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Abstract
Fast growth represents an effective strategy for microbial organisms to survive in competi-

tive environments. To accomplish this task, cells must adapt their metabolism to changing

nutrient conditions in a way that maximizes their growth rate. However, the regulation of the

growth related metabolic pathways can be fundamentally different among microbes. We

therefore asked whether growth control by perception of the cell’s intracellular metabolic

state can give rise to higher growth than by direct perception of extracellular nutrient avail-

ability. To answer this question, we created a simplified dynamical computer model of a cel-

lular metabolic network whose regulation was inferred by an optimization approach. We

used this model for a competing species experiment, where a species with extracellular nu-

trient perception competes against one with intracellular nutrient perception by evaluating

their respective average growth rate. We found that the intracellular perception is advanta-

geous under situations where the up and down regulation of pathways cannot follow the

fast changing nutrient availability in the environment. In this case, optimal regulation ignores

any other nutrients except the most preferential ones, in agreement with the phenomenon

of catabolite repression in prokaryotes. The corresponding metabolic pathways remain acti-

vated, despite environmental fluctuations. Therefore, the cell can take up preferential nutri-

ents as soon as they are available without any prior regulation. As a result species that rely

on intracellular perception gain a relevant fitness advantage in fluctuating nutrient environ-

ments, which enables survival by outgrowing competitors.

Introduction
One of the most essential aspects of living cells is growth and its associated control to fit the or-
ganisms’ needs. In human, selection for fast and selfish growth can result in cancer, while it
represents a very effective evolutionary strategy for microorganisms to survive in a competitive
environment. The reproductive success of microbial organism depends on the fast and precise
adjustment of their growth rate to the actual environmental condition [1]. The reason is that
most microbes live in a highly competitive environment where fast and effective transfer of
available nutrients into biomass can give a significant fitness advantage [2].
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Selection for fast growth leads to phenomena such as overflow metabolism [3–5], where fast
but wasteful conversion of glucose into biomass can be of advantage in comparison to the effec-
tive use of nutrients. The overflow metabolism of E.coli is also known as Crabtree effect in S.
cerevisiae and as Warburg effect in cancer cells [6]. Another regulatory phenomena that is asso-
ciated with fast growth and is commonly used among many bacteria and other microbes is car-
bon catabolite repression (CCR) [7–9]. To grow fast microbes selectively utilize preferred
carbon sources in a hierarchical manner. In the presence of a preferred sugar such as glucose,
CCR causes metabolic enzymes of alternative carbon sources to be expressed at low rate and
can additionally reduce their activity.

There is strong evidence that growth dependent phenomena such as overflow metabolism
or CCR are the consequence of a metabolic regulation or growth control in response to extra-
cellular nutrient availability. Further, it seems possible that the perception of extracellular nu-
trient availability plays an important role in growth control [10], as it is the primary
information cellular response is based on. We define two distinct types of perception, termed
intracellular and extracellular perception. In the case of extracellular perception the cell regu-
lates its metabolism exclusively in response to extracellular nutrient information, while in the
case of intracellular perception microbes indirectly recognize nutrient availability by perceiving
the intracellular metabolic state. The intracellular perception is motivated by experimental ob-
servations [11–13] of microbes, e.g. E.coli, which do not possess any extracellular carbohydrate
receptors, like the Rgt2 and Snf3 glucose sensors of yeast [14, 15]. These microbes should be ca-
pable of perceiving extracellular nutrient availability indirectly from intracellular metabolic
states. Intuitively, the extracellular perception should lead to a more precise and fast adaptation
to nutrient availability, since changes in the environment can be perceived faster and to higher
accuracy. Here, the question arises whether exclusive intracellular perception can result in a
growth benefit in presence of fast fluctuating nutrient concentrations. Following this question,
we are interested in which frequency regimes the exclusive perception of intracellular nutrient
concentration is evolutionary more beneficial than the exclusive perception of extracellular nu-
trient concentrations. Furthermore, what are the regulatory principles causing this benefit in
average growth rate or fitness and can the regulatory phenomenon of carbon catabolite repres-
sion be understood by means of nutrient perception?

To give an answer to these questions and an explanation how the integration of the percep-
tion strategies for growth control contribute to shape growth rate in microorganisms, we will
introduce a simplified replicator model for microbial growth. The replicator model consists of
a minimal metabolic network, ribosomes, and a controller that can detect intracellular and ex-
tracellular metabolite concentrations. Optimal growth control is realized by minimizing the
difference between the actual intracellular concentrations of metabolites and precursors and
their desired concentrations, which is determined by the perceived nutrient availability. Using
this simplified model we are able to show that growth control by perception of extracellular nu-
trient concentrations is of selective advantage if environmental conditions change slowly over
time. If environmental conditions change fast in comparison to the minimum generation time,
gene regulation and protein turnover will lag behind and the model predicts that in this case
sensing the intracellular precursor state is of advantage.

Methods

Self-replicator model
The first step in modeling a system is to understand the main features which have a relevant ef-
fect on the studied phenomenon or scientific objective. These features are taken to construct
the most simple model which still suffices to reproduce reality. In this study we are interested
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in fast growing unicellular organisms in changing environments with focus on cell metabolism
and its regulation. Growth is a consequence of the underlying metabolic fluxes and growth rate
is affected by changes in metabolic rate which in turn can be a result of environmental changes
(see Fig 1A). In the following, we define growth by the amount of protein that is synthesized.
Focusing exclusively on the protein content and thereby neglecting other cellular components
is legitimate since the protein synthesis capacity of a cell remains approximately constant over
time [16, 17].

The next question is how a real-life metabolism can be further simplified and generalized, to
avoid inclusion of too many molecular details. Molenaar et al. [2] have successfully shown that
simple self-replicating systems (self-replicators) qualitatively reproduce the regulation of major
cellular components (protein, lipids, etc.) for unicellular organisms. The simplest self-replicator
consists of ribosomes which synthesize themselves by means of precursors (real-life example
[18]). In this work we rely on a slightly more complex architecture which is obtained by adding
transporters and metabolic pathways to the simple self-replicator model.

The whole self-replicating system, as sketched in Fig 1B, consists of a metabolic flux net-
work, where metabolite pools are connected by biochemical reactions catalyzed by specific en-
zymes. For the sake of simplicity and without loss of generality, it is assumed that there are
only two types of time varying nutrient components, namely a preferential sugar (PS) and a
non-preferential sugar (NPS), which both can be growth limiting. All other compounds that
are required for growth are assumed to be available in excess. Further, we assume that the self-

Fig 1. Themetabolism of the self-replicator shown in two possible representation. (A) Block diagram: blocks symbolize processes and arrows
associated inputs and outputs. The big dashed circle distinguishes between intracellular and extracellular processes. The process of growth is caused by the
underlying metabolism which in turn depends on the nutrient availability in the environment. (B) Pool diagram: ellipses represent the protein and metabolite
pools. Red arrows symbolize uptake transports and green arrows stand for metabolic pathway fluxes. The self-replicator consists of two metabolic pathways
—one for preferential nutrients and one for non-preferential ones.

doi:10.1371/journal.pone.0126244.g001
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replicating system will be situated in a surrounding that periodically switches between a PS and
an NPS environment. As only two nutrient components change over time, our simplified cell
comprises two catabolic pathways. The external nutrients can be imported into the cell by spe-
cific permeases, where they are transformed into metabolic precursors, i.e. amino acids, as the
only precursor in the system. Using amino acids, ribosomes synthesize the five distinct enzyme
types that the self-replicator consists of, including themselves. These five enzymes constitute
the total amount of proteins belonging to one self-replicator. Their relative share of the total
protein amount influences the protein synthesis rate, i.e. growth rate.

Each metabolic pathway, represented by the fluxes and arrows in Fig 1B, can be thought to

be catalyzed by a group of enzymes with concentrations Ê i. The effective enzyme concentration

of one whole pathway j is expressed as Ej ¼
P

iÊ i. It is assumed that the maximum concentra-

tion of the proteome does not exceed a constant proteome density Emax = ∑j Ej [19, 20]. The
overall protein mass density of the whole population is defined as total protein massMtot of the
population per total cell volume of the population Vpop.

Emax :¼ MtotðtÞ
VpopðtÞ ¼ const: ð1Þ

Note thatMtot and Vpop are quantities that are measured in batch culture experiments and that
Emax corresponds to the population averaged cellular protein concentration. In what follows,
we assume that fast growing organisms are optimized for biomass production, an assumption
which is strongly supported by recent experimental results [11, 16]. In order to describe the
system dynamics with the necessary accuracy, we introduce a mathematical description for the
metabolite and enzyme pool dynamics.

Metabolite pool dynamics
Ametabolite pool is characterized by its mass density. The mass density [X] of metabolite X is
denoted as metabolite massmX(t) per population volume Vpop.

½X�ðtÞ :¼ mXðtÞ
VpopðtÞ ð2Þ

Alternatively, one can use the particle density ~½X� :¼ nX=V
pop, which is the amount of particle

inmol over population volume in l. (This definition is utilized for flux balance analysis with the
Matlab toolbox cobra [21].) All metabolite pool dynamics are defined by continuity equations.
Furthermore the concentration and fluxes must always be positive, as it is hinted in Fig 2.

• Continuity: d½X �ðtÞdt ¼ vinðtÞ � voutðtÞ
• Positivity: [X](t)� 0 and vi � 0

Fig 2. Concentration dynamic of arbitrary metabolite X.While the outflow rate vout(t) depends on the
metabolite pool concentration [X](t), the inflow rate vin(t) is independent of [X](t) and is subject to an
upstream pool.

doi:10.1371/journal.pone.0126244.g002
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The outflow rate vout(t) depends on the pool concentration [X](t) in conjunction with the relat-
ed enzyme concentration EX, whereas there is no direct dependency to the inflow rate vin(t).
Due to the existence of a single metabolic network, all pools are connected. This gives rise to
interpret all inflow rates as an outflow rate of an upper pool [Y](t). Hence for a linear pathway,
it is sufficient to define the outflow rate as:

vXðtÞ :¼ voutðtÞ ¼
½X�ðtÞ

KX
M þ ½X�ðtÞ � kX � EXðtÞ ; ð3Þ

where KX
M is the Michaelis-Menten constant and kX is the catalytic rate of the enzyme reaction.

The inflow rate has the same expression as above with the only difference of being defined by
the upper pool [Y](t), i.e. vin = vY. In order to work with normalized quantities, the relative
mass λX of metabolite X is introduced by

lXðtÞ :¼
mXðtÞ
MtotðtÞ ¼

½X�ðtÞ
Emax

: ð4Þ

The pool dynamics follow from the defined fluxes, the continuity equation, and the definition
of the relative metabolite mass.

d
dt

lXðtÞ ¼
1

Emax
� d
dt

½X�ðtÞ ¼ vYðtÞ � vXðtÞ
Emax

ð5Þ

Enzyme pool dynamics: regulation and growth
Amathematical description of growth control can be obtained by determining the time dy-
namics of growth rate and the enzyme pools. Optimal growth control is achieved by regulating
metabolic fluxes in a way that maximizes growth rate. The metabolic fluxes are driven by their
related enzyme concentrations and extra- and intracellular metabolite concentrations. Since
the latter is a not influenceable environmental factor, growth control exclusively means regulat-
ing enzyme concentrations. The optimal timing, by which this regulation is performed, is influ-
enced by the growth rate. The reason is that the enzyme concentrations can be diluted or over-
expressed due to growth. In the following, the proper quantitative definitions of growth,
growth rate and regulation will be developed in order to obtain the basis for deriving their
time dynamics.

Definition To describe cellular growth, the protein mass is a better quantity than the corre-
sponding concentration. The time evolution of the total protein massMtot(t) is proportional to
its cell population volume Vpop(t), since we assume a constant total protein concentration
Emax. Consequently, dt E

max = dt(M
tot(t)/Vcell(t)) = 0, despite of increasing mass and volume.

Hence, the total protein mass and the associated total protein mass flux are the appropriate
quantities for describing cell growth and growth rate, respectively.

To describe the regulatory dynamics of the various enzyme pools we introduce the relative
enzyme mass ϕj =Mj/Mtot by the ratio of the enzyme massMj(t) of a metabolic pathway j to
the total protein massMtot(t). As the cellular system tends to maximize its growth rate, which
is represented by the synthesized protein mass per time unit, optimal growth rate is a result of
an optimized metabolism. In this model, the only way of tuning metabolism is by means of re-
distributing the enzyme concentrations Ej(t) of metabolic pathways. This is due to a constant
intracellular protein concentration, which is maintained by the cell to ensure efficiency of cen-
tral cellular processes, such as protein folding [19, 22]. In analogy to the relative enzyme mass
ϕj, one can define a relative enzyme concentration Ej(t)/E

max, which can be shown to be
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related:

fjðtÞ :¼
MjðtÞ
MtotðtÞ

¼
MjðtÞ=VpopðtÞ
� �
MtotðtÞ=VpopðtÞð Þ ¼

EjðtÞ
Emax

; ð6Þ

whereMtot(t) = ∑j Mj(t) and ∑j ϕj(t) = ϕmax = 1. Both quantities can likewise be used to describe
metabolic regulation. But the relative enzyme mass ϕj(t) is more favorable, because it stands in
direct relation to the definition of cellular growth, and will be used for the derivation of the reg-
ulatory dynamics below.

Regulation The regulatory dynamics are obtained by taking the time derivative of the rela-
tive protein mass ϕj(t). The time derivative d/dtϕj(t) depends on the derivatives of the total pro-
tein mass dt M

tot(t) and the pathway protein mass dt Mj(t). For this purpose one can define the
following useful relation between both mass quantities:

gjðtÞ :¼
d
dt

MjðtÞ
d
dt

MtotðtÞ
; ð7Þ

where ∑j γj(t)� 1. The relative synthesis rate γj(t) is the synthesis rate of enzymes from pathway
j with respect to the overall synthesis rate. It can be interpreted as the fraction of protein syn-
thesis capacity that is assigned to enzyme j. This synthesis capacity can be generalized to other
biological regulatory mechanisms, like the amount of mRNA, tRNA etc. Deriving the relative
protein mass and using relation Eq (7) yields the ordinary differential equation for the regula-
tory dynamics.

d
dt

MjðtÞ
MtotðtÞ
� �

¼ MtotðtÞ � ðdtMjðtÞÞ �MjðtÞ � ðdtMtotðtÞÞ
ðMtotðtÞÞ2

¼
d
dt

MtotðtÞ
MtotðtÞ �

d
dt

MjðtÞ
d
dt

MtotðtÞ
� MjðtÞ
MtotðtÞ

0
B@

1
CA

d
dt

fjðtÞ ¼
d
dt

MtotðtÞ
MtotðtÞ � gjðtÞ � fjðtÞ

h i
ð8Þ

The differential equation (Eq (8)) describes the change of the relative enzyme mass for each
pathway. This time-dependency of enzymatic resources represents the regulatory dynamics of
a single cell, under the simplifying assumptions introduced before. The relative enzyme mass ϕj
tends toward the synthesis rate ratio γj with the population size independent growth rate vgrowth
= dt M

tot/Mtot. Eq (8) describes a growing cellular system that redistributes its protein synthesis
capacity in regulatory manner, under the constraint ∑j γj(t)� 1.

There are three scenarios with respect to regulation. Using relation Eq (8), one can find fol-
lowing interpretation:

1. Dilution: enzyme concentration decreases

gjðtÞ < �jðtÞ , d
dt

MjðtÞ
M totðtÞ < 0 , d

dt EjðtÞ < 0

If the relative synthesis rate γj is smaller than the relative enzyme mass ϕj, the synthesis rate of
enzyme j will be smaller than the growth rate. Hence, a dilution effect will be initiated and rela-
tive enzyme mass and enzyme concentration Ej will decrease.
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2. Over-expression: enzyme concentration increases

gjðtÞ > �jðtÞ , d
dt

MjðtÞ
M totðtÞ > 0 , d

dt EjðtÞ > 0

If the relative synthesis rate γj is larger than the relative mass ϕj, enzyme j will be synthesized
faster than the rate the cell is growing. Hence, an over-expression effect will be initiated and rel-
ative enzyme mass and enzyme concentration Ej will increase.
3. Homeostasis: enzyme concentration stays constant

gjðtÞ ¼ �jðtÞ , d
dt

MjðtÞ
M totðtÞ ¼ 0 , d

dt EjðtÞ ¼ 0

If the relative synthesis rate γj is as large as the relative mass ϕj, enzyme j will be synthesized ex-
actly as fast as the rate the cell is growing. Hence, the cellular enzyme composition will be pre-
served and homeostasis is established—relative enzyme mass and enzyme concentration Ej will
stay constant.
The system always tends to the third case, homeostasis, where following relation is established:

d
dt

MjðtÞ ¼ fjðtÞ �
d
dt

MtotðtÞ ð9Þ

Growth In order to determine the time dependency of cellular protein mass growth, the fol-
lowing ordinary differential equation has to be solved:

d
dt

MtotðtÞ ¼ bRðtÞ � kR � fRðtÞð Þ �MtotðtÞ ; ð10Þ

where bRðtÞ ¼ ð½AA�Þ=ðKR
M þ ½AA�Þ is the probability of amino-acid-binding to a ribosome

and [AA] is the amino acid concentration. We do not consider the contribution of different
amino acids because one type is sufficient for our phenomenological model, regarding previous
assumptions. This differential equation, Eq (10), represents exponential growth with a time-de-
pendent growth rate vgrowth(t): = βR(t) � kR � ϕR(t), whereas vgrowth(t) is based on Michaelis-
Menten kinetics of ribosomal translation. Solving this ordinary differential equation yields the
following exponential growth relation.

MtotðtÞ ¼ Mtotðt0Þ �exp kR �
Z t

t0

bRðtÞ � fRðtÞ dt
 !

ð11Þ

Eq (11) can be seen as microscopic view of cellular growth, where the population’s protein
mass is exponentially increased instead of the the number of cells. To transform Eq (11) into a
more classical macroscopical form of cell growth, one hast to introduce the relationMtot(t) =
hMcelli � n(t), where n(t) denotes the number of cells in a population and hMcelli is the average
proteome mass of a single cell. Applying this relation and the connection vgrowth(t) = ln2/tD(t)
between growth rate vgrowth and cellular doubling time tD yields the macroscopic view of cellu-
lar growth.

nðtÞ ¼ nðt0Þ � 2
R t

t0

1

tDðtÞ
dt ð12Þ

Here, the time-dependent cellular doubling time is expressed as

tDðtÞ ¼
lnð2Þ

bRðtÞ � kR � fRðtÞ
: ð13Þ

Eqs (12) and (13) show that the population size doubles by a time which depends on the amino
acid concentration [AA] and relative protein mass investment in ribosomes. The more ribo-
somes and amino acids are present, the shorter is the cellular doubling time and the faster is
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cellular growth. Assuming stable proteins, the doubling time equals the response time tR, i.e.
the time a cell needs to respond properly to an environmental change.

Control system
A living cell can be regarded as a control system consisting of a system to be controlled, con-
troller, actuator, and sensors. The system to be controlled is represented by the metabolic net-
work, while the actuator can be seen as the protein synthesis machinery, i.e. ribosomes which
produce specific enzymes with a probability given by the relative protein synthesis rate γj.
Next, sensors and controller have to be added to the model in order to complete the control
system. In the following the process of sensing will be referred to as perception and there will
be only two types as will be seen below, namely intracellular perception and extracellular per-
ception. The explicit nature of the sensors are not important for our research question, since
we are only interested in the effective information content of those. The controller yields cellu-
lar regulation, which must be inferred by an mathematical optimization process.

Having all pieces together, one can explain the dynamic steps of growth control by means of
the control system sketched in Fig 3. The metabolic system takes up nutrients from the envi-
ronment and metabolizes them into proteins, which in turn increase cell mass, i.e. the cell

Fig 3. Block diagram of the whole modeled replicating system. This control system consists of a system to be controlled, namely the metabolic network,
a controller, actuators and sensors for determining the metabolic pools’ relative mass. Each block represents a process, which can contain sub-processes.
While blue arrows represent input and output of the different processes, the red and black arrows represent the input for intracellular and extracellular
perception, respectively.

doi:10.1371/journal.pone.0126244.g003
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grows. This process is regulated by the controller which receives information about the nutrient
availability from perception and hands over desired enzyme concentrations to the actuator,
namely the ribosomes. The actuator implements this desired values by changing the actual en-
zyme concentration. This total control process is time dependent and hence explains the dy-
namic steps of growth control.

As mentioned, the modeled control system has a desired value and an actual value for all
fluxes and enzyme concentrations. Former has to be distinguished from the optimal value.
While the desired value is a quantity that the actual value aims for, the optimal value is a
quantity which represents the global maximum or minimum of an objective function (here:
growth rate). If and only if the desired value is determined under ideal conditions, it will be
equal to the optimal value.

Desired value The desired value, which represents the control of a system, depends strongly
on the information quality of the surrounding environment, namely the extracellular nutrient
concentration. This information is of utmost importance for the desired value’s accuracy, that is
the degree of optimality with respect to the control. Obviously, the measurement of extracellular
nutrient concentration is more precise than the one of intracellular nutrient concentration. On
the other hand, a highly precise determination of the actual extracellular concentration can be
disadvantageous with respect to growth, in the case of a rapidly changing environment.

Another important point for the determination of the desired value is a matching amount
of enzymes to their associated metabolites. This optimal resource allocation prohibits the waste
of enzymes in the case of enzyme overproduction and prevents from a non-optimal growth
rate due to the mismatch between catalytic capacity of too less enzymes and the existing larger
metabolite pool [23]. A non-optimal distribution of resources will always cause a decrease in
growth rate compared to the optimal state. In physical terms, optimal resource allocation is de-
fined as the condition, in which the metabolite net inflow rate vin into a pool equals the catalytic
net outflow rate vout. X

i

viinðtÞ ¼
X
k

vkoutðtÞ ð14Þ

This assumption or condition, respectively, implicates balanced fluxes and constant pool con-
centrations for the whole network, if the environment is regarded to be constant. Therefore, it
is possible to consider the pool and flux dynamics as an stationary process, where the pool con-
centration and flux instantaneously adapt to an new environment by tuning enzyme concen-
trations to the according desired values.

Actual value Balanced fluxes is a condition for optimality, but cannot always be achieved by
the cell in reality. This is due to two major facts:

1. The information content is imprecise, e.g. because of the cell only measuring the intracellu-
lar nutrient concentration.

2. The change between different environments happens faster than the cells ability to adapt to
the desired value.

Consequently, actual and desired value cannot always be identical, as it is in the case of a sta-
tionary process. It is appropriate to assume a stationary process in order to compute the desired
values. But on the matter of determining the actual value, one must consider real dynamics of
fluxes as well as pool concentrations.

Defining the desired value The desired value ��
j ðt̂Þ at time t̂ is defined by the relative en-

zyme mass ϕj(t) which the system targets for if the environmental conditions would remain

constant for t > t̂ . The proximity of the actual value to the desired value depends on how long
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the environment remains fixed relative to the response time tR of the system. The two following
limiting cases are possible, by defining T as the average time over which environmental condi-
tions stay constant.

• No adaptation (tR>> T): The desired value changes at any time.

• Total adaptation (tR << T): The desired value remains fixed until full adaptation
(homeostasis).

The desired value can be defined by the stationary case of the regulatory enzyme pool dy-
namics in Eq (8). Above, it was assumed that optimal resource allocation or constant relative
enzyme pools, respectively, is a state desired by the system. Therefore, the desired value ��

j fol-

lows from the condition

d
dt

fjðtÞ¼! 0

and corresponds to the relative enzyme mass synthesis rate γj at time t.

f�
j ðtÞ :¼ gjðtÞ ¼

d
dt

MjðtÞ
d
dt

MtotðtÞ
ð15Þ

The cell implements the desired value by adjusting (regulating) the synthesis rate ratio γj, as
Eq (15) shows. The system drives the enzyme mass ratio ϕj towards the synthesis rate ratio, re-
gardless of the initial condition of ϕ(t0), i.e. pathway massMj(t0) and total massMtot(t0).

MjðtÞ þMjðt0Þ
MtotðtÞ þMtotðt0Þ

�!t!1
d
dt

MjðtÞ
d
dt

MtotðtÞ

In summary, the synthesis rate ratio can be regarded as the control function of the cell. By
having the knowledge of the ratio γj, it is possible to predict the state dynamics of the whole
metabolic system. Of course, the control function has to depend on the extracellular nutrient
concentrations and therefore on environmental conditions.

Determining the optimal desired value
Relative and absolute mass fluxesOne has to distinguish between relative mass fluxes and
normalized absolute mass fluxes, as shown in Figs 4 and 5.

v5 ¼
X

j

d
dt

MjðtÞ
MtotðtÞ 6¼

X
j

d
dt

MjðtÞ
MtotðtÞ ¼ 0

While both quantities are identical for the metabolite fluxes v1, v2, v3, v4, they are totally differ-
ent for protein mass fluxes. The reason for this is the following assumption: the time dependent
change of the metabolite pools happens on a much faster scale than the rate of protein synthe-
sis. Therefore, the protein pathway massMj and the total protein massMtot can be regarded as
constants for the time dynamics of metabolite massmX(t).

Objective function and stoichiometric matrix It is assumed that the metabolic network is
optimized in such a way that the system’s growth rate is maximized [23–25]. In order to deter-
mine the desired value ϕ�(t) of the relative protein mass at time t, the metabolic network, with
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Fig 4. Relative mass flux and normalized absolute mass flux.Metabolic reactions happen on a much faster time scale than the rate of protein synthesis.
Consequently, the relative mass flux and normalized absolute mass flux are unequal for enzymes, while they are identical for metabolites.

doi:10.1371/journal.pone.0126244.g004

Fig 5. Schematic figure of the simplified metabolic network. (A)Growth: the arrows represent normalized absolute mass fluxes, while the metabolite and
protein pools are quantified by normalized absolute mass. The growth rate v5 = vgrowth is an absolute mass flux, since growth can only be understood in
absolute terms. The normalization 1/Mtot is utilized to keep quantities independent of population size. (B) Regulation: the arrows represent relative mass
fluxes, while the metabolite and protein pools are quantified by their relative mass. The self-replicator distributes its constrained protein resources between
permeases ϕ1, ϕ2, metabolic enzymes ϕ3, ϕ4, and ribosomes ϕ5. The enzyme synthesis acts as an feedback loop on the metabolic network, since metabolic
fluxes vj depend on enzyme levels vj / ϕj.

doi:10.1371/journal.pone.0126244.g005
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normalized absolute mass fluxes (dmj/dt)/M
tot and (dMtot/dt)/Mtot, has to be optimized with

respect to its growth rate (see Fig 5A). This optimization has to be applied for each time t. The
growth rate vgrowth, corresponding to fitness, is defined as normalized absolute protein mass
flux (synthesis rate):

vgrowth :¼ v5 ¼
d
dt

MtotðtÞ
� �

MtotðtÞ :
ð16Þ

Absolute fluxes are of paramount importance, since growth can only be understood in absolute
terms. Normalized fluxes, specifically the normalized protein flux, are utilized because they are
independent of population size.

A stoichiometric matrix S with three metabolites and five fluxes can be formulated for this
metabolic network. As defined above, inflow fluxes are positive and outflow fluxes are negative.

S :¼

þ1 0 �1 0 0

0 þ1 0 �1 0

0 0 þ1 þ1 �1

0
BBB@

1
CCCA ð17Þ

Using this matrix, the metabolite pool dynamic can be expressed as:

d
dt

~mðtÞ ¼

þ1 0 �1 0 0

0 þ1 0 �1 0

0 0 þ1 þ1 �1

0
BBB@

1
CCCA �

v1

v2

v3

v4

v5

0
BBBBBBBBBB@

1
CCCCCCCCCCA

; ð18Þ

where

~mðtÞ :¼

l3ðtÞ

l4ðtÞ

l5ðtÞ

0
BBB@

1
CCCA : ð19Þ

Optimization conditions The mathematical problem is to find the Desired values ��
j ðtÞ at

time t for a given set of actual values of the metabolite pools and extracellular nutrient concen-
tration. The actual values of the enzyme pools are not relevant for this purpose, since the cellu-
lar system drives towards the desired value, regardless of initial conditions of the enzyme pools.
Since the growth rate is a flux, the desired relative protein masses ��

j need to be expressed in

terms of desired metabolite fluxes v�j .

v�j ðtÞ :¼ a�j ðtÞ � f�
j ðtÞ ; ð20Þ

where

a�j ðtÞ :¼
l�
j ðtÞ

K ðjÞ
M

Emax
þ l�j ðtÞ

� kj for j ¼ 1; :::; 5 : ð21Þ
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The relative metabolite masses λ�j at time t represent perceived values, which can differ with
respect to the type of perception and need not to be equal to the real values λj(t). The desired
relative protein masses can be obtained by maximizing the growth rate for each time t under
following conditions.

• Positive fluxes: The fluxes are constrained to be positive. (By constraining the lower bound-
ary to a non zero value, one could simulate a basal enzyme expression level, which is not
done here.)

• Optimal resource allocation: This condition implicates constant metabolite pools and hence
balanced fluxes, as can be seen by setting the time derivative of all metabolite masses to zero
(see Eq (18)).

d
dt

~mðtÞ¼! 0

S �~v�ðtÞ¼! 0 ð22Þ

• Proteome density conservation (Molecular Crowding [16, 19, 22]): The total amount of all
enzyme pools summed up together is restricted, which arises from the assumed constant
total enzyme concentration Emax. Therefore, the sum of all relative protein mass is restricted
by one,

X5
j¼1

f�
j ¼ 1 ;

from which follows, using Eq (20),

v�1ðtÞ
a�1ðtÞ

þ v�2ðtÞ
a�
2ðtÞ

þ v�3ðtÞ
a�
3ðtÞ

þ v�4ðtÞ
a�4ðtÞ

þ v�5ðtÞ
a�5ðtÞ

¼ 1 : ð23Þ

This density conservation constrains the allocation of cellular resources [16, 17, 26]. Our
model basically incorporates a three component partition of the proteome [11], namely per-
meases ϕ1, ϕ2, metabolic enzymes ϕ3, ϕ4, and ribosomes ϕ5. The cellular system has to distrib-
ute its constrained protein resources between those three components.

Perception
Perception is the key to proper regulation. Depending on the perceived extracellular nutrient
availability, the system’s controller regulates its metabolism differently. We define two kinds of
perception, namely the extracellular and intracellular perception. In the case of extracellular
perception the cell regulates its metabolism exclusively in response to extracellular nutrient in-
formation, while in the case of intracellular perception the opposite holds. In the latter case the
cell indirectly recognizes nutrient availability by perceiving intracellular
metabolic information.

Looking at Fig 3 one understands why extracellular perception effectively has to act as a
feedforward loop while intracellular perception acts as feedback loop on the regulation. Assum-
ing extracellular perception, the information about changes in external nutrient availability
have already entered the controller before the cell is able to take them up. Thus, pathways are
regulated in response to changes in the environment, even before nutrients enter the
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metabolism. Contrarily assuming intracellular perception, the information about external nu-
trients enters the controller not before nutrients have already been transported inside the cell.
Thus, pathways are regulated in response to changes in intracellular nutrient concentrations,
some time after the nutrient availability has changed in the environment. The cell indirectly
perceives its environment and slowly adapts by a feedback control mechanisms.

The incorporation of perception into the above presented mathematical context is done by
defining two types of proteome density conservation (see Eq (23)) according to both percep-
tion types. Since, intracellular perception is equivalent to an exclusive information about intra-
cellular metabolite pools, only the intracellular quantities α3, α4, α5 enter the conservation
equation of a system with intracellular perception.

v�1ðtÞ
a3ðtÞ

þ v�2ðtÞ
a4ðtÞ

þ v�3ðtÞ
a5ðtÞ

þ v�4ðtÞ
a5ðtÞ

þ v�5ðtÞ
a5ðtÞ

¼ 1 ð24Þ

Extracellular perception is equivalent to an exclusive information about the extracellular nutri-
ent availability. Therefore, only the extracellular quantities α1 and α2 enter the conservation
equation of a system with extracellular perception.

v�1ðtÞ
a1ðtÞ

þ v�2ðtÞ
a2ðtÞ

þ v�3ðtÞ
a1ðtÞ

þ v�4ðtÞ
a2ðtÞ

þ v�5ðtÞ
ða1ðtÞ þ a2ðtÞÞ

¼ 1 ð25Þ

Determining the actual value: protein synthesis & metabolism
To determine the actual values of the enzyme and metabolite pools, the metabolic network (Fig
5B) with relative mass fluxes λj and ϕj has to be used. The actual system can be modeled by a
system of 10 coupled ordinary differential equations:

d
dt

ljðtÞ ¼ aYðtÞ � fYðtÞ � ajðtÞ � fjðtÞ ð26Þ

d
dt

fjðtÞ ¼ vgrowthðtÞ � f�
j ðtÞ � fjðtÞ

h i
; ð27Þ

where

vgrowthðtÞ ¼ a5ðtÞ � f5ðtÞ

and

ajðtÞ ¼
ljðtÞ

K ðjÞ
M

Emax
þ ljðtÞ

� kj :

Here, the index Y denotes the upstream metabolites and enzymes.

Simulation
To evaluate the fitness benefit due to perception in dependency of environmental fluctuations,
a competing species experiment in a fluctuating environment was simulated. While each spe-
cies exclusively perceives its environment according to intracellular or extracellular perception,
the metabolic and regulatory mechanisms are similarly based on the above presented mathe-
matical model. Hence, the only difference between both species is the perception type.
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The computer simulation of each species is implemented according to the block diagram
Fig 3, which produces the dynamic behavior of growth rate, enzyme and metabolite concentra-
tions, and relative protein synthesis rate (control function). The metabolic network is regulated
by a flux balance analysis (FBA) based optimization process [21, 25, 27] (control process),
which maximizes cellular growth rate [24] with respect to constant proteome density [19, 20]
and optimal enzyme-resource allocation [23]. Particularly, our simulation of the pool dynamics
can be regarded as some type of dynamic FBA with quasi-steady-state assumption. This as-
sumption includes discretizing the time into time intervals Δt of constant growth rate vgrowth =
const. and regulation (control) γj = const., whereas the former is kept constant for the enzyme
dynamics only. During an interval Δt, the enzyme and metabolite levels are variable and deter-
mined by the system of coupled differential equations, Eqs (26) and (27). At the end of each
time step Δt the controller computes the desired enzyme levels γj by linear programing within
FBA on the basis of the perceived metabolite levels l�j (Eq (24) or Eq (25)). Finally, the updated

growth rate vgrowth and regulation γj are taken to repeat this procedure for the next time step.
The difference of our simulation to conventional dynamic FBA [28, 29] is the notion of a con-
trol system, which is rather an element of cybernetic modeling [30].

To obtain regulatory and growth dynamics of the cell which are independent of initial con-
ditions, the simulation operates until both species show a stable periodic behavior. The process
of obtaining a stable periodic behavior simulates an evolutionary process in which the cell
adapts to an environment with highly predictable fluctuations in nutrient availability. Having
attained stability, one periodic growth rate interval is taken to compute the average growth
rate, which is the measure for fitness. The whole procedure is repeated for different fluctuation
frequencies and therefore yields a frequency dependent plot of the average growth rate. In con-
clusion, the computer simulation delivers a frequency dependent plot of the species’ fitness as
well as the underlying dynamic behavior of metabolism and regulation.

Results

Simulation: average growth rate for different switching times
To determine the frequency regimes in which the intracellular perception is evolutionary more
beneficial than the extracellular perception, the average growth rate of the intracellular perceiv-
ing system (IPS) and extracellular perceiving system (EPS) was plotted against the relative
switching time T=tmin

D , as can be seen in Fig 6.
The modeled self-replicators live in a highly predictable ecology, which fluctuates between

two environments, namely the non-preferential sugar (NPS) and the preferential sugar (PS) en-
vironment. Both sugar types are always present, whereas their concentration fluctuates with re-
spect to the environment. In the NPS environment the NPS possess 50% of the maximum
sugar concentration, while the concentration of the PS is as low as 0.25%, which can be re-
garded as zero. In the PS environment the NPS concentration immediately decreases to 0.25%,
while the PS transfers to a maximum concentration of 100%. For preferentiality in vitro, a dif-
ference between maximum PS and NPS concentration is not necessary, because changes in
fluxes are caused by the quality of the sugar types, i.e the uptake rate. Nevertheless, this model
feature guarantees sugar preferentiality in silico without loss of generality. The duration of one
environment, PS or NPS, is called the switching time T. The reciprocal value of the switching
time is exactly the frequency f: = 1/T of the fluctuations.

To gain a more general view all time quantities are normalized by the minimum cellular re-
sponse time tmin

R ¼ const:, which corresponds to the time the cellular system needs to adapt to
a constant PS environment. The response time is defined as the time, the cellular system needs
to finish 50% of its regulatory work. Specifically it is the average time, the relative enzyme
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masses ~f need to reach half the way between initial ~fðt0Þ and desired value ~f�.

~fðtRÞ :¼
1

2
� ð~f� � ~fðt0ÞÞ ð28Þ

Here, the initial values at time t0 are the steady state values in the NPS environment. While the
minimum response time gives an upper speed limit of cellular adaptation to changing nutrient
availability, the cellular doubling time is experimentally more accessible. Assuming no protein
degradation, the minimum response time tmin

R measures approximately the time a cell needs to
double itself once in a constant PS environment, i.e. the minimum cellular doubling time
tmin
D ¼ const: (minimum generation time) [31]. This minimum doubling time tmin

D is constant
and corresponds to the maximum growth rate that is achievable. Hence, normalization by the
minimum response time can be interpreted as normalization by the minimum cellular dou-
bling time generating the relative switching time T=tmin

D and relative time t=tmin
D . These quanti-

tates produce an organism-independent view on average growth rate and regulatory dynamics,
which makes Fig 6 valid for all exponentially growing microorganisms.

Each point in Fig 6 represents the average growth rate for a given relative switching time,
that is for a given fluctuation frequency. The average growth rate �vgrowthðTÞ is defined as the
time integral over the growth rate dynamics vðTÞgrowthðtÞ divided by one period of fluctuations,

Fig 6. Simulation results of competing species experiment in a fluctuating nutrient environment. Average growth rate for different relative switching
times T=tmin

D and perception types, whereas tmin
D denotes the minimum cellular doubling time. The average growth rate is normalized by its maximal

observable value for the sake of generality. The dashed black line at the break-even point tBE divides fluctuating environments in regimes of fast T = [0, tBE]
and slow T =]tBE, 100] fluctuations. (A) Average growth rate for the interval T=tmin

D ¼ ½0; 100�. While the self-replicator with intracellular perception only grows
on preferential sugar (PS), the one with extracellular perception also grows on non-preferential sugar (NPS). These contributions to the average growth rate
can be seen for the steady state value. (B) Average growth rate for the interval T=tmin

D ¼ ½0; 15�.
doi:10.1371/journal.pone.0126244.g006
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specifically twice the switching time.

v�growthðTÞ :¼
1

2T

Z t0þ2T

t0

vðTÞgrowthðtÞ dt ð29Þ

There are four switching time points, which are of interest for a qualitative analysis of the
average growth rate. These are (i) T approaching zero, (ii) T around the minimum response
time (minimum doubling time), (iii) T at the break-even point tBE, and (iv) T approaching in-
finity. The break-even point divides Fig 6 into two regimes, which are the fast fluctuating re-
gime T 2]0, tBE] and the slowly fluctuating regime T 2 [tBE,1[. Inside the first regime the IPS
has a larger average growth rate, whereas the EPS grows faster in the second one. For infinitely
large switching times, the cells go into steady state. The steady state average growth values can
be assigned to contributions due to full adaptation to the PS or NPS environment. As will be
seen below, the IPS only adapts to the PS environment, which is equivalent to a cellular system
under permanent carbon catabolite repression. Therefore, its steady state value in average
growth rate is the contribution �vPS

growth due to exclusive PS adaptation. The EPS adapts fully to

both sugar types when in steady state and will only utilize carbon catabolite repression if there
are relevant amounts of PS in the environment. Thus, the difference between steady state values
of EPS and IPS is exactly the contribution �vNPS

growth caused by adapting completely to NPS sur-

rounding. The contribution to exclusive adaptation to the PS environment has to be larger
than the one for the NPS environment, because this is actually the definition of sugar preferen-
tiality. In the here presented environmental example, �vNPS

growth ¼ 15% and �vPS
growth ¼ 85%. In con-

clusion, the intracellular perception, yielding permanent carbon catabolite repression, is
evolutionary more beneficial for switching times T 2]0, tBE] and the extracellular perception is
more beneficial for T 2 [tBE,1[.

Simulation: actual value
To understand the underlying regulatory principles of the results of Fig 6, the control, enzyme
pool, metabolite pool and growth rate dynamics were analyzed at representative relative
switching time values. The control dynamics can be understood as the dynamics of the relative
protein synthesis rate~gðtÞ.

Mixed environments (T! 0) If the switching time converges towards zero, the cellular sys-
tem will no longer be able to distinguish between the two environments. Therefore, the cell will
perceive a mixed environment. Further, the cell has no time to adapt to any individual environ-
ment, since the nutrient fluctuations are much faster than the minimum response time
(T << tmin

R ). There are two regulatory ways to handle this situation, used by the EPS and the
IPS, respectively. First, the cell can go into a mixed state, which responds to both environments
at the same time. Because of limited resources, according to constant proteome density, the cell
adapts partly and gains only half, 50%, of its possible average growth rate (see Fig 6 for
T=tmin

D ! 0). This is the regulatory principle of the EPS. Secondly, the cell can go into and stay
in the state of the preferential sugar (PS) environment. This gives rise to no nutrient uptake in
the NPS environment and a maximum nutrient uptake in the PS environment. Due to this
one-sided adaptation to the PS, the cell gains an average growth rate below the maximum
(100%) but higher than 50%. This is the regulatory principle of the IPS.

Resonance and antiresonance point (T ¼ t � tmin
R � tmin

D ) If the switching time ap-
proaches the minimum response time tmin

R approximated by the minimum cellular doubling
time tmin

D , the regulatory effects will be observable. By approaching tmin
D another quantity be-

comes relevant, namely the time delay τ due to nutrient signaling, which is considered to be
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approximately equal to tmin
D . This signaling time delay reflects the adaptation kinetics of the un-

derlying metabolic network and thus is present in both systems, EPS as well as IPS. After
changing the relative enzyme masses, it takes this time delay to observe an effect on the growth
rate. Thus, any regulatory action will take effect only after τ. Moreover, the IPS needs this time
to perceive its surrounding, before even being able to take any proper regulatory steps.

While the EPS perceives its nutrient environment in an exact and instantaneous manner,
the IPS has a limited and delayed vision of its surrounding (see Fig 7A, where the IPS does not
grow at all in the NPS environment and Fig 8A, where there is no NPS uptake at all). There are
two main features that distinguish the IPS from the EPS or the intracellular perception from
the extracellular perception, respectively. First, the IPS has to wait for a time delay τ until the
nutrient signaling affects the intracellular metabolic pools, in order to sense what has happened
externally. Secondly, the IPS deactivates the NPS pathway, which prevents the system to per-
ceive NPS. Hence, the IPS is not able to sense the switching between environments with
T 	 tmin

D . Based on these perception types, the EPS adapts to each individual environment
whereas the IPS adapts to the one with PS, only. Additionally, the IPS prepares itself for an in-
creased PS uptake by hyper-up-regulation of PS uptake transporters during the NPS environ-
ment. This increased PS uptake only occurs for a short time interval (see Fig 8B), so that an
environmental change with a switching time similar to the signaling time delay produces a res-
onance effect (see Fig 7B).

Fig 7. Growth rate dynamics at the break-even point and resonance point. The plot shows one period 2T of fluctuations between non-preferential and
preferential environment, whereas the dashed black line separates both environments (periodic boundary conditions). Time t is normalized by the minimum
cellular doubling time tmin

D . (A) Growth benefit and loss of intracellular perception due to exclusive adaptation to preferential sugar. The area between both
graphs is the measure for benefit and cost relative to both perception types. (B) Growth dynamics at the resonance point T=tmin

D ¼ 0:7 � 1. The large
amplitude of the growth rate fluctuations for intracellular perception leads to an optimal average performance and is caused by the resonance of cellular
response time with switching time T between environments.

doi:10.1371/journal.pone.0126244.g007
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Considering a switching time that equals the signaling time delay T ¼ t � tmin
D , the EPS

yields an antiresonance effect with the wrong pathway regulation at the wrong time. This effect
generates the worst average growth rate possible (< 50%), whereas the growth is even smaller
than for adapting to both sugar types simultaneously in a mixed environment. In contrary, the
IPS supplies the perfect regulation with the best possible result (100%), resulting from a reso-
nance effect. Concluding, if there is no time for regulation to act on growth rate, it will be bene-
ficial to focus on PS and use the PS gap phase to prepare for the PS environment.

Break-even point (T = tBE) If the switching time T approaches the break-even point tBE, the
EPS will approach the IPS in average growth rate. Specifically, the Growth Benefit, due to adap-
tation to the NPS environment, will exceed its associated growth loss.

The IPS perceives correctly the extracellular PS concentration in both environments and
imposes an constant activation of the PS pathway. On the other hand, the EPS alternately acti-
vates and deactivates NPS and PS pathways to adapt to the environment. There is enough time
for full response and the EPS can implement the control function (desired value) into reality.
Nevertheless, the IPS stays fixed inside the state of hyper-up-regulation throughout the whole
NPS environment. After its amino acid pool becomes zero, there is no driving growth rate to
regulate pathways.

To understand, why EPS and IPS approach the same average growth rate at the break-even
point one has to understand the concept of growth benefit and growth loss due to the underly-
ing regulatory strategy. Simply spoken, the IPS only uses the PS pathway to grow, while the
EPS uses both pathways. To decide which of the strategies is more favorable, one has to explain
for which cases using two pathways is more favorable than only one. The advantage of the IPS

Fig 8. Metabolite pool dynamics. The plot shows one period 2T of fluctuations between non-preferential and preferential environment, whereas the dashed
black line separates both environments (periodic boundary conditions). Time t is normalized by the minimum cellular doubling time tmin

D . (A) Extracellular
perception at break-even point: both sugar types, preferential (PS) and non-preferential (NPS), are taken up. The condition of constant metabolite pools,
caused by optimal enzymatic resource allocation, is approached for switching times T larger than the break-even point tBE. (B) Intracellular perception at
T=tmin

D ¼ 3 between resonance point and break-even point: only PS is taken up with an increased PS uptake during the PS environment, which is the cause
for the optimal growth at the resonance point.

doi:10.1371/journal.pone.0126244.g008
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is that it does not need to adapt to the PS, so it gains a maximal growth rate while the EPS still
is adapting to the new environment. This represents a growth benefit for the IPS (see Fig 7).
The advantage of the EPS is that it can also grow in the NPS while the IPS goes into a type of
growth arrest. This represents a growth loss for the IPS (see Fig 7). Concluding, these two
growth effect are exactly equal at the break-even point.

Steady state (T!1) & limits of the model If the switching time becomes larger than the
break-even point and approaches infinity, the extracellular perception and therefore the EPS
will have the dominant strategy. The cells enter steady state, therefore balanced fluxes, optimal
resource allocation and constant metabolite pools are realized. The latter feature can be seen in
Fig 8, where the metabolite pool concentrations converge to the one of extracellular nutrients.

A switching time that lasts an infinitely long time is the equivalent of an nutrient environ-
ment that stays constant and does not fluctuate at all. On one hand, the EPS imposes full adap-
tation to the respective nutrient environments, which intuitively makes sense for an infinitely
large switching time. On the other hand, the IPS only adapts to the PS and thus resides in
growth arrest during NPS surrounding (Fig 7A). The IPS traps itself in using PS until this re-
source is exhausted. More reasonable, the resulting drop in growth rate should promote the
transition to stringent response, right after the break-even point tBE. Stringent response would
enable the IPS to activate the NPS pathway by bypassing the limited nutrient perception. Then,
the average growth rate of IPS would probably converge to the one of the EPS.

Since our research questions is asking for regulatory principles in fluctuating environments,
the case of infinitely large switching time is not relevant. It is only necessary to understand the
limits of this model. After the break-even point tBE, the model system makes no valid predic-
tions for the IPS. It has no stringent response and thus can theoretically grow on the smallest
amount of PS, which is 0.25% in the here presented example. This is a physiological unrealistic
case. In order to add stringent response to the model, a constraint on the minimal detectable
nutrient concentration could be introduced. If the PS concentration goes below this constraint,
stringent response will be turned on.

Discussion
This study indicates that indirect intracellular perception of extracellular nutrient availability
can give rise to a growth benefit under situations where the up and down regulation of path-
ways cannot follow the fast changes of the nutrient environment. Although intracellular per-
ception carries less information about the actual environmental conditions, this regulatory
mechanism enables exponentially growing organisms to gain maximal average growth if nutri-
ent concentrations fluctuate on timescales comparable to the minimum generation time.

In our simulation, a system with intracellular perception responds to strong fluctuations by
keeping preferential nutrient pathways activated and non-preferential pathways inactivated.
As a result the cell can take up preferential nutrients as soon as they are available without any
prior regulation. This regulatory strategy is a good example forminimal adjustment. According
to Schuetz et al. [1] there is a trade-off between optimality under one given condition andmini-
mal adjustment between different conditions, i.e. Pareto optimality [32]. In other words, cells
will tune metabolic pathways to obtain optimal growth if surrounded by a constant environ-
ment. Contrarily, in a fluctuating environment, cells will regulate their pathways to respond to
environmental changes by minimal adjustment of pathways. In this sense, intracellular percep-
tion gives rise to a regulation ofminimal adjustment, which is dominant under fast environ-
mental changes. Additionally, our results show that the notion of optimality is also given under
fluctuating conditions, since minimal adjustment is a consequence of maximizing an objective
function averaged over the range of conditions.
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Moreover, our model of intracellular perception is in agreement with the phenomenon of
carbon catabolite repression [7, 9], if cells are not able to distinguish between different condi-
tions anymore, i.e. the fluctuation frequency approaches infinity. This situation is equivalent to
a mixed constant environment. While carbon catabolite repression reflects the cell’s affinity to
preferential sugars in a stable mixed nutritional surrounding, our results indicate that this
mechanism holds under fast fluctuations (around the minimum generation time) as well. To
our knowledge, CCR has not been obtained from an mathematical optimization
process, before.

Furthermore, our simulation of the growth dynamics produced a break-even point, where
the average growth rate of the IPS and EPS are equal (Fig 6). At this point the growth benefit of
the IPS in the preferential environment matches the growth loss in the non-preferential envi-
ronment. Growth benefit and loss arise from the exclusive adaptation to the PS environment
(Fig 7A). This is in agreement with the experimental work of Mitchell et al. [33], who have ob-
served anticipation of environmental changes in the sugar metabolism of E.coli and S.cerevisiae.
Mitchell et al. classified the regulatory response to environmental changes into direct and an-
ticipatory regulation, whereas the former regulates its metabolism in direct response and the
latter in advanced preparation. Further, they state that an anticipatory response will be evolu-
tionary beneficial if “the benefit gained from anticipation exceeds the cost of early preparation”.
We can identify the anticipatory regulation with the IPS and the direct regulation with the EPS.
As we have shown intracellular perception yields a preparation for the PS environment during
the NPS environment, which can be regarded as an anticipatory behavior. Especially, the
hyper-up-regulation of the PS uptake transporter in the presence of NPS environment, which
results in the resonance peak of the average growth rate, serves as a good example for anticipa-
tory regulation. This course of action is only beneficial for fluctuating environments with fre-
quency smaller than the break-even frequency. Thus, anticipatory behavior in a highly
predictable fluctuating environment can be understood by limited and delayed
intracellular perception.

Using our phenomenological computer model, we further showed that extracellular percep-
tion is of selective advantage under slow environmental fluctuations. However, it is reasonable
to assume that intracellular perception always contributes to some extent to growth control.
This hypothesis is supported by the observations of New et al. [34], who have shown that wild
S. cerevisiae strains divide into sub-populations of specialist and generalists according to their
growth rate related response time (lag phase). Generalist will adapt faster to a new carbon envi-
ronment than specialists if the environment changes from a preferential to a non-preferential
carbon source. Our results in Fig 7A for the non-preferential regime exhibit the same relation
between growth regulation by means of extracellular perception (EPS) and intracellular percep-
tion (IPS). The EPS, like the generalists, adapts faster to the non-preferential environment than
the IPS. In this context generalist could be seen as microbes whose growth control mainly de-
pends on extracellular perception, while the contribution of intracellular perception has an big-
ger impact on the specialist’s growth control. Although, both perception types can be utilized
by microorganisms, their contribution to growth control can be differently depending on the
individual evolutionary background.

Regarding the IPS, an interesting result of our simulation is the existence of a resonance
peak for fluctuations around the minimum generation time. At this peak, the time delay in nu-
trient perception equals the switching time between environments resulting in optimal fitness.
The data-based mathematical model of Mitchell and Pilpel [35] supports our finding as their
cellular system shows a fitness peak around 1–2.5 generation times.

To summarize, our work indicates that intracellular perception is of selective advantage and
gives rise to CCR in oscillating environments, so that microbes specialize on the preferential
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nutrient and anticipate it in its absence. In general, intracellular perception could be a funda-
mental regulatory principle of minimal adjustment to changing conditions. Although our
study is limited to a purely qualitative conclusion, due to the simplicity of our approach, the
presented model is sufficient to gain insight in the fundamental differences of microbial growth
control. In following projects, it would be worthwhile to test our simulation with real metabolic
networks, like from the model organisms E.coli or S.cerevisiae. Moreover, experimental evi-
dence, i.e. competing species experiments, is needed to confirm our theory of the dominance of
intracellular perception under fast fluctuations.
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