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Abstract
Cryopreservation is an efficient way to store spermatozoa and plays a critical role in the live-

stock industry as well as in clinical practice. During cryopreservation, cryo-stress causes

substantial damage to spermatozoa. In present study, the effects of cryo-stress at various

cryopreservation steps, such as dilution / cooling, adding cryoprtectant, and freezing were

studied in spermatozoa collected from 9 individual bull testes. The motility (%), motion kine-

matics, capacitation status, mitochondrial activity, and viability of bovine spermatozoa at

each step of the cryopreservation process were assessed using computer-assisted sperm

analysis, Hoechst 33258/chlortetracycline fluorescence, rhodamine 123 staining, and hypo-

osmotic swelling test, respectively. The results demonstrate that the cryopreservation steps

reduced motility (%), rapid speed (%), and mitochondrial activity, whereas medium/slow

speed (%), and the acrosome reaction were increased (P < 0.05). Differences (Δ) of the ac-

rosome reaction were higher in dilution/cooling step (P < 0.05), whereas differences (Δ) of

motility, rapid speed, and non-progressive motility were higher in cryoprotectant and freez-

ing as compared to dilution/cooling (P < 0.05). On the other hand, differences (Δ) of mito-

chondrial activity, viability, and progressive motility were higher in freezing step (P < 0.05)

while the difference (Δ) of the acrosome reaction was higher in dilution/cooling (P < 0.05).

Based on these results, we propose that freezing / thawing steps are the most critical in

cryopreservation and may provide a logical ground of understanding on the cryo-damage.

Moreover, these sperm parameters might be used as physical markers of sperm cryo-

damage.

Introduction
Sperm cryopreservation is an important means for assisted reproductive technique and is the
most efficient way for storing genetic resources [1, 2]. Cryopreservation plays a major role in
genetic improvement, economization of breeding programs in the livestock industry, and pres-
ervation of endangered species, and is clinically valuable in the management of infertility [3–
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6]. Cryopreservation has been applied to various species, including humans, swine, cattle, cats,
and dogs, among others [2]. Although the goal of sperm cryopreservation is to preserve sperm
motility, metabolic function, and fertility, the freeze—thawing process inevitably causes dam-
age to spermatozoa, thereby reducing fertility [3, 4, 7, 8].

Cryopreservation consists of three steps—dilution with the extender/cooling, addition of
cryoprotectant (CP), and freeze—thawing [4, 9]—during which spermatozoa are subjected to
various stresses such as cold shock, osmotic and oxidative stress, and intracellular ice crystal
formation [1, 9, 10]. These cause damage to sperm integrity, membrane structure, and sperm
function [6, 9, 11, 12]. In addition, excessive mitochondrial activity induces the generation of
reactive oxygen species that affect cellular compounds and organelle functions [13]. Further-
more, temperature-sensitive membranes and cytoskeletal structures, ultimately resulting in re-
duced sperm motility, viability, and fertility [14].

Cryopreservation protocols have been developed and optimized over the last several de-
cades. Previous studies have provided evidences that freezing-thawing affects sperm functions
and semen quality [12, 15]. Several studies have compared spermatozoa before and after cryo-
preservation [7, 12, 16, 17] or attempted to identify the mechanisms underlying specific steps
of the process [18–21]. However, there have been no comprehensive studies examining each
step of cryopreservation in relation to functional parameters of spermatozoa. Therefore, we at-
tempted to investigate the effects of the different steps of cryopreservation on bovine spermato-
zoa by evaluating motility, motion kinematics, viability, capacitation status, and
mitochondrial activity.

Materials and Methods

Ethical statement
All animal procedures were performed in accordance with the guidelines for the ethical treat-
ment of animals, and were approved by the Institutional Animal Care and Use Committee of
Chung-Ang University, Seoul, Korea.

Sample collection
Native Korean Bull (Hanwoo) testes were obtained from a local slaughterhouse (Seomun Co.,
Hwaseong, Korea) and transferred to the laboratory within 3 h on ice [22]. Sperm samples
were collected from nine individual bull epididymides. A small cut was made at the cauda epi-
didymidis of the testis avoiding vessel. Phosphate-buffered saline (PBS; Sigma-Aldrich, St
Louis, MO, USA) was backflushed into the end of the vas deferens using a 10-ml syringe.
Flushed samples were washed at 700 × g for 15 min [23–25].

Cryopreservation of spermatozoa
Sperm cryopreservation was performed as previously described [26]. Briefly, washed samples
(Control) were diluted (100 × 106 cells/ml) in Tris—egg yolk buffer (TYB; 250 mM Tris, 88.5
mM citric acid, 68.8 mM glucose, and 20% egg yolk) and cooled to 4°C over 2 h (Step 1). An
equal volume of TYB with 12% glycerol was added to extend the sample, which was then equil-
ibrated at 4°C for 2 h (Step 2). Equilibrated samples were packaged into 0.5-ml straws and fro-
zen in liquid nitrogen vapor 2.5cm above the liquid nitrogen for 15 min, and then plunged into
liquid nitrogen for storage. Straws were thawed at 37°C for 1 min after 2 weeks of cryopreserva-
tion (Step 3).
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Computer-assisted sperm analysis (CASA)
Sperm motility (%) and kinematics at each step of cryopreservation were analyzed using a CASA
system (ISAS ver.1.2; Valencia, Spain). Briefly, 10 μl of sample were placed in a 37°CMakler
chamber (Makler, Haifa, Israel). Using the 10× objective in-phase contrast mode, the image was
relayed, digitized, and analyzed with the ISAS software. The movement of at least 250 sperm cells
was recorded for each sample frommore than five randomly selected fields per replicate, and
used to analyze sperm motility (%), kinematics (progressively or non-progressively motile), and
speed parameters (rapid,> 50 μm/s; medium, 25–50 μm/s; and slow,< 25 μm/s).

Assessment of capacitation status by Hoechst 33258 (H33258)/
chlortetracycline fluorescence (CTC)
Capacitation status was assessed by the H33258/CTC dual staining method as previously de-
scribed [27, 28]. Briefly, 15 μl of H33258 solution (10 μg H33258/ml PBS) were added to 135 μl
of sample and the mixture was incubated for 10 min at room temperature; 250 μl of 2% (w/v)
polyvinylpyrrolidone (Sigma-Aldrich) in PBS were then added to remove excess dye, followed
by centrifugation at 700 × g for 5 min. The supernatant was discarded and the pellet was resus-
pended in 100 μl of PBS and 100 μl of CTC solution (750 mM CTC in 5 μl buffer composed of
20 mM Tris, 130 mMNaCl, and 5 mM cysteine, pH 7.4). Capacitation status was assessed
using a Microphot-FXA microscope (Nikon, Tokyo, Japan) under epifluorescent illumination
using ultraviolet BP 340–380/LP 425 and BP 450–490/LP 515 excitation/emission filters for
H33258 and CTC, respectively. Spermatozoa capacitation patterns were classified as live non-
capacitated (F; green fluorescence distributed uniformly over the entire sperm head, with or
without a stronger fluorescent line at the equatorial segment), live capacitated (B; green fluores-
cence over the acrosomal region and a dark post-acrosomal region), or live acrosome-reacted
(AR; sperm showing mottled green fluorescence over the head, green fluorescence only in the
post-acrosomal region, or no fluorescence over the head). Capacitation status was evaluated in
at least 400 spermatozoa per slide.

Hypoosmotic swelling test (HOST)
Sperm viability and the functional integrity of the membrane were determined by the HOST as
previously described [29]. Briefly, 900 μl of hypo-osmotic solution (0.9% NaCl in distilled
water, 150 mOsm/kg) were added to 100 μl of sample and incubated for 30 min at 37°C in an
atmosphere of 5% CO2. A drop of sample was smeared on a clean slide, allowed to air dry, and
fixed with freshly prepared fixative solution. Membrane swelling patterns were evaluated using
Microphot-FXA microscope (Nikon). HOST was carried out in at least 400 spermatozoa
per slide.

Mitochondrial activity
Mitochondrial membrane potential was measured by rhodamine 123 (R123; Sigma-Aldrich)
staining as previously described [30, 31]. Briefly, 15 μl of R123 (0.01 mg R123/ml PBS) were
added to 100 μl of sample and incubated for 15 min at 37°C in an atmosphere of 5% CO2. After
incubation, the sample was centrifuged at 700 × g for 5 min and resuspended in 1 ml PBS. Sam-
ples were analyzed by flow cytometry (Becton Dickinson, Franklin Lakes, NJ, USA) with exci-
tation and emission wavelengths of 488 and 525 nm, respectively. A total of 1 0,000 cells in
each sample were analyzed with CellQuest software (Becton Dickinson).
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Statistical analysis
Numerical values were obtained from different sperm parameters (such as, motility, motion ki-
nematics, capacitation status, viability, mitochondrial activity) in each 9 individual samples.
Treatment group was classified as Control (Fresh sperm), Step 1 (Dilution / Cooling), Step 2
(Adding cryoprotectant) and Step 3 (Freezing / Thawing). Data were analyzed with SPSS v.21.0
(SPSS Inc., Chicago, IL, USA). One-way analysis of variance was used to compare values of 4
treatment groups in sperm parameters and values of differences (4) of sperm parameters in
each cryopreservation steps with Tukey’s test to detect differences. Correlation among different
parameters in each steps of cryopreservation was performed by pearson correlation test.
P< 0.05 was considered statistically significant. Data are expressed as mean ± SEM.

Results
CASA was performed to investigate the motility and kinematics of spermatozoa at each step of
cryopreservation. Motility and rapid speed were significantly decreased whereas medium and
slow speed were significantly increased during cryopreservation. However, there were no dif-
ferences between Control and Step 1 samples in terms of motility and motion kinematics
(P< 0.05; Figs 1 and 2). Progressive motility was significantly higher and non-progressive mo-
tility was significantly lower in Step 2, whereas no differences were detected between Control,
Step 1, and Step 3 samples (P< 0.05; Fig 3).

Capacitation status was evaluated by H33258/CTC dual staining. The AR pattern was in-
creased and F pattern was decreased (P< 0.05), while the B pattern remain unchanged (Fig 4).
Mitochondrial activity was decreased during sperm cryopreservation, as determined by rhoda-
mine 123 staining and flow cytometry (P< 0.05; Fig 5). HOST was performed to evaluate
sperm viability and membrane function. The fraction of dead or membrane-damaged sperma-
tozoa were increased during cryopreservation (P< 0.05; Fig 6). Differences (4) of AR and B
patterns were higher in Step 1 than other parameters (P< 0.05; Table 1); the difference (4) of
slow-speed sperm was highest for Steps 2 and 3 (P< 0.05; Table 1), as were differences (4) of

Fig 1. Spermmotility was determined by CASA.Control; fresh sperm, Step 1; dilution / cooling, Step 2;
adding cryoprotectant, Step 3; freezing / thawing. Data are presented as the mean ± SE. Values with different
superscripts (A, B, C) differed significantly between cryopreservation steps by one-way analysis of variance
(P < 0.05, n = 9).

doi:10.1371/journal.pone.0126232.g001
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motility, rapid speed, non-progressive motility of sperm (P< 0.05). Medium speed was higher
in Step 1, whereas progressive motility, mitochondrial activity, and viability were higher in
Step 3 (P< 0.05; Table 1). The difference (4) of slow speed was highest at every step of cryo-
preservation (P< 0.05, Table 1). Correlation among different parameters in each steps of cryo-
preservation were shown in supporting information (S1, S2, S3 and S4 Tables).

Fig 2. Sperm speed was determined by CASA and classified as (A) rapid (> 50 μm/s), (B) medium (25–50 μm/s), or (C) slow (< 25 μm/s). Control;
fresh sperm, Step 1; dilution / cooling, Step 2; adding cryoprotectant, Step 3; freezing / thawing. Data are presented as mean ± SE. Values with different
superscripts (A, B, C) differed significantly between cryopreservation steps by one-way analysis of variance (P < 0.05, n = 9).

doi:10.1371/journal.pone.0126232.g002

Fig 3. Spermmovement was determined by CASA and classified as (A) progressively motile or (B) non-progressively motile.Control; fresh sperm,
Step 1; dilution / cooling, Step 2; adding cryoprotectant, Step 3; freezing / thawing. Data are presented as mean ± SE. Values with different superscripts (A,B,
C) differed significantly between cryopreservation steps by one-way analysis of variance (P < 0.05, n = 9).

doi:10.1371/journal.pone.0126232.g003
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Fig 4. Capacitation patterns were assessed by the H33258/CTC dual staining method and classified as (A) live acrosome-reacted (AR), (B) live
capacitated (B), (C) live non-capacitated (F), or (D) dead (D). Control; fresh sperm, Step 1; dilution / cooling, Step 2; adding cryoprotectant, Step 3;
freezing / thawing. Data are presented as the mean ± SE. Values with different superscripts (A, B, C) differed significantly between cryopreservation steps by
one-way analysis of variance (P < 0.05, n = 9).

doi:10.1371/journal.pone.0126232.g004

Fig 5. Mitochondrial activity was assessed by rhodamine 123 staining. Control; fresh sperm, Step 1;
dilution / cooling, Step 2; adding cryoprotectant, Step 3; freezing / thawing. Data are presented as the
mean ± SE. Values with different superscripts (A, B, C) differed significantly between cryopreservation steps
by one-way analysis of variance (P < 0.05, n = 9).

doi:10.1371/journal.pone.0126232.g005
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Discussion
During cryopreservation, spermatozoa are exposed to a stressful environment that includes
cold shock, osmotic stress, and ice crystal formation [9, 12]. These stresses cause irreversible
damage to sperm structure and function, resulting in a loss of up to 50% of viable spermatozoa
[3]. It has been reported that methods of sperm cryopreservation for various species of domes-
tic animals and humans are different, however basic principles of preservation are similar [32,
33]. Therefore, our study investigates the effects of the different steps of cryopreservation con-
sidering bull spermatozoa as a standard model. To evaluate the physical parameter most sensi-
tive to cryo-damage, the cryopreservation steps were classified as dilution / cooling (Step 1),
the addition of CP (Step 2), and freeze / thawing (Step 3) and sperm parameters were assessed
at each step.

Motility is one of the most important factors in assessing sperm quality and essential for
transporting the spermatozoa to the site of fertilization [34–36]. On the other hand, motion ki-
nematics assessed by CASA provide an accurate representation of sperm movement objectively
[37]. Our results showed that motility and rapid speed declined markedly during cryopreserva-
tion (Figs 1 and 2). The energy (ATP) used for sperm motility is mostly contributed by mito-
chondrial respiration [33]. Thus motility is closely related to mitochondrial activity [33, 38].
Consistent with these findings decrease in mitochondrial activity was also observed in current
study during cryopreservation (Fig 5). Additionally, capacitation and the acrosome reaction
are essential processes that allow spermatozoa to fertilize an oocyte [39, 40]. Spermatozoa are
unable to fertilize an oocyte before capacitation, even they are motile and morphologically nor-
mal [41]. Simultaneously, structural and functional modifications occur during the acrosome
reaction that required for sperm binding to zona pellucida [42, 43]. It has been reported that
intracellular Ca2+ in spermatozoa is induced during cryopreservation and uptake of Ca2+ is a
trigger of capacitation and the acrosome reaction [3, 44]. Therefore, these parameters are close-
ly related to sperm viability and are key factors for determining semen quality / fertility [9, 12,
45, 46]. We demonstrated that slow speed / viability and mitochondrial activity / viability

Fig 6. Sperm viability and the functional integrity of the membrane were determined by the HOST.
Control; fresh sperm, Step 1; dilution / cooling, Step 2; adding cryoprotectant, Step 3; freezing / thawing. Data
are presented as the mean ± SE. Values with different superscripts (A, B, C) differed significantly between
cryopreservation steps by one-way analysis of variance (P < 0.05, n = 9).

doi:10.1371/journal.pone.0126232.g006
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between Control and Step 1 are correlated significantly (S1 Table). Additionally, significant
correlation was also observed among mitochondrial activity, motility, and viability (S2, S3, and
S4 Tables). Moreover, AR pattern and slow speed were significantly correlated during cryo-
preservation (S4 Table). Therefore, taken together these findings suggest that various sperm
parameters are associated each step of cryopreservation.

Step 1 of cryopreservation is associated with cold shock, which affects the physical proper-
ties and function of cell membranes [44, 47]. Membrane fluidity, intracellular potassium con-
centration, and tolerance to changes in osmolarity are all disrupted within the temperature
range of 0–15°C [3, 9, 46]. However, there were no significant differences observed in the
sperm parameters for Step 1 in this study (Figs 1–5). Interestingly, the difference of (4) AR
was significantly higher in Step 1 than in other steps. It has been reported that membrane cyto-
skeletal components such as actin are sensitive to temperature, which can induce the depo-
lymerization of actin filaments [3]; this may also related with acrosomal membrane of
spermatozoa [48, 49]. It can therefore be supposed that the acrosomal membrane structure is
most sensitive during the Step 1 (Table 1).The addition of CP causes osmotic stress, which is
relevant to Step 2 as well to as thawing process during Step 3 [21, 45]. This can induce a change
in the volume of spermatozoa due to an alteration in membrane permeability [3], causing dam-
age to sperm surface proteins, and consequent loss of viability and reducing the capacity for
fertilization [3, 9, 45]. CP also cause oxidative damage to sperm membrane phospholipids [50],
resulting in the loss of motility, viability, and mitochondrial potential [51–53]. Furthermore,
the toxicity of CPs can affect some components of the sperm membrane [54].

Step 3 of cryopreservation, which is associated with ice crystal formation, is typically accom-
panied by osmotic pressure changes [3, 9]. When a sample is cooled to below the freezing
point, water crystallizes as ice; intra- and extracellular ice crystal formation causes damage to
sperm membrane structures [44]. In addition, osmotic stress destroys spermatozoa during
thawing [45, 55]. Accordingly, in the present study, Step 3 showed the highest differences (4)
of various physical parameters including motility, slow speed, mitochondrial activity, and via-
bility (Table 1).

Physical parameters were variably affected by cryo-damage at different steps of cryopreser-
vation. In the present study, various parameters were assessed to identify physical markers at
each step. In Step 1, differences (4) of AR and B patterns were significantly higher than in
other steps. However, a difference (4) of slow speed was the only parameter that was higher in
Steps 2 and 3 (Table 1). Therefore, AR pattern and slow speed could be useful physical markers
for Step 1 and Steps 2/3, respectively. Moreover, a difference (4) of slow speed could be a
marker for cryo-damage given that it is the most sensitive parameter during the sperm
cryopreservation process.

The results of the current study suggest that the most critical process of cryopreservation was
Step 3 and the most sensitive parameter for cryo-damage was slow speed. Moreover, we provide
a comprehensive set of physical parameters for understanding cryo-damage at different steps
during cryopreservation, as well as useful information to improve current preservation methods.

Supporting Information
S1 Table. Pearson correlation coeffcients among sperm parameters between Control and
Step 1.
(DOCX)

S2 Table. Pearson correlation coeffcients among sperm parameters between Step 1 and
Step 2.
(DOCX)
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Step 3.
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