
RESEARCH ARTICLE

Serotonin Depletion-Induced Maladaptive
Aggression Requires the Presence of
Androgens
Erik Studer1, Jakob Näslund1, Erik Andersson1, Staffan Nilsson2, Lars Westberg1,
Elias Eriksson1*

1 Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy,
University of Gothenburg, POB 431, SE 405 30 Gothenburg, Sweden, 2 Mathematical Sciences, Chalmers
University of Technology, SE 412 96 Gothenburg, Sweden

* elias.eriksson@neuro.gu.se

Abstract
The sex hormone testosterone and the neurotransmitter serotonin exert opposite effects on

several aspects of behavior including territorial aggression. It is however not settled if tes-

tosterone exerts its pro-aggressive effects by reducing serotonin transmission and/or if the

anti-aggressive effect of serotonin requires the presence of the androgen. Using the resi-

dent intruder test, we now show that administration of the serotonin synthesis inhibitor para-
chlorophenylalanine (300 mg/kg x 3 days) increases the total time of attack as well as the

percentage amount of social behavior spent on attack but not that spent on threat – i.e. that

it induces a pattern of unrestricted, maladaptive aggression – in gonadectomized C57Bl/6

male mice receiving testosterone replacement; in contrast, it failed to reinstate aggression

in those not given testosterone. Whereas these results suggest the pro-aggressive effect of

testosterone to be independent of serotonin, and not caused by an inhibition of serotonergic

activity, the pCPA-induced induction of maladaptive aggression appears to require the pres-

ence of the hormone. In line with these findings, pCPA enhanced the total time of attack as

well the relative time spent on attacks but not threats also in wild-type gonadally intact male

C57Bl/6 mice, but failed to reinstate aggression in mice rendered hypo-aggressive by early

knock-out of androgen receptors in the brain (ARNesDel mice). We conclude that androgenic

deficiency does not dampen aggression by unleashing an anti-aggressive serotonergic in-

fluence; instead serotonin seems to modulate aggressive behavior by exerting a parallel-

coupled inhibitory role on androgen-driven aggression, which is irrelevant in the absence of

the hormone, and the arresting of which leads to enhanced maladaptive aggression.

Introduction
The male sexual hormone testosterone and the brain neurotransmitter serotonin exert opposite
effects on many aspects of behavior. Thus, whereas testosterone has been shown to promote
territorial behavior (such as urine spraying) [1], impulsivity (as assessed using various conflict
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paradigms) [2,3] and sexual behavior [4] in rodents, serotonin appears to exert the opposite ef-
fects on all these aspects of behavior [5–7]. Likewise, whereas lack of testosterone often impairs
aggressive behavior, serotonin is reported to reduce aggression, and particularly to counteract
so-called maladaptive aggression [8].

This striking functional antagonism between testosterone and serotonin with respect to be-
havior, in conjunction with the observation that testosterone exerts a profound influence on
brain serotonergic activity [9–14], makes it tempting to suggest that the steroid might exert its
behavioral effects by reducing the activity of serotonergic pathways. According to this view, the
reduction in aggression and sexual activity observed in androgen-deficient animals would be
the result of an anti-aggressive influence of serotonin being unleashed by the removal of the an-
drogen. Alternatively, however, androgen-dependent behavior, including aggression, may be
under the influence of a parallel, independent negative modulation by serotonin; to dampen or
modulate sex steroid-driven behavior may hence constitute an important physiological role of
this transmitter [15,16]. Finally, a third possibility would be that serotonin influences aspects
of behavior that also happen to be under the influence of sex steroids, but would exert this in-
fluence also in the absence of the hormone.

Although many previous reports have discussed the influence of testosterone and serotonin,
respectively, on the regulation of aggression, as well as the possible interplay between the two
[13,17–23], there are, to our knowledge, no previous reports examining to what extent aggres-
sion induced by testosterone at physiological doses in gonadectomized (GDX) animals is sero-
tonin-independent, i.e. if testosterone promotes aggression also in the absence of serotonin,
which would not be the case if testosterone stimulates aggression mainly by dampening a tonic
inhibitory serotonergic influence. Reciprocally, it is also not known if presence of testosterone
is an indispensable prerequisite for the well-established aggression-provoking effect of arrest-
ing serotonergic transmission.

The resident intruder (RI) paradigm is an animal model reflecting offensive, territorial ag-
gression in which testosterone and serotonin have previously been shown to exert pro-and
anti-aggressive effects, respectively [11,22]. Aggressive behavior exerted by the resident versus
the intruder in this test might be viewed as a form of functional social communication and
should, as such, follow certain patterns. To fulfill its purpose it should not comprise an exces-
sive number of actuals attacks when threats of attacks would be sufficient for the aim to be met,
i.e. for eliciting submissive postures from the intruder signaling maintained territorial control
and dominance by the resident. Moreover, the behavior should not continue once this goal has
been reached.

In contrast, aggression characterized by a relative paucity of threat signals versus actual at-
tacks and short latency to attack have recently been described asmaladaptive [8]. While recent
studies suggest that serotonin dampens such maladaptive (rather than functional) aggression,
there are, to our knowledge, no studies exploring if the aggression induced by serotonin deple-
tion in the resident intruder paradigm is largely of a maladaptive, dysfunctional kind, i.e. if ar-
resting serotonergic activity elicits more attacks than threats.

The first part of this study had two purposes. Firstly we wanted to address three different
possibilities with respect to the interplay between serotonin and testosterone in the regulation
of aggression: i) that testosterone promotes aggression by inhibiting serotonergic transmission,
ii) that serotonin instead exerts a parallel inhibitory influence on testosterone-dependent ag-
gression (of relevance only in the presence of the androgen) and iii) that serotonin dampens ag-
gression regardless of whether testosterone in present or not. Secondly we wanted to address
the hypothesis that aggression induced by removal of serotonin primarily is of a maladaptive
kind, i.e. that serotonin depletion promotes attacks rather than threats.
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To this end, mice were rendered non-aggressive by means of orchidectomy and then ex-
posed to implantation of slow-release testosterone pellets or sham pellets, followed by the ad-
ministration of either vehicle or the irreversible inhibitor of tryptophan hydroxylase, para-
Chlorophenylalanine (pCPA), at a regimen previously shown to effectively deplete brain sero-
tonin [24] as well as to increase aggression [25]. If the pro-aggressive effect of testosterone were
mediated by a direct or indirect reduction of an anti-aggressive serotonergic input, one would
expect serotonin depletion to reinstate aggression in gonadectomized (GDX) mice; moreover,
administration of testosterone would fail to cause any further increase in aggression in pCPA-
treated animals (when compared to pCPA-treated GDX mice). On the other hand, if serotonin
reduces testosterone-dependent aggression by a parallel inhibitory path, serotonin depletion
would not be sufficient to reinstate aggression after gonadectomy, and pCPA would enhance
rather than mask the pro-aggressive effect of the hormone. Finally, if serotonin dampens tes-
tosterone-independent aggression, pCPA would be expected to enhance aggression in GDX
mice regardless of whether they are the subject of testosterone replacement or not. Also, by ex-
amining if pCPA enhances actual attacks rather than threats, we were able to address the theo-
ry that a primary role of serotonin in this context is to dampen maladaptive rather than
functional aggression.

Although the pro-aggressive effects of testosterone partly seems to be mediated by its me-
tabolite estradiol acting via estrogen receptors (ER) [26], also AR activation is required for nor-
mal aggressive behavior [27] as illustrated, e.g., by previous studies on male mice lacking
functional ARs in the central nervous system (ARNesDel) [28,29]. In a second experiment, we
wanted to shed further light on the possible interactions between serotonin and androgens for
the regulation of aggression by exploring if the reduction in aggression following this form of
reduced androgenicity is serotonin-dependent; to this end, it was examined if pCPA can rein-
state aggressive behavior in ARNesDel mice or if serotonin depletion enhances aggression in
wild-type controls only. Moreover, it was again assessed if aggression provoked by pCPA is of a
maladaptive kind.

Materials and Methods

2.1 Animals
Experiment I. Male C57Bl/6N mice (Charles River, Denmark), aged 10 weeks at arrival,

were anaesthetized with a 3:12 vol/vol mixture of ketamine (Ketalar 10mg/ml, Pfizer) and xyla-
zine (Rompun Vet 20 mg/ml, Bayer Animal Health), gonadectomized via a midline incision,
and allowed to recover in groups of five. After a period of two weeks, aimed at allowing hor-
monal levels to decline and the effect of orchidectomy on aggressive behavior to be fully devel-
oped [30], the mice were anaesthetized as described above, and implanted with slow-release
pellets containing 15 mg of testosterone (T, n = 18) or vehicle (GDX, n = 15) and designed for
60 days of even release (250 μg/day) (Innovative Research of America, USA). After this opera-
tion, the animals were allowed to recover for two weeks before they were moved to individual
cages. After nine days of isolation, the first RI test was undertaken.

Experiment II. Generation of ARNesDel has been described in detail elsewhere [28]. In
brief, male C57Bl/6 mice expressing Cre driven by the neuronal Nestin promoter were ob-
tained from Jackson Laboratory (Bar Harbor, Maine, US) and mated with female mice carrying
LoxP-sites [31] flanking the second exon of the androgen receptor gene which had been back-
crossed into the C57Bl/6 background for at least 6 generations prior to the arrival at our labora-
tory [32]. Genotypes were confirmed with PCR using the following primers: AR: 5´-AGC CTG
TAT ACT CAG TTG GGG- 3´ and 5´-AAT GCA TCA CAT TAA GTT GAT ACC- 3´, Cre:
5´-GTTCGCAAGAACCTGATGGACA-3´and 5´-CTAGAGCCTGTTTTGCACGTTC-3´,
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Zfy: 5´- AAG ATA AGC TTA CAT AAT CAC ATG GA—3´ and 5´- CCT ATG AAA TCC
TTT GCT GCA CAT GT—3´. In total eight ARNesDel mice were available for the experiment.
As controls we used 11 littermate wild-type mice and eight AR-flox mice bearing only the
LoxP-site but not expressing cre (ARloxP); both these groups should have intact AR activity,
and they have previously been shown to display similar levels of aggression [29]. As expected,
there were no differences between wild-type and ARloxP with respect to any of the behavioral
parameters so these groups were collapsed and used as one AR-intact control group in the sta-
tistical analyses. The animals were six to eight months of age when tested. They were moved to
individual housing 24 days prior to the first tests of aggressive behavior.

Housing of animals. In both experiments, animals were kept under controlled conditions
at the Laboratory for experimental biomedicine at the University of Gothenburg. They were
housed in standard vivarium cages (375 x 215 x 150 mm) with free access to food and water on
a 12/12 light/dark cycle.

2.2 pCPA treatment
In experiment I, gonadectomized mice given testosterone replacement as well as those without
such replacement were administered either saline or pCPA methyl ester hydrochloride (300
mg/kg in saline solution buffered to pH 6) intraperitoneally once daily for three consecutive
days. In experiment II, the same treatment was given to ARNesDel mice and wild type
controls, respectively.

2.3 Resident intruder test
Animals were subjected to a standard RI test as previously described [29]. Briefly, the mice
were tested during the dark phase in their home cage against an intruder mouse for 15 minutes.
As intruders served male mice of the 129/SvEv strain (Taconic Farms, Denmark) that were
kept group-housed throughout the experiment. The intruders were weighed before each behav-
ioral test to ensure that they were at least 0.5 g lighter than the resident, with each intruder
used once daily. The test was performed twice, first to obtain a baseline assessment before drug
administration, and then again 24 h after the last injection of pCPA or saline, respectively. The
tests were videotaped with an overhead video camera under IR illumination for subsequent
behavioral analysis.

2.4 Ethics
All procedures were subjected to approval by the Ethical Committee on Animal Experiments,
Gothenburg, Sweden (permit numbers: 34–11, 67–12) and performed accordingly. All surgery
was performed under general anesthesia and animals were allowed to recover in temperature-
controlled cages, with additional monitoring for 3 days to ensure complete recovery.

2.5 Data analysis
Scoring was performed at low video speed by a trained observer blind to the status of the mice.
Duration of all social exploration (including sniffing on the body or head of the intruder, ano-
genital sniffing, social grooming and following), threat behaviors (including tail rattling, all of-
fensive postures and aggressive grooming) and attack behaviors (including bite, chase and
wrestling) were recorded. Mice not displaying at least one episode of attack or threat were char-
acterized as non-aggressive. In addition, mice of different groups were compared with respect
to total duration of attacks as well as latency to first attack; if no attack could be detected during
the entire duration of the test, attack latency was set to 900 seconds. Finally, the behavioral

Serotonin Dampens Testosterone-Dependent Aggression

PLOS ONE | DOI:10.1371/journal.pone.0126462 May 15, 2015 4 / 12



pattern of the animals was revealed by calculating the percentage of each category of behavior
(i.e. social exploration, threat and attack, respectively) in relation to the total time of social in-
teraction [33].

2.6 Statistics
Fisher’s exact test was used to compare testosterone treated GDX mice versus vehicle treated
GDX mice (experiment I) and wild-type mice versus ARNesDel mice (experiment II) with re-
spect to the number of mice displaying aggressive behavior (as defined in the section 2.5). In
addition, comparison between the groups with respect to duration of attacks and latency to at-
tack at the first test of each experiment was undertaken using unpaired t-test, or Welch's test
for unequal variance when such variances between the groups were revealed by Levene’s test.

Since pCPA failed to evoke aggression both in GDX mice with no testosterone replacement
and in ARNesDel mice, a further analysis of the possible effect of serotonin depletion on aggres-
sion in the second test was performed only for testosterone-treated GDX mice of experiment I
and wild-type mice of experiment II.

For both experiments, possible differences with respect to total time of attacks and latency
to attack between animals treated with pCPA and saline, respectively, were analyzed using a
general linear model for between-subject effects with the behavior in the first test as a covariate
predictor. In addition, to explore to what extent pCPA induced maladaptive aggression as indi-
cated by an increase in attacks rather than threats, the relative time spent on various forms of
social behavior (social exploration, threat and attack, respectively) was calculated and the be-
havioral pattern displayed at baseline compared to that displayed after treatment with pCPA or
saline. In order to separate effects of repeated testing and treatment, respectively, a linear
mixed model, with test and treatment as independent factors, was used for this purpose.

Throughout the paper data are presented as group means±S.E.M.

Results

3.1 Effect of treatments reducing androgen levels or androgen receptor
expression on aggressive behavior
As expected, at test 1 GDX mice not receiving testosterone replacement displayed aggression to
a very limited degree, only 1 out of 15 being defined as aggressive. In contrast, in the group re-
ceiving testosterone replacement, 16 out of 18 displayed aggressive behavior (Table 1A). This
difference in number of mice being aggressive was reflected also by a difference with respect to
duration of attack (GDX: 5.3±5.3 s, n = 15, GDX+T: 31.0±7.4 s, n = 18; t29.6 = -2.8; p<0.01),
number of attacks (GDX: 1.5±1.5, n = 15; GDX+T: 12.8±3.1, n = 18; t23.9 = -3.3; p<0.01) and
latency to attack (GDX: 876±23.8 s, n = 15; GDX+T: 369±70.8 s, n = 18; t20.7 = -6.8; p<0.001).

While the number of mice displaying aggression at test 1 in experiment II did not differ be-
tween groups (Table 2A), ARNesDel differed from controls both with respect to time attacking
(ARNesDel: 7.2 ±4.0 s, n = 8; controls: 45.2±12.1 s; n = 20; t22.6 = −3.0; p<0.01) and with respect
to attack latency (ARNesDel: 672±109 s; n = 8; t26 = 2.2; controls: 372±75.7 s; n = 20; p<0.05);
with respect to total number of attacks, this difference however did not reach the level of statis-
tical significance (controls: 8.4±2.3, n = 20; ARNesDel: 2.9±1.5, n = 8; t26 = -1.5; p>0.05).
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3.2 Effect of pCPA on aggressive behavior in mice with reduced
androgen levels or reduced androgen receptor expression
None of the 7 GDX animals without testosterone replacement displayed aggression after treat-
ment with pCPA (Table 1B). Likewise, pCPA failed to provoke aggression in ARNesDel mice
(Table 2B).

3.3 Effects of pCPA on aggressive behavior in testosterone-treated GDX
mice in experiment I and in wild-type mice in experiment II
While pCPA failed to increase aggression in GDX mice not replaced with testosterone (experi-
ment I) as well as in ARNesDel mice (experiment II), a general linear model revealed pCPA
treatment to increase total time of attack in testosterone-replaced GDX mice in experiment
I (F1,15 = 11.6; p<0.01; Fig 1A) and in wild-type mice in experiment II (F1,16 = 5.1; p<0.05;
Fig 1B). However, while pCPA also shortened latency in experiment II (saline: 442.2±124.7 s;
n = 10; pCPA: 78.7±17.9 s; n = 9; F1,16 = 11.8, p<0.01), the corresponding difference did not
reach significance in experiment I (saline: 215.1 ±103.8 s; n = 9; pCPA: 64.4 ±21.8 s; n = 9;
F1,15 = 1.9; p = 0.19).

A mixed model analysis regarding the relative time spent on various forms of social behav-
ior before or after treatment with pCPA or saline revealed pCPA to induce a pattern of

Table 1. Aggressive behavior in Experiment I.

A) Testosterone (n = 18) Vehicle (n = 15)

No. aggressive mice (%) 16/18 (89) 1/15 (7)###

Time attacking (s) 31.0 ±7.4 5.3 ±5.3##

B) Saline (n = 9) pCPA (n = 9) Saline (n = 8) pCPA (n = 7)

No. aggressive mice (%) 9/9 (100) 9/9 (100) 1/8 (12.5)*** 0/7 (0)***

A) Number of testosterone or vehicle treated GDX mice displaying aggression in the first resident intruder test and the total duration of attack for each

group. B) Number of mice displaying aggression in the second resident intruder test conducted 24 hours after the final injection with saline or pCPA.
# indicates level of significance versus testosterone treated mice;
## p < 0.01,
### p < 0.001.

* indicates level of significance versus the corresponding group of testosterone treated mice;

*** p < 0.001.

doi:10.1371/journal.pone.0126462.t001

Table 2. Aggressive behavior in Experiment II.

A) Control (n = 20) ARNesDel (n = 8)

No. aggressive mice (%) 15/20 (75) 4/8 (50)

Time attacking (s) 45.2 ±12.1 7.2 ±4.0#

B) Saline (n = 10) pCPA (n = 9)a Saline (n = 4) pCPA (n = 4)

No. aggressive mice (%) 8/10 (80) 9/9 (100) 0/4 (0)* 0/4 (0)*

A) Number of untreated control mice (WT and ARloxP) and ARNesDel mice displaying aggression in the first resident intruder test and total duration of attack

for each group. B) Number of mice displaying aggression in the second resident intruder test conducted 24 hours after the final injection with saline or

pCPA.
# indicates level of significance versus controls; # p < 0.05

* indicates level of significance versus the corresponding group of controls; * p < 0.05
a One mouse in the pCPA treated group died prior to the second test of aggression.

doi:10.1371/journal.pone.0126462.t002
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maladaptive aggression in both testosterone-treated GDX mice (experiment I) and in wild type
mice (experiment II). In experiment I, the relative amounts of attacks but not threats were in-
creased by serotonin depletion (% threat, t(29.8) = 1.8, p>0.05; % attack, t(31.9) = 3.0, p<0.01;

Fig 1. Mean duration of attacks (±SEM) in mice given saline or pCPA (300mg/kg/day for three days).
The test lasted for 15 min. A. Testosterone-treated gonadectomized mice (saline: n = 9, pCPA: n = 9)
(experiment I). B. Wild-type mice (saline: n = 10, pCPA: n = 9) (experiment II). * p < 0.05, ** p < 0.01
compared to mice treated with saline (general linear model).

doi:10.1371/journal.pone.0126462.g001
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% social, t(31.1) = −2.7, p<0.01; Fig 2A), and a similar effect was observed also in wild type
mice in experiment II (% threat, t(32.8) = −0.4, p>0.05; % attack, t(22.0) = 3.9, p<0.001; % so-
cial, t(21.8) = −2.4, p<0.05; Fig 2B). There was no effect of repeated testing in any of
the experiments.

Fig 2. Comparison between the resident intruder baseline test (Test 1) and post-treatment test (Test 2) in animals receiving saline or pCPA (300
mg/kg/day for three days) with respect to mean percentage of the total time of social interaction spent on threat, attack and social behavior,
respectively. The tests lasted for 15 min. A. Testosterone-treated gonadectomized mice (saline: n = 9, pCPA: n = 9) (experiment I). B. Wild-type mice
(saline: n = 10, pCPA: n = 9) (experiment II). * p < 0.05, ** p < 0.01, *** p < 0.001 against mice treated with (linear mixed model).

doi:10.1371/journal.pone.0126462.g002
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Discussion
In line with previous studies, orchidectomized mice displayed very low levels of aggression [30]
as compared to GDX animals exposed to testosterone replacement at a dose chosen to produce
serum testosterone levels in the upper physiological range [34]. This difference being observed
also in mice lacking serotonin by means of pCPA administration refutes the possibility that tes-
tosterone promotes aggression by dampening an anti-aggressive serotonergic input. We hence
conclude that serotonergic neurons, rather than being the mediator of the influence of testos-
terone on aggression, exert a dampening influence on aggression that is parallel to the aggres-
sion-promoting influence of the androgen. Further, the absence of pro-aggressive effect of
pCPA in GDX animals without testosterone replacement indicates that the pro-aggressive ef-
fect of pCPA [25] is relevant only in the presence of testosterone. Our results are compatible
with previous studies showing long-term administration of a lower dose of pCPA to gonadally
intact rats to enhance rather than mask aggression induced by the exposure to high doses of an-
abolic androgens [13,35].

Where in the brain such a modulatory influence of serotonin on testosterone-dependent ag-
gression takes place remains unknown. The medial amygdala, the hypothalamus, the prefrontal
cortex and the lateral septum are however likely candidate areas, since these sites are all known
to be involved in the regulation of aggression, and since they all display marked density of both
sex steroid receptors and serotonergic nerve terminals [36–38].

While serotonin has often been attributed a general anti-aggressive influence, some authors
have questioned this stance [8,39]. Instead, it has been suggested that a specific role for seroto-
nin is to terminate aggression when the objectives of the aggressive behavior have been met
[40], hence making the aggression functional and goal-directed. According to this theory, an
impaired serotonergic transmission should primarily result in so-called maladaptive aggres-
sion, i.e. by an increase in the number of attacks rather than threats [41]. While we could not
address this possibility in GDX mice not receiving testosterone, since pCPA failed to reinstate
aggression in these animals, we did indeed observe a pattern of disinhibited attack behavior, i.e.
a relative increase in the percentage of time spent on attacks without a corresponding increase
in time spent on threats, in testosterone-treated GDX mice. Notably, an almost identical effect
of pCPA was observed also in the gonadally intact wild-type mice of experiment II. Of note is
that treatment with pCPA also led to shortened attack latency, which may also be interpreted
as a sign of maladaptive aggression [42] in experiment II, with a similar trend, though not sta-
tistically significant, also in experiment I. It deserves to be mentioned that an increase in ag-
gression was observed following the administration of the serotonin depleting agent in spite of
the fact that both saline-treated GDX+testosterone mice and wild type animals displayed a rel-
atively high amount of aggression as compared to what has been reported in some earlier stud-
ies [e.g. 25].

The pro-aggressive effect of testosterone is to a high extent mediated by ERs but may require
ARs as well. Supporting an involvement of the latter, we could confirm the result of previous
studies [28,29] showing ARNesDel mice to display reduced aggression; since these animals
display elevated testosterone and estrogen levels [28], and for this reason can be expected to
display enhanced central ER activation, this observation clearly suggest that not only ER activa-
tion, but also AR activation, is required for normal male aggression to be at hand. Likewise, our
observation, though based on a small number of animals, that pCPA failed to enhance aggres-
sion also in these mice, suggests that ER activation is not sufficient for serotonin depletion to
provoke aggression, but that AR activation is required as well. Is should however be noted that
brain ARs are inactivated also during development in these KO animals; if it is an early
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organizational effect of AR activation, or AR activation in the adult animal, that is necessary
for pCPA to induce aggression, hence cannot be concluded from the present study.

A limitation of this study is that, for practical reasons, the number of ARNesDel mice admin-
istered pCPA and saline, respectively, was low. However, given that PCPA did not elicit any ag-
gression in any of the ARNesDel mice tested, it is highly unlikely that expanding the group
would have led to a markedly different outcome.

In conclusion, our data suggest that androgen-induced aggression is not masked by seroto-
nin depletion, but, on the contrary, enhanced by pCPA, suggesting that testosterone does not
exert its pro-aggressive effect by reducing serotonergic output. Instead the influence of seroto-
nin on testosterone-induced aggression seems to be exerted by a parallel inhibitory pathway,
the purpose of which seems to be to dampen maladaptive androgen-dependent aggression.
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