 KB

160 32 8,671 32 45,297 KB
non-unique unique total memory

#matchers P #matchers P

15 64 35 16 149 KB

8 64 38 16 119 KB

51 32 106 16 426 KB

91 16 642 16 1,594 KB

228 32 928 16 2,834 KB

160 32 8,671 32 45,379 KB
non-unique unique total memory

#matchers P #matchers P

15 64 35 16 164 KB

8 64 38 16 127 KB

42 64 106 16 475 KB

91 16 642 16 1,688 KB

208 64 928 16 3,179 KB

160 32 8,671 32 54,585 KB
non-unique unique total memory

#matchers P #matchers P

15 64 35 16 266 KB

8 64 38 16 221 KB

42 64 106 16 778 KB

91 16 642 16 3,326 KB

208 64 928 16 5,505 KB

160 32 8,671 32 72,999 KB

doi:10.1371/journal.pone.0126517.1009

the large number of target patterns, the time to be required in the pattern grouping was 15.7
seconds. Considering the large number of patterns in the ClamAYV rule set, even though the

complexity of the pattern grouping algorithm was O(N?) for a set with N patterns, the required
time for processing the pattern grouping was not great.

Table 9 lists the minimized memory requirements with the maximum number of patterns
to be mapped, P, and number of string matchers for different unit sizes of memory cells. When
the unit size of a memory cell was 1 Kbits, the memory requirements were minimized because
unused memory bits were the smallest. For the set of unique patterns in the Snort and ClamAV
rule sets, the memory requirements were minimized when P was 16 and 32, respectively. Con-
sidering the process of DFA construction, as the length of a target pattern increased, the proba-
bility of its being the unique pattern decreased. Therefore, compared with the average pattern
length for the set with non-unique patterns, the average pattern length for the set of the unique
patterns was longer. For the set with non-unique patterns of web-client and clamAV, due to the
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Fig 8. Summary of comparisons for 1-Kbit memory cells.
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long average pattern length, the memory requirements were minimized when P was 16 and 32,
respectively. On the other hand, a P value of 32 or 64 was adopted for the sets with the non-
unique patterns in the other Snort rule sets because of the short average pattern lengths.

Figs 8 and 9 provide a summary of the comparisons with the existing bit-split string match-
ing approaches in terms of the normalized memory requirements for the cases using 1-Kbit
and 4-Kbit memory cells, respectively. The normalized memory requirements of a rule set were
obtained after dividing the minimized memory requirements by the total sum of bytes in the
target patterns of a rule set. The unit of the normalized memory requirements, therefore, was
bytes/char.

For the six rule sets, the normalized memory requirements ranged from 14.3 to 23.6 (bytes/
char) with 1-Kbit memory cells. On the other hand, the normalized memory requirements ran-
ged from 17.2 to 28.4 (bytes/char) with 4-Kbit memory cells. Because unused memory bits
were increased with the unit size of memory cells, the normalized memory requirements with
4-Kbit memory cells increased. In the web-client and clamAV, because the average pattern
length was long, the numbers of mapped patterns in a string matcher were small, which in-
creased the total memory requirements.

The string matching schemes in [6, 8-10], were denoted as bit_split, ex_bit_split, shared,
and hetero, respectively. With 1-Kbit memory cells, the total memory requirements were de-
creased on average by 31.8%, 14.7%, 8.0%, and 12.4%, compared with bit_split, ex_bit_split,
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shared, and hetero, respectively, On the other hand, with 4-Kbit memory cells, the total memo-
ry requirements were decreased on average by 29.8%, 36.0%, 19.1%, and 30.1%. Therefore, the
proposed string matching approach was more efficient when a large unit size of memory cells
was adopted. Considering the summary in Figs 8 and 9, it was concluded that the proposed
scheme can significantly reduce the memory requirements for the bit-split string

matching architecture.

Analysis of pattern uniqueness

For more structural and statistical analysis, several rule sets with random patterns were gener-
ated. In this case, evaluations were performed by sweeping several parameters of the average
pattern length, standard deviation, and number of target patterns. In the evaluations of the av-
erage pattern lengths and numbers of target patterns, considering the characteristics of real pat-
terns shown in Table 6, it was assumed that the average pattern length was the same as the
standard deviation of pattern lengths. Considering experimental data for the realistic rule sets
mentioned above, it was concluded that the memory requirements for the set of unique pat-
terns were smaller than those of the set with non-unique patterns in a string matcher. There-
fore, after several rule sets were generated, the ratio of unique patterns in each rule set was
evaluated in order to analyze the pattern uniqueness in a rule set.

Firstly, the average pattern length was swept from 10 to 60 with several generated rule sets,
where each rule set had 10,000 different patterns. Fig 10 shows the ratio of unique patterns by
sweeping the average pattern length, where the average pattern length was denoted as mean.
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Fig 10. Ratio of unique patterns by sweeping the average pattern length.
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As shown in Fig 10, the ratio of unique patterns was 70.6% when mean was 10. When mean
was 60, the ratio of unique patterns reached up to 96.3%. Therefore, as mean increased, the
ratio of unique patterns increased. In addition, even though the average pattern length was
short, the ratio of unique patterns was over 70%, which means that the proposed string match-
ing scheme can utilize the pattern uniqueness to reduce the memory requirements without the
PMV table. Fig 11 shows the ratio of unique patterns by sweeping the number of generated pat-
terns from 1,000 to 32,000. In this case, it was assumed that the average pattern length was 20.
As the number of patterns in a rule set increased, the ratio of unique patterns decreased slight-
ly. In addition, 86% percent of patterns were in the set of unique patterns when the number of
patterns was 32,000. Fig 12 shows the ratio of unique patterns by sweeping the standard devia-
tion from 2 to 20, where the average pattern length was 20. When the standard deviation was

ratio(%)
100 -

95 1

90+

L 2
L 4

L 4
)

85

80 1

75

#patterns
70 T T T T T p 1

1000 2000 4000 8000 16000 32000
Fig 11. Ratio of unique patterns by sweeping the number of generated patterns.

doi:10.1371/journal.pone.0126517.g011

PLOS ONE | DOI:10.1371/journal.pone.0126517 May 4, 2015 21/24



el e
@ ' PLOS ‘ ONE A Memory-Efficient Bit-Split String Matching Using Pattern Uniqueness

ratio(%)
100

951
90 -
851
80 -

75+

70 T T T T T T T T T 1
2 4 6 8 10 12 14 16 18 20

Fig 12. Ratio of unique patterns by sweeping the standard deviation.
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small, the ratio of unique patterns was high. As the standard deviation increased, the ratio of
unique patterns decreased slightly. However, the ratio of unique patterns was over 86% when
the standard deviation was 20. Considering the experimental data for the pattern uniqueness, it
was expected that the ratio of unique patterns can be high in a general rule set, which can re-
duce the memory requirements with the proposed scheme.

Practical implementation

In order to know the hardware overhead of the proposed string matching engine, the string
matcher was coded using Verilog hardware description language (HDL). Then, the code was
compiled using Altera’s Quartus II, where Cyclone I EP2C70F89618 [26] was selected for the
target device. Even though there were several high-performance FPGA device families, the
overall price was too high. Therefore, the Cyclone II FPGA family was selected for the general
string matching engine. In the target device, there were 68,416 logic elements and registers. In
addition, 250 M4K memory cells can be configured. In a M4K memory cell, 4,096 memory bits
were contained. In the implementations, several pairs of the maximum numbers of states and
patterns to be mapped, which was denoted as (S, P), were adopted.

Table 10 shows the implementation results of the unique and non-unique string matchers,
where four sets of (S, P) were evaluated. The separation of memory blocks in each FSM tile of
the non-unique string matcher increased the routing complexity. Therefore, in Table 10, the
maximum operating frequency, F,,,,, of the unique string matcher was higher than that of the
non-unique string matcher. In each clock cycle, one ASCII character can be inputted. Consid-
ering the critical path in the non-unique string matcher, the throughput can reach up to 1.127
Gbps (Giga bits per second) when (S, P) was (128, 16) in Table 10. As S increased, F,,,,, de-
creased gradually due to the increasing complexity in memory blocks. However, the decreased
value of F,,,,, was not proportional to S. Compared to the memory resource usage, the ratio of
used logic elements and registers was very low. Therefore, it was concluded that the memory
resource was more critical in the implementation of the string matching engine. In addition,
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Table 10. Implementation results of a string matcher according to the maximum numbers of states and patterns to be mapped.

(S, P)

logic elements
registers

M4K memory cells
Fmax (MHz)

S, P)

logic elements
registers

M4K memory cells
Frmax (MHz)

doi:10.1371/journal.pone.0126517.1010

unique string matcher

(128,16) (256,32) (512,64) (1024,128)
237 274 311 348

52 60 68

12 20 48
156.6 155.9 154.2 140.7

non-unique string matcher

(128,16) (256,32) (512,64) (1024,128)
381 561 885 1,497

160 292 552

16 28 64
140.9 133.8 132 1145

small S can be better for efficient hardware resource usage and high throughput. In order to up-
date the memory contents in memory blocks, several logic elements and registers were required
in each memory block. In the non-unique string matcher, because there were two separate
memory blocks, more logic elements and registers were required compared to those of the
unique string matcher. Considering the implementation results mentioned above, by adopting
the unique string matchers, it was expected that the hardware overhead can be reduced.

Conclusions

The proposed string matching scheme can be applied to memory-based bit-split string match-
ing, where the memory requirements can be reduced by eliminating the matching vectors for
the set of unique patterns. The proposed pattern grouping is used in order to obtain the set of
unique patterns. In addition, the pattern partitioning and mapping algorithms are adopted for
the parallel string matching engine. Considering the experimental results with various rule sets,
the proposed string matching scheme is greatly helpful for reducing the storage cost with the
regularity and scalability of the bit-split parallel string matching engine.
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