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Abstract
The thymus is a primary lymphoid organ, home of maturation and selection of thymocytes

for generation of functional T-cells. Multiple factors are involved throughout the different

stages of the maturation process to tightly regulate T-cell production. The metabolism of ar-

achidonic acid by cyclooxygenases, lipoxygenases and specific isomerases generates ei-

cosanoids, lipid mediators capable of triggering cellular responses. In this study, we

determined the profile of expression of the eicosanoids present in the mouse thymus at dif-

ferent stages of thymocyte development. As the group IVA cytosolic phospholipase A2

(cPLA2α) catalyzes the hydrolysis of phospholipids, thereby generating arachidonic acid,

we further verified its contribution by including cPLA2α deficient mice to our investigations.

We found that a vast array of eicosanoids is expressed in the thymus, which expression is

substantially modulated through thymocyte development. The cPLA2α was dispensable in

the generation of most eicosanoids in the thymus and consistently, the ablation of the

cPLA2α gene in mouse thymus and the culture of thymuses from human newborns in pres-

ence of the cPLA2α inhibitor pyrrophenone did not impact thymocyte maturation. This study

provides information on the eicosanoid repertoire present during thymocyte development

and suggests that thymocyte maturation can occur independently of cPLA2α.

Introduction
The thymus has a central role in the immune system as it supports the development, the differ-
entiation and the selection of T-cells [1–3]. Thymic development of the T-cell precursors is
finely regulated. Firstly, the T-cell precursors originating from the bone marrow enter in the
thymus through the cortex. These immature T-cells, called thymocytes, differently express the
T-cell receptor (TCR) co-receptors CD4 and CD8 at their surface, an indication of the T-cell
maturation state. Owing to the lack of expression of CD4 and CD8 immediately after their
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entrance in the cortex, the most immature T-cells are identified as double negative (DN) thy-
mocytes (CD4-/CD8-). Secondly, after a productive rearrangement of the TCR β locus and ex-
pression of pre-TCR, thymocytes initiate the expression of CD4 and CD8 and are recognized
as double positive (DP) thymocytes. Finally, the DP thymocytes undergo positive and negative
selections driven by dendritic cells, cortical and medullar thymic epithelial cells. These two se-
lection processes eliminate by apoptosis the thymocytes considered as useless and self-reactive.
The positively selected thymocytes then migrate to the medulla and egress from the thymus as
single positive (SP) thymocytes (i.e. CD4+/CD8- and CD4-/CD8+).

Multiple factors tightly regulate the formation of T-cells throughout the different stages of
the maturation process. Cytokines and chemokines for instance are involved in thymocyte sur-
vival, differentiation, selection and guidance through the thymus [3, 4]. Eicosanoids are lipid
mediators derived from fatty acids, such as arachidonic acid (AA), and are synthesized primar-
ily by three classes of enzymes, cyclooxygenases 1 (COX-1) or 2 (COX-2), lipoxygenases
(LOX) and cytochrome P450 mono-oxygenases. The role of eicosanoids in regulation of im-
munity is well documented. For example, prostaglandin E2 (PGE2), prostanoid formed via the
concerted action of cyclooxygenases (COX-1 and COX-2) and PGE synthase, induces Th2 po-
larization by modulating cytokine production of antigen presenting cells and T-cells [5]. PGE2
inhibits the production of interleukin (IL)-2, IL-12 and interferon-γ by monocytes, T-cells and
antigen presenting cells, it decreases the responsiveness of IL-12 receptors by peripheral blood
mononuclear cells and T-cells and increases T-cell production of IL-4, IL-5, and IL-10 [5–9].
Alternatively, PGE2 has also a role in the differentiation of Th17-cells, and nanomolar concen-
trations of this eicosanoid suffice to promote Th1 differentiation, whereas higher concentra-
tions of PGE2 suppress this process [10–13]. Furthermore, it was shown that PGE2 suppresses
allergic reactions through the PGE2 receptor 3 (EP3) [14] and promotes induction of FOXP3+

CD4+ CD25+ adaptive regulatory T-cells that regulate immune responses [15–17]. Finally,
PGE2 supports the maturation of B-lymphocytes into IgE-producing plasma cells [18, 19].
While the enzymatic machinery necessary for eicosanoid biosynthesis (COX-1 and COX-2,
prostaglandin synthases, thromboxane synthase, 5LOX, 15LOX, P450 mono-oxygenase) and
the eicosanoid receptors (PGE2 receptors (EP), thromboxane receptor, leukotriene B4 recep-
tors (BLT1 and BLT2)) are expressed in the thymus [20–32], little is known regarding the ei-
cosanoids present in the thymus through different stages of thymocyte maturation.

More than 90% of the thymocytes retrieved in the thymus are synchronized as DN on day
15.5 of the mouse embryonic development (E15.5). Thymocyte maturation then progresses,
and 70–80% of the thymocytes examined on embryonic day 18.5 are then DP. Fetal thymic
organ cultures (FTOC) are therefore frequently utilized to study the impact of gene ablation or
protein inhibition on thymocyte development [33, 34]. FTOCs were previously used to assess
the contribution of prostanoids in the thymus [21, 35]. In a first study, which included fetal
thymuses isolated from COX-1 and COX-2 knockout (KO) mice and inhibitors of COX-1 and
COX-2, COX-1-dependent PGE2 production was shown involved in the transition from DN to
DP T-cells whereas the COX-2-dependent PGE2 production was shown necessary in genera-
tion of CD4+ SP T-cells. Furthermore, using specific agonists of prostanoid receptors, it was
confirmed that these effects were mediated through activation of the PGE2 receptors EP-2 and
EP-1. Taken together, these observations point to an important role of AA metabolites, most
specifically PGE2, in T-cell development in the thymus. However, a second study showed that
the maturation of thymocytes remained intact in culture of fetal thymuses isolated from mice
deficient in COX-1, COX-2, EP-1, EP-2 and mice deficient for both COX-1 and COX-2 [35].
While the addition of a COX-2 inhibitor (NS-398) to thymic cultures reduced the formation of
CD4+ T-cells, this effect was unspecific as it was also present in FTOCs from COX-2 deficient
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mice and it was not reversed by the exogenous addition of PGE2 (up to 10μM) [35]. Thus,
whether prostanoids actually participate in thymocyte development remains unclear.

AA, which is mainly esterified at the sn-2 position of phospholipids, has to be released from
the membrane phospholipids to be metabolized into eicosanoids. The availability of AA is thus
a rate-limiting step for the production of eicosanoids [36]. Phospholipases A2 (PLA2) catalyze
the hydrolysis of phospholipids in sn-2, generating free fatty acids and lysophospholipids [37].
So far, more than 20 mammalians PLA2s have been described. The PLA2 repertoire includes;
1) the secreted PLA2s (dependent of calcium), 2) the intracellular PLA2s of group VI indepen-
dent of calcium, 3) the intracellular PLA2s of group IV dependent of calcium (with the excep-
tion of the group IVC (cPLA2 gamma), which does not rely on calcium for its activity), 4) the
lysosomal PLA2, 5) the adipose-specific PLA2 and 6) the platelet-activating factor acetylhydro-
lases. The most studied and best-described PLA2 is the cytosolic PLA2 of group IVA, also called
cPLA2α. This enzyme is ubiquitously expressed in mammalian cells, and cPLA2α gene ablation
in mice showed its critical role in fertility, particularly in fetus implantation and labor [38, 39].
Importantly, the exogenous injection of PGE2 and of a stable analog of PGI2 (carbaprostacy-
clin) restored normal implantation in cPLA2α deficient mice [40], further supporting the no-
tion of functional coupling between cPLA2α and prostaglandins. In concurrent studies, the
function of cPLA2α in eicosanoid production in a context of inflammation is also exemplified,
as cPLA2α deficient mice were resistant to experimental asthma, and the macrophages isolated
from these mice failed to produce PGE2, platelet activating factor, leukotriene B4 and leukotri-
ene C4 [38, 39]. A series of subsequent studies confirmed a dominant role of cPLA2α in eicosa-
noid production in several processes, including immunity, reproduction, inflammation and
cancer [7, 37–45]. While cPLA2α is expressed in thymocytes [46], whether it plays a role in ei-
cosanoid generation and thymocyte maturation is unknown.

For this study, we portrayed the eicosanoids produced in the thymus at different stages of
thymocyte maturation and considered the potential role of cPLA2α in this process. As the role
of eicosanoids in the thymus has been invoked, we further hypothesized that cPLA2αmight
contribute to thymocyte maturation. We found that the production of eicosanoids is modulat-
ed accordingly to the maturation of thymocytes, and that the production of eicosanoids and
thymocytes can proceed independently of cPLA2α.

Materials and Methods

Ethic statement
This study was reviewed and approved by our institutional review board (Comité Éthique de la
Recherche du CHU de Québec) before the study began.

Human thymuses from newborns and young children were obtained under an approved in-
stitutional review board protocol (Comité Éthique de la Recherche du CHU de Québec) follow-
ing written consent of the parents after a cardiac surgery (CHU de Quebec). This consent
procedure was approved by the Comité Éthique de la Recherche du CHU de Québec.

In this study, Guidelines of the Canadian Council on Animal Care were followed in a proto-
col approved by the Animal Welfare committee at Laval University (Quebec City, Canada) and
all efforts were made to minimize suffering. Fetal thymus harvesting was performed after eu-
thanasia of fetuses on ice. Adult thymuses were obtained after an isoflurane anesthesia followed
by euthanasia with CO2.

Mice and genotyping
C57BL/6J mice were obtained from The Jackson Laboratory. cPLA2α deficient mice [38] were
backcrossed up to the tenth generation in C57BL6/J background. The reproduction of cPLA2α
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deficient mice was maintained by crossing heterozygous males and females, and the littermate
cPLA2α wild type (WT) and cPLA2α KO were used for our experiments. The identification of
cPLA2α genotypes was performed using DNA isolated from mouse tail. The tails were digested
with DirectPCR Lysis Reagent (Tail) (Viagen Biotech) and Proteinase K (Invitrogen) according
to the manufacturer protocol and PCR amplification was performed using HotStarTaq DNA
Polymerase (Qiagen) and the following primers: cPLA2 α forward (50-TTCTCTGGTGTGAT
GAAGGC-30), cPLA2 α reverse 50-AAACTGACTGTAGCATCACAC-30), NeoForward (cPLA2α
KO) (50- ATCGCCTTCTTGACGAGTTC-30). The following PCR steps were used: 15 minutes
at 95°c, 35 cycles of 45 seconds at 94°c, 60 seconds at 65°c and 60 seconds at 72°c and the final
step is 10 minutes at 72°c. The PCR products were then separated on 1.5% agarose gel contain-
ing ethidium bromide. The WT and KO products were distinguished by visualization of bands
at 224 and 570 bp, respectively.

Fetal Thymic Organ Culture
FTOCs were produced as previously described [33, 34]. In brief, fecundation was timed from
the first day of plug observation (day 0.5). Mouse fetuses were harvested from timed pregnant
mice on gestational day 15.5. The fetal thymuses were cultured on 0.8μm Isopore Membrane
filters (Millipores) placed on the surface of 12 well plates containing RPMI 1640 (Wisent) sup-
plemented with 10% FBS for mouse myeloid colony forming cells (Stemcell Technologies), 1%
penicillin/streptomycin (Wisent), 1% L-glutamine (Wisent) and 1% of 2-mercaptoethanol
(Gibco). FTOC were fed daily by complete medium replacement with solvent control (DMSO
or ethanol) or the following compounds: cPLA2α inhibitor pyrrophenone (Cayman Chemical),
arachidonic acid (Nu Chek Prep) and prostaglandin E2 (Cayman Chemical). Fetal thymuses
were cultured for 5 days at 37°C with 5% CO2.

Human thymus
Small sections of human thymuses (� 2mm3) were cultured as already described for mouse
FTOCs. The human FTOCs-like were fed daily by complete medium replacement with solvent
control (DMSO) or pyrrophenone (Cayman Chemical) for 5 days at 37°C with 5% CO2.

Flow cytometry analysis
Thymuses were mechanically dissociated into single cell suspensions in PBS. The absolute cell
number present in each thymus was determined by cell counting and labeling with fluoro-
chrome-conjugated antibodies was performed according to the manufacturer protocols. The fol-
lowing antibodies were used: PE-Cy7 Hamster Anti-Mouse CD3e (145-2C11), PE Rat Anti-
Mouse CD4 (RM4-5), APC Rat Anti-mouse CD8a (53–6.7), PE-Cy7 mouse Anti-Human CD3
(clone SK7), PE mouse Anti-human CD4 (RPA-T4) and APCmouse Anti-Human CD8
(RPA-T8). All antibodies and their related isotype controls were purchased from BD Biosciences.
Flow cytometry analysis was performed on a BD FACSCanto II Flow cytometer (BD Biosciences,
San Jose, California, USA) and analyzed using FlowJo software (Ashland, Oregon USA).

Mass spectrometry analysis of eicosanoids
Eicosanoids from 1ml FTOC supernatants and crushed mouse adult thymuses were analyzed
by combined liquid chromatography/tandem mass spectrometry, as already described [47].
The FTOC supernatants were collected daily and conserved at -80°C before analysis. Thymuses
from cPLA2αWT and KO adult mice were crushed in 1ml PBS 1X and conserved at -80°C be-
fore analysis. Culture media (in absence of FTOC) was used as negative control for our
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analyses. Deuterium standards purchased from Cayman Chemical were used to detect the set
of eicosanoids listed in the Table 1.

RT-QPCR
Total RNA was extracted from C57BL6/J mouse thymus using TRIzol reagent (Invitrogen). All
RNA samples were treated with DNase I to eliminate residual genomic DNA prior to

Table 1. Set of eicosanoids evaluated in FTOCs and adult mouse thymuses.

Eicosanoids Detection

FTOC Adult thymus

LTB4 products Detected Detected

LTC4 Not detected Not detected

LTD4 Not detected Not detected

LTE4 Not detected Not detected

5-HETE Not detected Detected

8-HETE Not detected Not detected

11-HETE Detected Detected

12-HETE Not detected Detected

Tetranor-12-HETE Not detected Not detected

15-HETE Not detected Detected

5-OxoETE Detected Detected

15-OxoETE Not Detected Detected

5,6-DiHETE Detected Detected

5,15-DiHETE Detected Detected

Resolvin D1 Detected Detected

Resolvin D2 Not detected Not detected

Resolvin E1 Not detected Not detected

5,6-LXA4 Detected Detected

5,14-LXB4 Detected Detected

PGD2 Not detected Detected

PGE2 Detected Detected

PGF2α Detected Detected

11β-PGF2α Not detected Not detected

2,3-Dinor-11β-PGF2α Not detected Not detected

6-Keto PGF1α Detected Detected

2,3-Dinor-6-Keto PGF1α Detected Detected

TXB2 Detected Detected

2,3-Dinor TXB2 Detected Detected

11-dehydro TXB2 Not detected Not detected

12-HHTrE Detected Detected

8,9-DHET Detected Detected

11,12-DHET Not detected Not detected

14,15-DHET Detected Detected

Eicosanoids* from FTOC supernatants and adult mouse thymuses were measured by combined liquid

chromatography/tandem mass spectrometry.

* Leukotriene (LT); Hydroxyeicosatetraenoic acid (HETE); Oxo-eicosatetraenoic acid (OxoETE);

Dihydroxy-eicosatetraenoic acid (DiHETE); Lipoxin (LX); Prostaglandin (PG); Thromboxane (TXB);

Hydroxy-heptadecatrienoic acid (HHTrE); Dihydroxy-eicosatrienoic acid (DHET).

doi:10.1371/journal.pone.0126204.t001
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amplification. cDNA was synthesized using MLV-RT (invitrogen), real time quantitative PCR
analysis was performed using a Rotorgene apparatus (Montreal Biotech, Canada) and levels of
cPLA2αmRNA were determined using SYBR Green dye (Invitrogen) and the following primer
pair: cPLA2 α forward (50-CAGCTCTCAGGATTCCTTCGA-30), cPLA2α reverse (50- TCATA
TATTCGTTC AAATTCATCTGGAT -30), ribo S15 foward (50-ATGTCCT ATGAGCAACT
GATGCA -30), ribo S15 reverse (50- GCCGAAGACCACGGTTCA-30). The relative expression of
the cPLA2α gene was determined using the 2-ΔCt methods. In brief the ΔCt is cPLA2α Ct—ribo
S15 Ct.

Statistical analyses
All data are presented as mean ± SEM. Statistical significance between 2 groups was deter-
mined using unpaired Student t tests. All the statistical analyses were performed using Prism
software 4.00 (GraphPad Software, CA, USA).

Results

Eicosanoid profiling during thymocyte maturation
To determine the eicosanoids produced by the thymus through different stages of thymocyte
maturation, we compared the lipid profile generated in FTOC supernatants (E15.5) after 1, 3
and 5 days of culture. The full-set of eicosanoids that was evaluated is presented in Table 1.
LTC4, LTD4, LTE4, 8-HETE, Tetranor-12-HETE, Resolvin D2, Resolvin E1, 11α-PGF2α,
2,3-Dinor-11β-PGF2α, 11-dehydro TXB2 and 11,12-DHET were undetectable in FTOC super-
natants and adult mouse thymuses. Furthermore, we found profound changes in the eicosa-
noid expression profile during the course of thymocyte maturation, with LTB4 and LXA4

representing the majority (>50%) of the eicosanoids expressed through the first 3 days of cul-
ture (Fig 1A and 1B, left and middle panel). At day 5 of culture, 14,15-DHET was the second
most abundant lipid mediator produced by FTOCs after LTB4, while LXA4 appeared essentially
absent (Fig 1A and 1B, right panel). Next, we wished to verify the expression of eicosanoids
present in the thymus of adult mice (6–8 weeks). In this case, we found that LTB4 remains
among the most abundant lipid mediator present in the thymus, followed by LXA4 and
5-HETE (Fig 1C).

The production of eicosanoids by FTOCs, adult thymus and the modulation of their pro-
duction during the course of thymocyte development, prompted our examination of the role of
cPLA2α. Using FTOCs and adult thymuses from cPLA2α deficient mice, we observed that the
majority of the most abundant eicosanoids could be produced independently of the expression
of cPLA2α (Fig 1B and 1C). The ablation of the gene coding for cPLA2α led to the absence of
5,15-DiHETE, 5,14-LXB4 and TXB2 at day 1, of 2,3-Dinor TXB2, 2,3-Dinor-6-Keto PGF1α and
5,15-DiHETE at day 3 and of 14,15-DHET and 5-OxoETE at day 5 of culture in FTOCs, sug-
gesting that cPLA2α is implicated in the generation of these lipids (Fig 1B). Furthermore,
14,15-DHET at day 1, 14,15-DHET and 11-HETE at day 3, 8,9-DHET, 5,6-LXA4 and
5,6-DiHETE at day 5 were only detected in cPLA2α KO FTOC supernatants (Fig 1B) while sig-
nificantly more Resolvin D1 was observed in absence of cPLA2α in mouse adult thymuses (Fig
1C), suggesting that cPLA2α expression can also negatively regulate the production of some ei-
cosanoids. Taken together, these results demonstrate that the production of eicosanoids is
modulated accordingly to the development stages of thymocytes, and that the majority of the
eicosanoids detected in mouse fetal and adult thymuses are produced independently of
cPLA2α. These observations also point to a contribution of cPLA2α in expression of a subset of
less abundant eicosanoids in the thymus.
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The disruption of the cPLA2α gene does not affect the maturation of
thymocytes in FTOC
Although cPLA2α appeared dispensable for the biosynthesis of most eicosanoids, subtle
changes in the lipid expression profile in the thymus were observed in absence of cPLA2α. Fur-
thermore, cPLA2αmight be implicated in the generation of eicosanoids in discrete cellular line-
ages in the thymus, which might not be possible to estimate when measuring the complete
pool of eicosanoids produced by the entire organ. We thus wished to verify whether the
cPLA2α is implicated in thymocyte maturation, and we firstly used a genetic approach in
FTOCs [33, 34]. The thymocytes present in the cultured thymus from cPLA2αWT and KO lit-
termate mice were examined cytofluorometrically, and no differences in their maturation were
observed. Indeed, the four subpopulations studied, the DN (CD3+/CD4-/CD8-), the DP

Fig 1. Eicosanoid profiles of cPLA2αWT and KO FTOC supernatants and adult mouse thymuses. A. Expression distribution of the eicosanoids
present in cPLA2αWT FTOCs. The supernatants of FTOCs were collected at the indicated time of culture and the eicosanoid profiles were determined by
combined liquid chromatography/tandemmass spectrometry. Data are mean of 3 different supernatants. B. Eicosanoid profiles of cPLA2αWT and KO FTOC
supernatants. The supernatants of FTOCs were collected at the indicated time of culture and eicosanoid profiles were determined by combined liquid
chromatography/tandemmass spectrometry. Data are mean ± SEM of 3 different supernatants. C. Eicosanoid profiles of cPLA2αWT and KO thymuses from
adult mice. Adult thymuses were mechanically disrupted and eicosanoid profiles were determined by combined liquid chromatography/tandemmass
spectrometry. ** P< .01, data are means ± SEM of 3 cPLA2αWT thymuses and 2 cPLA2α KO thymuses.

doi:10.1371/journal.pone.0126204.g001

Eicosanoids and cPLA2 in Thymus

PLOSONE | DOI:10.1371/journal.pone.0126204 May 13, 2015 7 / 19



(CD3+/CD4+/CD8+) and the SP (CD3+/CD4+/CD8- and CD3+/CD4-/CD8+) thymocytes
showed the same repartition in the cPLA2αWT and KO FTOCs (Fig 2A and 2B). In light of
these results, cPLA2α is dispensable for the maturation of thymocytes in mice.

Evaluation of the impact of the cPLA2α inhibitor pyrrophenone on
thymocyte maturation
We next used a pharmacological approach to confirm our observations made in genetically en-
gineered mice. The cPLA2α inhibitor pyrrophenone (PP) [48] suppresses AA release from an
activated monocytic cell line and PGE2 release by renal mesangial cells with an IC50 of 24nM

Fig 2. The disruption of the cPLA2α gene does not impact thymocyte maturation in FTOC. A.
Representative thymocyte subpopulation distribution in WT and KO cPLA2α FTOC. After 5 days of culture,
the identification of thymocytes with fluorochrome-conjugated antibodies directed against CD3, CD4 and
CD8 was determined by flow cytometry. B.WT and KO cPLA2α fetal thymuses were cultured during 5 days
as FTOCs. After mechanical dissociation of fetal thymuses, the thymocytes were labeled with fluorochrome-
conjugated antibodies directed against CD3, CD4, and CD8, and analyzed by flow cytometry. Data are
mean ± SEM of 6 independent experiments and the number of fetal thymuses for each genotype is: cPLA2

+/+

(n = 17); cPLA2
-/- (n = 9). NS (non significant).

doi:10.1371/journal.pone.0126204.g002
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and 8nM, respectively [48]. WT FTOCs were cultured during 5 days in absence or in presence
of 10 and 100 nm of PP and the repartitioned thymocyte subpopulations were analyzed by flow
cytometry. As for the genetic approach, cPLA2α appeared dispensable, as no differences were
observed in the maturation of thymocytes in presence of PP compared to those left untreated
(Fig 3A and 3B). Rocca et al. and Xu et al. observed that the culture to FTOCs in presence of
high concentrations (40μM) of the COX-2 inhibitor NS-398 led to the blockade of thymocyte
differentiation [21, 35]. This effect of NS-398 was considered unspecific, as it was recapitulated
in COX-2 deficient FTOCs and it was not reversed by the addition of PGE2 [35]. Using high
concentrations (1μM) of the cPLA2α inhibitor, we observed an increase and a decrease of DN
and DP thymocyte populations, respectively (Fig 4A and 4B). Furthermore, we observed an in-
crease of the two SP populations (Fig 4A and 4B). Thus, high dose of PP affects the maturation
of mouse thymocytes. We next wished to confirm the specificity of the inhibitor, here using
cPLA2α KO FTOCs. We observed that PP, used at 1 μM, impedes the maturation of

Fig 3. Pharmacological blockade of cPLA2α does not affect thymocytematuration in FTOC. A.
Representative thymocyte subpopulation distribution in WT cPLA2α FTOC after 5 days of culture in absence
or presence of indicated concentrations of PP. Thymocytes were identified with fluorochrome-conjugated
antibodies directed against CD3, CD4 and CD8 by flow cytometry.B.WT cPLA2α fetal thymuses were
cultured during 5 days as FTOCs in absence or presence of indicated concentrations of PP. After mechanical
dissociation of fetal thymuses, the thymocytes were labeled with fluorochrome-conjugated antibodies
directed against CD3, CD4, and CD8 and analyzed by flow cytometry. Data are mean ± SEM of 5
independent experiments and the number of fetal thymuses for each condition is: Diluent (n = 10); 10nM PP
(n = 8); 100nM PP (n = 12). NS (non significant).

doi:10.1371/journal.pone.0126204.g003
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thymocytes deficient in cPLA2α (Fig 5A and 5B). Furthermore, the exogenous addition of AA
and of PGE2, which was reported involved in thymocyte maturation [21], to PP-treated FTOCs
did not restore normal thymocyte maturation (Fig 6A and 6B). Taken together, these results
demonstrate that high doses of PP inhibit thymocyte maturation through the inhibition of an-
other target than cPLA2α, most likely irrelevant to AA and prostaglandin release.

cPLA2α gene disruption does not impact thymocyte maturation in the
adult mouse
Prior studies evaluated the role of prostaglandins in thymocyte maturation in the adult [21].
Having confirmed that cPLA2α is dispensable in thymocyte maturation at a fetal development

Fig 4. cPLA2α inhibition by high concentration of PP impacts thymocytematuration in FTOC. A.
Representative thymocyte subpopulation distribution in WT cPLA2α FTOC after 5 days of culture in absence
or presence of 1μM of PP. Thymocytes were identified cytofluorometrically using fluorochrome-conjugated
antibodies directed against CD3, CD4 and CD8.B.WT cPLA2α fetal thymuses were cultured during 5 days
as FTOCs in absence or presence of 1μM of PP. After mechanical dissociation of fetal thymuses, the
thymocytes were labeled with fluorochrome-conjugated antibodies directed against CD3, CD4, and CD8 and
analyzed by flow cytometry. Data are mean ± SEM of 9 independent experiments and the number of fetal
thymuses for each condition is: Diluent (n = 22); 1μMPP (n = 13). *** P< .001.

doi:10.1371/journal.pone.0126204.g004
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stage in mice, we thus verified whether cPLA2αmight be involved in thymocyte maturation in
adult mice. The different thymocyte subsets were determined in cPLA2αWT and cPLA2α KO
thymuses from adult (6–8 weeks) littermate mice. No differences in the proportions of the

Fig 5. High concentration of PP impacts thymocyte maturation independently of cPLA2α inhibition. A.
Representative distribution of the thymocyte subpopulations in WT and KO cPLA2α FTOCs after 5 days of
culture in absence or presence of 1μM of PP. Thymocytes were identified with fluorochrome-conjugated
antibodies directed against CD3, CD4 and CD8 and analyzed by flow cytometry.B.WT and KO cPLA2α fetal
thymuses were cultured during 5 days as FTOCs in absence or presence of 1μM of PP. After mechanical
dissociation of fetal thymuses, thymocytes were labeled with fluorochrome-conjugated antibodies directed
against CD3, CD4, and CD8 and analyzed by flow cytometry. Data are mean ± SEM of 4 to 9 independent
experiments and the number of fetal thymuses for each condition is: cPLA2

+/+ and Diluent (n = 22); cPLA2
+/+

and 1μMPP (n = 13); cPLA2
-/- and diluent (n = 9); cPLA2

-/- and 1μMPP (n = 6). * P< .05; ** P< .01; *** P<
.001.

doi:10.1371/journal.pone.0126204.g005
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Fig 6. The unspecific effect of PP on thymocyte maturation is not reversed by exogenous AA and
PGE2. A. Representative thymocyte subpopulation distribution in WT cPLA2α FTOC after 5 days of culture in
absence or presence of 1μM of PP and exogenous (1μM) AA and PGE2. Thymocytes were identified
cytofluorometrically using fluorochrome-conjugated antibodies directed against CD3, CD4 and CD8.B.WT
cPLA2α fetal thymuses were cultured during 5 days as FTOCs in absence or presence of 1μM of PP, and
exogenous (1μM) AA and PGE2. After mechanical dissociation of fetal thymuses, the thymocytes were
identified with fluorochrome-conjugated antibodies directed against CD3, CD4, and CD8 and analyzed by
flow cytometry. Data are mean ± SEM of 3 independent experiments and the number of fetal thymuses for
each condition is: Diluent (n = 5); 1μMPP (n = 6); 1μMPP and 1μMAA (n = 5); 1μMPP and 1μMPGE2

(n = 5). * P< .05; ** P< .01; *** P< .001.

doi:10.1371/journal.pone.0126204.g006
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thymocyte subpopulations were observed between WT and KO thymuses (Fig 7A and 7B).
Thus, the cPLA2α is dispensable for normal thymocyte maturation in adult mice.

Pharmacological inhibition of cPLA2α does not impact human thymocyte
maturation
Having demonstrated that the maturation of fetal and adult mouse thymocytes could proceed
independently of cPLA2α, we wished to confirm our observations using human thymocytes.
For this, we used thymuses from human newborns and young children suffering of cardiac
malformation and undergoing thymectomies.

Fig 7. cPLA2α gene disruption does not affect thymocyte maturation in adult mice. A. Representative
thymocyte subpopulation distribution in WT and KO cPLA2α adult mouse. Thymocytes were identified
cytofluorometrically with fluorochrome-conjugated antibodies directed against CD3, CD4 and CD8.B.WT
and KO cPLA2α adult mouse thymuses were dissociated mechanically and thymocytes were labeled with
fluorochrome-conjugated antibodies directed against CD3, CD4, and CD8. Data are mean ± SEM of 7
independent experiments and the number of thymuses for each genotype is: cPLA2

+/+ (n = 11); cPLA2
-/-

(n = 11). NS (non significant).

doi:10.1371/journal.pone.0126204.g007
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To determine the role of the cPLA2α in human thymocyte maturation, small sections of
human thymuses were cultured in absence or in presence of different concentrations of PP and
then the thymocyte subpopulations were determined cytofluorometrically. We observed no
differences in the percentage of different thymocyte subsets (DN, DP, SP CD4+ and SP CD8+)
when thymuses were treated with PP up to 1μM (Fig 8A and 8B). Thus, cPLA2α appears dis-
pensable for the maturation of human thymocytes.

Discussion
In this study, we reveal for the first time the elaborated set of eicosanoids produced by the thy-
mus through different stages of thymocyte development. LTB4 and LXA4 were the most abun-
dant eicosanoids found in thymus. LTB4 is a recognized pro-inflammatory mediator involved
in phagocyte chemotaxis, [49] while LXA4 displays anti-inflammatory activities and mediates
clearance of apoptotic cells [50, 51]. LTB4 and LXA4 might play roles in the thymus, such as
the recruitment of phagocytes and the stimulation of apoptotic cell clearance. The actual role
of these lipids in the thymus is worth investigating, especially when it is considered that 98% of
the thymocytes die by apoptosis in the thymus [52, 53]. Furthermore, we showed that the eicos-
anoid expression profile is modulated through the differen t thymocyte maturation stages,
pointing to tight regulation of enzymes implicated in eicosanoid generation in the thymus. Fu-
ture studies are thus necessary to verify the role of eicosanoids in thymus and the regulation
mechanisms behind their production.

Through its important role in eicosanoid production, cPLA2α plays major roles in several
physiological and pathophysiological processes, including immunity, reproduction, cancer and
inflammation [7, 37–45]. Prostaglandins and their receptors are expressed in the thymus, and
prior studies suggested that they are necessary for proper thymocyte maturation. Furthermore,
it was demonstrated that the thymus is the organ with the highest concentration of thrombox-
ane receptor, which is mostly expressed on DP thymocytes and appears implicated in the in-
duction of thymocyte apoptosis [22] [25]. Herein, we surmised that cPLA2αmight participate
in eicosanoid generation and thymocyte maturation. To our surprise, we observed that produc-
tion of most abundant eicosanoids and thymocyte maturation in the thymus occur indepen-
dently of cPLA2α.

While cPLA2α is expressed in thymocytes [46] and its mRNA expression is modulated
throughout development (S1 Fig), the exact role of cPLA2α in the thymus thus remains ob-
scure. We investigated the impact of cPLA2α on the major populations of thymocytes based on
surface expression of CD3, CD4 and CD8 receptors. However, cPLA2α and its products might
have more subtle roles, and might regulate the development of other T-cell subpopulations
such as T regs and γδ T-cells. Indeed, we showed that absence of cPLA2α has an impact on
some less abundant eicosanoids. Whether these eicosanoids, and thus the cPLA2α, are involved
in the function or development of scarce cellular populations is unknown. Furthermore,
cPLA2αmight be implicated in the production of eicosanoids that both positively and negative-
ly regulate maturation of thymocytes. Thus, the overall effects of cPLA2α deficiency on thymo-
cyte phenotype would be imperceptible. Finally, lysophosphatidic acid is involved in
lymphocyte transmigration from the high endothelial venules of lymph nodes [54]. Whether
cPLA2α and its products are also implicated in processes such as thymocyte entry or egress is
unknown. As cPLA2α and AA metabolites are expressed in the thymus, the delineation of their
exact role in the establishment of T-cell repertoire remains of great interest.

The prior demonstration of a role of prostaglandins in thymocyte maturation [21] was our
impetus for our investigation of cPLA2α in the thymus. However, the actual role of prostaglan-
dins in thymocyte maturation is currently debated. Indeed, two distinct studies reported
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Fig 8. cPLA2α inhibition does not impact human thymocyte maturation. A. Representative thymocyte
subpopulation distribution in human FTOC after 5 days of culture in absence or presence of indicated
concentrations of PP. Thymocytes were identified cytofluorometrically using fluorochrome-conjugated
antibodies directed against CD3, CD4 and CD8.B. Human FTOCs were cultured during 5 days in absence or
presence of indicated concentrations of PP. After mechanical dissociation of human FTOCs, the thymocytes
were labeled with fluorochrome-conjugated antibodies directed against CD3, CD4, and CD8 and analyzed by
flow cytometry. Data are mean ± SEM of 3 independent experiments and the number of thymuses for each
condition is: Diluent (n = 6); 10nM PP (n = 6); 100nM PP (n = 6); 1000nM PP (n = 6). NS (non significant).

doi:10.1371/journal.pone.0126204.g008
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divergent results. Whereas a first study suggested that COX-1 and COX-2-derived PGE2 partic-
ipate in thymocyte maturation [21], a second one described that mice lacking expression of
COX-1 and COX-2, EP-1 and EP-2 display normal thymocyte maturation [35]. What explains
the discrepancies between these two studies is unclear, but we speculate that specific housing
animal facility environment or background genetic drift might have contributed. Our results
cannot settle the debate. Indeed, cPLA2α is not the only PLA2 enzyme expressed in the thymus
[55–57] and other enzymes might participate to prostaglandin production in its absence.
Hence, PGE2 levels are not altered by the absence of cPLA2α in the thymus (Fig 1B and 1C).
Furthermore, sPLA2 X, which is highly efficiently at releasing AA from the cellular outer leaflet,
is also expressed in the thymus [55, 56, 58, 59]. As we also excluded sPLA2 X in thymocyte mat-
uration (S2A and S2B Fig), other PLA2 and or lipases expressed in thymus [56, 57] might thus
compensate the absence of the cPLA2α and sPLA2 X for the production of prostaglandins,

We further observed that high concentrations of the cPLA2α inhibitor PP impair thymocyte
maturation in mice, but not in humans. Similarly to the observations made by Xu et al. using
high concentrations of the COX-2 inhibitor NS-398, [35] we demonstrated that the effect of PP
at high concentrations (around 125 time higher than the IC50) is independent of its ability to
inhibit its specific target. It seems unplausible that the unspecific target(s) of NS-398 and PP
are the same. Indeed, the two compounds are structurally highly different and the unspecific ef-
fects observed on thymocytes are also distinct. Given that PP has no impact on human thymo-
cyte development, we suggest that its unspecific target expressed in mice has no human
ortholog, or that the human ortholog has a much lower affinity for the inhibitor. An unspecific
effect of PP has recently been reported in a distinct study [60]. The authors demonstrated that
the release of AA and lactate dehydrogenase from cPLA2α KO fibroblasts was efficiently inhib-
ited by PP through the prevention of mitochondrial calcium uptake. The inhibition of this pro-
cess in FTOCs could explain the reduction in thymocyte maturation but remains to
be established.

In sum, our study provides novel information concerning the broad repertoire of eicosa-
noids present in the thymus and on the role of cPLA2α in thymocyte development. As a pletho-
ra of molecules drive T-cell functions in lymphoid organs and in the periphery, our study adds
to the comprehension of mechanisms that are key in immunity.

Supporting Information
S1 Fig. cPLA2αmRNA expression is modulated according to the development stage. Rela-
tive expression of cPLA2αmRNA in mouse thymuses at E15.5, E18.5, 4–6 weeks, 6 months
(and older) of age was determined by RT-QPCR and 2-ΔCt methods. Data are mean ± SEM of 3
independent experiments.
(TIF)

S2 Fig. sPLA2 X gene disruption does not affect thymocyte maturation in FTOC. A. Repre-
sentative thymocyte subpopulation distribution in WT and KO sPLA2 X FTOC after 5 days of
culture. Thymocytes were identified by flow cytometry using fluorochrome-conjugated anti-
bodies directed against CD3, CD4 and CD8. B.WT and KO sPLA2 X fetal thymuses were cul-
tured during 5 days as FTOCs. After mechanical dissociation of fetal thymuses, thymocytes
were labeled with fluorochrome-conjugated antibodies directed against CD3, CD4, and CD8
and analyzed by flow cytometry. Data are mean ± SEM of 4 independent experiments and the
number of fetal thymuses for each genotype is: sPLA2 X

+/+ (n = 7); sPLA2 X
-/- (n = 13). NS

(non significant).
(TIF)
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