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Abstract

We address the problem of predicting the position of a miRNA duplex on a microRNA hair-
pin via the development and application of a novel SVM-based methodology. Our method
combines a unique problem representation and an unbiased optimization protocol to learn
from mirBase19.0 an accurate predictive model, termed MiRduplexSVM. This is the first
model that provides precise information about all four ends of the miRNA duplex. We show
that (a) our method outperforms four state-of-the-art tools, namely MaturePred, MiRPara,
MatureBayes, MiRdup as well as a Simple Geometric Locator when applied on the same
training datasets employed for each tool and evaluated on a common blind test set. (b) In all
comparisons, MiRduplexSVM shows superior performance, achieving up to a 60% increase
in prediction accuracy for mammalian hairpins and can generalize very well on plant hair-
pins, without any special optimization. (c) The tool has a number of important applications
such as the ability to accurately predict the miRNA or the miRNA*, given the opposite strand
of a duplex. Its performance on this task is superior to the 2nts overhang rule commonly
used in computational studies and similar to that of a comparative genomic approach,
without the need for prior knowledge or the complexity of performing multiple alignments.
Finally, it is able to evaluate novel, potential miRNAs found either computationally or experi-
mentally. In relation with recent confidence evaluation methods used in miRBase, MiRdu-
plexSVM was successful in identifying high confidence potential miRNAs.

Introduction

MicroRNAs are small (18-27 nucleotides long), single stranded RNA molecules found in
plants, animals, and some viruses. They are most known for controlling protein synthesis either
by translation repression or mRNA degradation but they also promote histone modification
and DNA methylation of promoter sites, which influence the expression of target genes

[1, 2]. Their function is accomplished by binding to the target mRNA through sequence
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complementarity rules, usually in the 3'untranlated region (UTR) [3]. MicroRNA genes are
typically transcribed by RNA polymerase II forming the primary miRNA, often denoted as pri-
miRNA. Pri-miRNAs are usually several kilobases long and contain local stem-loop structures
which are termed hairpins [4]. A typical hairpin consists of a stem of base pairs, a terminal
loop and two flanking ssSRNA segments. In animals the ssRNA segments are detached produc-
ing the pre-miRNA with a characteristic 3’ overhang of 2nts [4]. This takes place in the nucleus
by the Microproccessor complex whose core component is Drosha, an RNAase III type protein
[4]. The pre-miRNA is exported in the cytoplasm where is cleaved by an RNAase I1II type pro-
tein, Dicer, producing the miRNA duplex with a 3’ overhang of ~2 nts. This cleavage occurs at
~22 nucleotides from the overhang created by the Microprocessor [5]. Finally, one of the two
strands of the duplex is selected to exert the function of the miRNA (mature miRNA) and the
other one is degraded, (miRNA”*). There are several examples however where both strands of
the duplex correspond to a mature miRNA but only one becomes functional each time [3].

Given the importance of miRNAs in gene regulation, several high throughput experimental
approaches such as tiling arrays and deep sequencing are being used in combination with
computational methods for the identification of novel miRNA genes and mature miRNAs [6-
8]. These methods are particularly useful as they can provide a very sophisticated and accurate
expression map for possible miRNA genes in the genome. However, they are also limited by
their high cost as well as their tissue and condition specificity. Furthermore, identification of a
small RNA sequence in deep sequencing data is not sufficient to categorize this molecule as a
true, functional miRNA. As recently discussed by miRBase, additional processing is required in
order to increase the confidence of a newly discovered potential miRNA, by identifying for ex-
ample the respective hairpin(s) and the miRNA duplex, among other features [9]. Such a limi-
tation can be overcome by computational tools, which handle deep sequencing data and/or
assess miRNA duplexes or mature molecules, thus facilitating the rapid and precise detection
of novel miRNAs. Several such computational approaches have been developed to complement
experimental ones including [10-13], among others. However the results are amenable to im-
provement as performance accuracy with respect to the identification of the exact mature
miRNA molecule remains noticeably low and similar to a trivial classifier [14].

In this paper, we focus on the identification of the miRNA duplex given its hairpin se-
quence. We use this approach because (a) production of the duplex is an essential intermediate
stage in miRNA biogenesis and (b) given the duplex it is feasible to experimentally identify the
strand(s) producing the mature miRNA molecule. We present a methodology that uses an ap-
propriate representation of biological features combined with extensive optimization and train-
ing of SVM classifiers in order to generate predictive models of the miRNA:miRNA* duplex
position on a hairpin sequence. It should be noted that a preliminary version of this methodol-
ogy is described in [15]. Here we extensively optimize SVM’s hyper-parameters and we show
that our method outperforms four existing tools, namely MaturePred [11], MiRPara [13],
MatureBayes [12] and MiRDup [10] as well as a Simple Geometric Locator [14], a trivial meth-
od employing the position as the only predictor used for a baseline comparison. Several factors
contribute to the success of the methodology: the definition of the problem (predicting the
whole duplex vs. a single strand or end), the representation of the sequence with a fixed-length
vector using zero padding in the middle, the inclusion of the duplex flanking sequences, the
production of positive and negative training examples based on biological constraints and not
the simple 2nt overhang rule, the optimization of the SVM hyper-parameters while avoiding
overfitting, and the use of two cost hyper-parameters to address the problem of positive and
negative training examples’ imbalance. Moreover, we show that our methodology has a num-
ber of important applications besides duplex identification. For example it can be used to accu-
rately predict the miRNA* given a known miRNA molecule, to investigate Drosha processing
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by introducing mutations in the regions surrounding the duplex [16] and in the evaluation of
potential miRNAs found either computationally or via deep sequencing methodologies. The
tool is freely available for use as a web-service at http://139.91.171.154/duplexsvm/.

Methods

The key idea of the proposed methodology is to train and employ a full polynomial SVM
model to score each possible duplex position on a hairpin sequence and select the highest scor-
ing one as the final predicted location. The various steps of our methodology are presented in
the following paragraphs.

Candidate Duplex Production

As described in [15], the production of all possible duplexes on a hairpin structure is employed
to generate training examples for the SVM during the training phase but also to produce all du-
plexes to be scored at prediction time; the highest scoring one is the final prediction.

Briefly, the counting of nucleotide positions in a hairpin sequence starts at the 5’ end and
continues to the 3’ end. A hairpin is defined as a double-stranded molecule, termed the stem,
the two strands of which are connected on one side through a sequence of unmatched nucleo-
tides that form the terminal loop. The strand located before the terminal loop is termed the 5’
arm while the other strand is termed the 3’ arm of the hairpin. Due to their non-perfect com-
plementarity, several small loops and bulges can be found in the two arms.

The miRNA duplex consists of two substrings, the 5 strand and the 3’ strand, which origi-
nate from the 5" and the 3’ arm, respectively. We define a duplex by the positions of its four
ends, k55, k53, k35, k33, on the generating hairpin sequence. k55 corresponds to the 5" end of
the 5’ strand, k53 corresponds to the 3’ end of the 5 strand, k35 corresponds to the 5’ end of
the 3’ strand and k33 corresponds to the 3’end of the 3’ strand (see Fig 1A). In addition given
that the counting of nucleotide positions starts from the 5’ end and continues to the 3’ end,
k55 < k53 < k35 < k33 holds.

Not all possible substrings on the two strands define a possible duplex. Several constraints
that are obeyed by Nature (as far as we know) need to be satisfied: (1) Two strands that share
no matching bases do not form a possible miRNA:miRNA* duplex. (2) The length of each du-
plex strand should lie within a certain range, which can be deduced from known miRNAs. (3)
The duplex overhangs (see S1 Text for details) should also lie within specific ranges, which can
be calculated using the training examples. (4) k55 < k53 < k35 < k33 and (5) k55, k53 and k35,
k33 need to be before and after the tip of the loop (see S1 Text for tip
identification), respectively.

To assemble and detail the whole procedure together, on a given training set, we first predict
the secondary structure of each hairpin using the RNAfold program [17] with the default pa-
rameters (-p-d0-noLP-noPS), Vienna RNA Package, version 1.8.5. Subsequently, we calculate
the statistical distributions of the overhangs’ and matures’ lengths and remove the overhangs’
outlier values (values that are above or below three times the standard deviation from the mean
value). This is necessary to reduce the number of candidate duplexes, stemming from values
that are too extreme and uncommon. Finally, we produce all duplex sequences that correspond
to each combination of values k55, k53, k35, k33 that obey the constraints defined above. Con-
trary to earlier work [13], the k53 end can be positioned as far as the loop tip, allowing the iden-
tification of mature miRNAs that extent into the terminal loop.

This methodology results in the generation of ~10,000 candidate duplexes per hairpin, only
one of which is the true duplex. During training, true duplexes are labeled positive and the rest
form the negative examples. During testing, the true duplex is occasionally not produced due
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Fig 1. hsa-mir-17 example. A. Anatomy of the hsa-mir-17 hairpin, showing the duplex (grey)and its four ends (k55, k53, k33, k35). B. Vector representation
of the true miRNA duplex of the hsa-mir-17 with 10 nucleotides flanking region. B.1. Flanking region of 5’ strand 5’ end (top), and 3’ strand 3’ end (bottom), no
zero padding needed. B.2. Duplex sequence, 5’ strand (top), 3’ strand (bottom). Zero padding occurs in the middle to reach the maximum (27nts top, 26nts
bottom) length observed in the training set. B.3 Flanking region of 5’ strand 3’ end (top), and 3’ strand 5’ end. Zero padding is performed at the end as flanking
region extends beyond the loop tip. Adopted from [15] with modifications.

doi:10.1371/journal.pone.0126151.g001

to the restrictions on the possible ranges of the overhangs described above. In the experiments
reported here, loss of true duplexes due to this filtering never exceeded 4%.

Duplex Vector Representation

Extensive experimentation was first performed in order to find the minimum set of features
like sequence, structure or thermodynamics needed to obtain maximum accuracy (see Figures
F2 and F3 in S1 Text for a comparison of models using various features). Use of sequence infor-
mation alone was found to be sufficient. Thus, similarly to a preliminary version of the algo-
rithm [15], miRNA:miRNA* duplexes used as input to the SVM are represented by a fixed-
length numerical vector that contains only nucleotide sequence information. Briefly, nucleotide
bases A, T, G and U are represented by four binary variables as 1000, 0100, 0010 and 0001, re-
spectively. This specific encoding is known as distributed encoding in Machine Learning [18]
and was selected for theoretical reasons in an effort to facilitate detection of patterns by the
classifier (for details see the Feature Encoding section in S1 Text). Furthermore, since strand se-
quences are of variable size, the fixed-length numerical vector representation becomes prob-
lematic. In order to overcome this difficulty the maximum possible strand length was
identified and we padded with zeros at the end for the missing nucleotides. Zero padding was
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performed in the middle of a sequence, so that the first and the last variables always represent
the first and the last nucleotide, respectively. We used this approach because it was previously
shown that the end structure and sequence is the primary determinant of Dicer specificity and
efficiency [5]. In signal processing, zero padding is common and even though there may be
more efficient ways to treat missing information, it does not affect the estimation of model per-
formance or invalidates any results.

As the flanking regions around Drosha and Dicer cut sites are critical for the identification
of these sites [19], [12], we include the flanking regions at both ends of each duplex strand in
the representation of a candidate duplex. Again, zero padding is employed in the cases where
the flanking regions extend beyond the arm boundaries. Specifically we pad with zeros at the
beginning or at the end for the 5 end flanking region and for the 3’ end flanking region, respec-
tively. An example of the miRNA:miRNA* duplex representation for the hsa-mir-17 hairpin is
shown in Fig 1B.

Training and Testing Procedures

The training and testing procedures are depicted in Fig 2. Briefly, given a set of training hair-
pins, the process consists of the following steps: (a) all entries for which (i) the miRNA:
miRNA* duplex is not known or (ii) the RN Afold does not produce a hairpin (unfoldable) or
(iii) the produced structure is a hairpin with multiple branches (multi-branch), are filtered out.
(b) For each hairpin, all possible duplexes (~10,000 per hairpin) are generated and divided into
the single Positive (experimentally verified duplex) and Negative (the rest) examples. To reduce
training time, only 100 randomly selected negative duplexes per positive sample are used for
training. (c) Selected positive and negative duplexes are used to train an SVM classifier with a
full polynomial Kernel K(x;, xj) = (x; o xj +1 )%, where « represents the inner product of the vec-
tors and d is the degree of the polynomial. The distribution of the two classes is quite unbal-
anced (1:100) and special handing is required. The standard (1-norm soft-margin) SVM

Training Process Testing Process

Set of hairpins Set of hairpins

Select hairpins

with known duplexes Fold with RNAfold

& fold with RNAfold

} |

1.Remove multibranch/ unfoldable hairpins

2. Calculate statistical distributions of
matures’ length

3. Calculate statistical distributions of
overhangs’ lengthand remove outliers

| |

Produce candidate duplexes
(use 100 negative per 1 positive)

| |

Test MiRduplexSVM
Select highest scoring candidate

Remove multibranch/
unfoldablehairpins

Produce all candidate duplexesl

| Train MiRduplexsvM |

Fig 2. Flowcharts of the training and testing procedures.
doi:10.1371/journal.pone.0126151.g002
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objective function to minimize is ||w||> + ¢ 37 |€_i|, where & = max(0,1-y;(wx;+b)) is called the

Hinge loss of the x; input vector, thus giving equal cost weight ¢ to the loss of any training vec-
tor regardless of its class. We use instead a small modification typical for imbalanced classes

(also available in the implementation of LIBSVM that we’ve employed) and minimize ||w]|; +
o Y&+ ¢, >0 |E | where &, & are the losses corresponding to the positive and negative

examples respectively and ¢; and c, the penalty weights for the loss of each class respectively.
These are computed as ¢; = ¢*N/p and ¢, = ¢*N/n, where p and n are the number of positives
and negative examples respectively, and N = p+n the total sample size and c is the cost hyper-
parameter. To utilize these penalties in LIBSVM we set the parameters -wi weight to w; = ¢; for
the positive class and w, = ¢, for the negative class. The reasoning behind the penalty weights is
that they are proportional to the overall cost ¢, and inversely proportional to the prevalence of
each class. Thus, the Hinge loss for examples of the rare class (positives) is higher than the loss
for examples of the abundant class. The SVM software used is the MATLAB interface for
LIBSVM (version 3.11) [20].

Testing follows a similar procedure: entries for which the RN Afold output is not a hairpin
or consists of multiple stems are first filtered out. Then, per-hairpin, all candidate duplexes are
generated (note that the ranges of the overhang’s and mature’s length are always deduced
from the training set alone). The duplex with the maximum SVM score is selected as the algo-
rithm’s final prediction. A general description of training and testing processes can also be
found at [15].

Prediction error is assessed using two metrics (see S1 Text): (a) The ACSAE (All Corners
Sum Absolute Error) is the sum of absolute errors in number of nucleotides from true position
between the actual and the predicted duplex end, taken over all four ends of the duplex. (b)
The EAE (End Absolute Error) focuses on a specific end of the duplex; it is the absolute value
of the predicted minus the true position (in nucleotides) in a specific duplex end.

To measure prediction accuracy, we define as “correct” a prediction with error less or equal
to a number x. Then, the prediction accuracy for an error bound of at most x, denoted as Accu
(x), is the percentage of correct predictions in the test set. For example, if a model identifies
correctly the position of 50% of duplexes with ACSAE < 4, it has accuracy at 4nt of 50%: Accu
(4)=0.5.

Statistical significance of the results is assessed by assuming the null hypothesis that two
methods have the same accuracy for a given error bound and applying Fisher’s exact test.

Optimization of SVM Hyperparameters

The method has three hyper-parameters to optimize: the cost ¢, the degree of the kernel d of
the SVM, and the length of the flanking region / (number of nucleotides before and after the
duplex) of the vector representation. We note that proper selection of these hyper-parameters
was critical to achieving high performance. They were optimized once using 5-fold cross vali-
dation on a randomly-selected subset of version 17.0 of miRBase, consisting of 70% (658 in
number) human/mouse hairpins with known duplexes. The values tested were: d = 1, 2, 3, 1/c
=100, 10, 1,0.1,0.01,0.001 and I =0, 3, 6, 9, 10. . .15 nts. The performance during cross-valida-
tion was measured in terms of predicting the exact location of the duplex by calculating the
sum of the absolute error taken over all four ends of the duplex (ACSAE). The best performing
combination of parameters found was d = 3, I/c = 0.01 and / = 10nts. This combination of pa-
rameters was employed in all MiRduplexSVM models reported here. To ensure unbiased
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estimations of performance, the 658 hairpins used for hyper-parameter optimization were ex-
cluded from all test sets used in subsequent evaluations.

Results
Comparison with a Simple Geometric Locator

The performance of MiRduplexSVM was first compared to that of the Simple Geometric Loca-
tor (S.G.L.), the construction of which is detailed in [14]. Briefly, in the S.G.L., the location of
each of the four ends of known duplexes is found by calculating its distance from the tip of the
terminal loop. This is done for all hairpins in the training set and the average distances (round-
ed to the closest integer) are then used to generate the predictions of the S.G.L. for any new
hairpin in the test set. In the comparison reported here, both methods were trained on the data-
set used to optimize the hyper-parameters of MiRduplexSVM and tested on the remaining
30% of hairpins with known duplexes (290 hairpins) in version 17.0 of miRBase. Fig 3A shows
the prediction accuracy of each tool as a function of the ACSAE while Fig 3G (blue line) and
Fig 4 (blue lines) show the prediction accuracy of MiRduplexSVM against that of the S.G.L. es-
timated using the ACSAE (0-8nts, Fig 3G) or the EAE (0-5nts, Fig 4), respectively. In all cases
MiRduplexSVM greatly outperforms the S.G.L., especially for small error values. The observed
difference in performance is statistically significant for ACSAE of 0-15 nucleotides (see

Table T1 line 6, in S1 Text; p = 0.05), and for EAE of 0-3 nucleotides (see Table T2, lines 21-24
in S1 Text; p = 0.05), beyond which both methods behave similarly. Having shown that the dis-
tance from the tip loop, while a very simple approach, is not sufficient to identify miRNA du-
plexes, we next compare MiRduplexSVM with existing miRNA mature prediction tools.

Comparison with other State of the Art Tools

In the following paragraphs we compare MiRduplexSVM with four state-of-the-art mature
miRNA prediction tools, namely MatureBayes [12], MiRPara [13], MaturePred [11] and
MiRdup [10]. To ensure fairness, in each comparison MiRduplexSVM is trained with the origi-
nal training set of the compared tool and evaluated on a common hold-out test set. The proce-
dure for building the various test sets is depicted in Figure F4 in S1 Text and the details on how
training/testing was performed for each tool can be found in S1 Text. Performance accuracies
on (a) duplex identification, using the ACSAE, and (b) independent corner identification,
using the EAE were estimated only on hairpins that are predicted to contain a mature miRNA
by both of the compared tools. Comparisons shown in Figs 3 and 4 are performed by finding
the prediction accuracy of each tool for an ACSAE of 0-8nts and an EAE of 0-5nts and (a) plot-
ting these accuracies as a function of the ACSAE metric (Fig 3A-3F) or (b) plotting these accu-
racies against each other (Fig 3G and Fig 4). Specifically, on Fig 3G the prediction accuracy,
measured as the ACSAE (in %), of MiRduplexSVM (y axis) at error points 0-8nts is plotted
against the respective accuracy of each compared tool (x-axis). For example, the first point (tri-
angle) on each line represents the pair of accuracies (Accu;(0), Accupirduplexsvm(0))s the sec-
ond point (rhombus), the pair (Accu;(1), Accupsirduplexsvm(1)) and so on, where i is the
compared tool. The points that correspond to comparisons against a given tool i are connected
with a line. Thus, if a line is right on the diagonal, then the two methods achieve the same
accuracy for the same error tolerance. If it is above the diagonal, then MiRduplexSVM achieves
the same accuracy for smaller error levels than the method compared against. The same applies
to Fig 4, with the only difference that the accuracy is measured using the EAE instead of the
ACSAE. The results of each tool comparison are summarized below.

MatureBayes was the first tool specifically developed to address the problem of mature
miRNA identification. Comparison to MiRduplexSVM is shown in Fig 3B and 3G (pink line)
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@. PLOS ‘ ONE MiRNA Duplex Prediction

A 100 -
mm MiRduplexSVM
3 Hm SG.L.
< 80
>
)
©
S 60
9]
)
<
S 40
100 G 100 -
F mm MiRduplexSVM B 50 B mm MiRduplexSVM
S mm MiRdup s ~ | W=m MatureBayes
= 80 S 80
9 0 =
S 0123 45678 o
g 6o ACSAE(nts) = 0
< Q
S 40 G T 40
5 &% S
5 > K
2 2 g FHE
(=¥ —] ot
3 70 a
0 ® 0
012 3 456 7 8 860 012 3 456 7 8
ACSAE(nts) T 50 ACSAE(nts)
T 40
E 100 - (o} %6 C100 -
E MiRduplexSVM s mm MiRduplexSVM
= mmm MaturePred— & 96 = miRPara
< 80 Mammals % < 80
> - 10 >
s s 1. g
5 60 2 ok 5 60
g = 0 10 20 30 4 50 60 70 | 3B
< Program X prediction accuracy (%) <
c 40 D 5 40
o 100 9o
5 mm MiRduplexSVM ks
T 20 3 MaturePred—Plants S 20
g < 80 g
o a o
0 I 0 L
01 2 3 456 7 8 5 60 012 3 4586 7 8
ACSAE(nts) &Lj ACSAE(nts)
S 40
.°
T
g 20
[a
0
012 3 456 7 8
ACSAE(nts)

Fig 3. Prediction accuracy of MiRduplexSVM and six other methods on duplex identification. Panels A-F show the prediction accuracy (y-axis) of
MiRduplexSVM (in black) and a second compared tool (in colour) as a function of the All Corners Sum Absolute Error (ACSAE, x axis) for errors of 0-8nts.
The performance of the Simple Geometric Locator (S.G.L.), MatureBayes, miRPara, MaturePred-Plants, MaturePred-Mammals and MiRdup is shown in A—
blue bars, B—pink bars, C—cyan bars, D—green bars, E-red bars and F-purple bars, respectively. Panel G shows the prediction accuracy of MiRduplexSVM
(y axis) against the prediction accuracy of each compared tool (x axis). The colour code is the same as in A-F. Symbols (upward triangle, diamond, downward
triangle, circle, right pointed triangle, square, left pointed triangle, pentagram star and hexagram star) correspond to errors less than or equal to 0, 1, 2, 3, 4, 5,
6, 7, 8 nucleotides, respectively. All points above the diagonal in G are statistically significant at level 0.05.

doi:10.1371/journal.pone.0126151.g003

for duplex prediction and Fig 4 (pink lines) for independent corner prediction. As evident
from the figures, MiRduplexSVM significantly outperforms MatureBayes (pink lines are above
the diagonal) in both duplex (up to 12 nts, see Table T1, row 1 in S1 Text) and independent
corner (up to 4nts, see Table T2, rows 1-4 in S1 Text) prediction.
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MiRPara is an SVM-based tool for mature miRNA prediction [13]. Comparison to MiRdu-
plexSVM is shown in Fig 3C and 3G (cyan line) for duplex prediction and Fig 4 (cyan lines) for
independent corner prediction. It should be noted that MiRPara gave a prediction for only
3,774 out of the 5,000 hairpins used for testing. Prediction accuracy for both models was calcu-
lated on these 3,774 hairpins, which biases the comparison in favour of MiRPara. As evident
from the figures, MiRduplexSVM significantly outperforms MiRPara (cyan lines are above the
diagonal) in both duplex (up to 8nts, see Table T1, row 2 in S1 Text) and independent corner
(up to 2nts, see Table T2, rows 5-8 in S1 Text) prediction. Note, that the S.G.L. also has a good
performance for errors beyond 3-4nts (see Table T2 in S1 Text) indicating that even the sim-
plest method can find the true mature when the tolerance for errors is more than a couple of
nucleotides per corner.

MaturePred [11] calculates the region where the mature miRNA molecule is more likely to
be found in each strand of a hairpin, using an SVM based approach. It consists of two models,
one specialized in plants, hereby termed MaturePred_Plants and one specialized in mammals,
hereby named MaturePred_Mammals. We compare MiRduplexSVM with each model sepa-
rately. Comparison to MiRduplexSVM is shown in Fig 3D (Plants), 3E (Mammals) and 3G
(Plants: green line, Mammals: red line) for duplex prediction and Fig 4 (Plants: green lines,
Mammals: red lines) for independent corner prediction. As evident from Fig 3D, 3E and 3G
(lines above diagonal), MiRduplexSVM significantly outperforms MaturePred on duplex pre-
diction for both plant and mammalian hairpins (for all errors tested, see Table T1, rows 3 & 4
in S1 Text). For independent corner prediction, MiRduplexSVM outperforms MaturePred in a
statistically significant manner only for mammalian hairpins (red lines above diagonal), while
for plant hairpins both tools achieve similar performances (Fig 4, green lines on the diagonal
and Table T2, rows 9-16 in S1 Text).

MiRdup [10] is the latest tool that tackles the problem of mature miRNA identification. It
does so by finding the most likely miRNA location within a given pre-miRNA. Comparison to
MiRduplexSVM is shown in Fig 3F and 3G (purple line) for duplex prediction and Fig 4 (pur-
ple lines) for independent corner prediction. As evident from the figures, MiRduplexSVM sig-
nificantly outperforms MiRdup (purple lines are above the diagonal) in both duplex (up to
20nts, see Table T1, row 5 in S1 Text) and independent corner (up to 6nts, see Table T2, rows
17-20in S1 Text) prediction.

In sum, on the task of duplex prediction, MiRduplexSVM outperforms all other tools it has
been compared to for an error tolerance of at least 8nts and the increase in performance accu-
racy ranges from ~10% to 60% (Fig 3G and Table T1 in S1 Text). With respect to individual
end comparisons (Fig 4 and Table T2 in S1 Text), MiRduplexSVM is again found to outper-
form all methods, particularly for small EAEs (0-4nts). The only exception is MaturePred-
Plants which achieves a similar performance. The latter maybe due to the parameter optimiza-
tion of MiRduplexSVM which was done using mammalian hairpins and/or the small number
of plant hairpins used to train MiRduplexSVM (198) compared to MaturePred_Plants (1,323).

Final model

Having established the superiority of our algorithm compared to existing tools, we generated a
final model using all hairpins with known duplexes (5,248) available in miRBase 19.0. The
model was evaluated on 5,000 randomly selected hairpins from miRBase 19.0 having the same
species ratio as the remaining 15,500. Mature sequences in these 5,000 hairpins were equally
distributed in both strands. The accuracy of MiRduplexSVM was evaluated using the EAE for
each strand independently, since the ACSAE cannot be computed without knowledge of the
true duplex. It was found to reach 55%, 39%, 54% and 43% correct prediction at 0 nucleotides
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Table 1. End Absolute Error (EAE) in nts.

Prediction Accuracy(%)
k55
k53
k35
k33

<0 <1 <2 <3 <4 <5

55.46 64.66 71.33 75.62 79.44 82.25
39.4 59.04 70.88 76.14 80.24 82.97
54 64.85 71.38 76.42 80.1 82.87
43.35 61.53 70.18 75.58 80.1 82.87

Final MiRduplexSVM model predictions for EAE up to 5nts. The absolute error for each one of the four ends of the duplex is calculated independently.

doi:10.1371/journal.pone.0126151.t001

deviation for k55, k53, k35 and k33, respectively (see Table 1). This final model achieves higher
performance than the one seen in the comparisons with other tools, presumably because it is
trained with a much larger training set. The model is available for download at http://139.91.
171.154/duplexsvm/.

Practical applications

We next assessed the applicability of our method on two important problems: (a) the accurate
identification of the opposite strand of a known miRNA, (b) the identification of high confi-
dence potential miRNAs identified via deep sequencing or other methodologies.

Missing Duplexes Identification. We first tested our methodology on the problem of
identifying the mature molecule that lies on the opposite strand of a known miRNA. This is an
important problem as both of these molecules are frequently functional, albeit under different
conditions, and thus experimental techniques are unlikely to detect them both in a single ex-
periment. To the best of our knowledge, this is the first attempt to find opposite strand miR-
NAs using a machine learning approach.

Towards this goal, we set the known miRNA of each hairpin as the ground truth for that
strand and produce all candidate duplexes generated by sliding along the opposite strand. The
final prediction is the highest scoring candidate. MiRduplexSVM is compared to a simple clas-
sifier, termed “Overhangs Ruler”, which uses the statistical distributions of overhang lengths in
the training set to identify the most frequently occurring values for 3’ and 5’ strands. In the ma-
jority of the cases, these values are equal to 2nts, a number that is commonly used in computa-
tional studies to find the miRNA* [11], [12]. For a new test hairpin, the missing strand of the
duplex is estimated by assigning the overhang lengths to the known miRNA ends.

Both algorithms were trained on a dataset of 3,248 hairpins (containing a known duplex)
and evaluated on a set of 2,000 hairpins (with known duplexes) using the EAE metric. Predic-
tion accuracies were measured for each strand independently and the results are listed in
Table 2. MiRduplexSVM was found to outperform the Overhangs Ruler on identifying the
start position of the miRNA* (Table 2, rows 1 and 3), while both algorithms achieve the same
performance on predicting the end position (Table 2, rows 2 and 4). This finding is probably
due to the implementation of a more realistic rule for overhang estimation by MiRduplexSVM,
whereby the size of the overhang is allowed to vary within the experimentally reported range
(see Figure F1 in S1 Text for overhang distribution).

Our predictions were also contrasted to the results of a comparative genomics approach, a
method frequently employed to find conserved miRNAs[21, 22]. Opposite strand molecules
were identified by searching for orthologs in other species, utilizing the gene name of each
miRNA. Orthologs with known duplexes were used to predict opposite strand miRNAs as long
as (a) the known miRNAs were exactly the same across species and (b) the sequence of the op-
posite strand molecule was part of the hairpin under investigation. It is important to mention
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Table 2. End Absolute Error (EAE) in nts.

Prediction Accuracy of MiRduplexSVM / Overhangs Ruler <0 <1 <2
k65 70/56 *** 85/84 ns 91/92 ns
k53 53/53 ns 79/81 ns 90/91 ns
k35 67/53 ***  85/81 ***  91/91 ns
k33 58/56 ns 82/84 ns 89/92 ns

Missing duplexes prediction results for MiRduplexSVM and the Overhangs Ruler. MiRduplexSVM
outperforms Overhangs ruler in the identification of the start position of the mature miRNA that lie on the 5’
or the 3’ strand, but achieves the same accuracy on the prediction of their end positions. Statistical
significance was assessed using the Fisher exact test.

*¥** corresponds to p-value < 0.001

*¥ to p-value < 0.01

* to p-value < 0.05 and ns to non significant.

doi:10.1371/journal.pone.0126151.t002

that if more than one orthologs met these requirements, several predictions were produced per
hairpin. In this case, only the prediction with minimum EAE was used for comparison and
thus the results provide an upper bound of the performance using orthologs based on best-case
analysis. This process resulted in the identification of opposite strand miRNAs for 30 genes,
while we note that the MiRduplexSVM is capable of providing predictions every time. When
compared to the MiRduplexSVM predictions for the same hairpins using the EAE metric, both
methods gave the same predictions within a window of 2nts deviation (Table 3).

Finally, we used MiRduplexSVM to predict all missing duplexes of human and mouse hair-
pins (1,240 mature miRNAs, see S2 Text).

Identification of high confidence potential miRNAs. The issue of identifying high confi-
dence miRNAs in its large number of entries was recently raised by miRBase, the largest
miRNA database [9]. To address this important problem, miRBase defined a set of five criteria
that need to be met in order to characterize an entry as a high confidence potential miRNA.
One of these criteria refers to the duplex conformation and uses a more flexible version of the
2nts overhang rule. We tested the performance of our final model on the problem of identify-
ing high-confidence miRNAs from miRBase as reported in [9]. MiRNAs used in the training of
our model were excluded from this analysis. As shown in Fig 5, the MiRduplexSVM's scores as-
signed to high-confidence miRNAs (554 hairpins) are localized in the right part of the overall
MiRduplexSVM scores' statistical distribution, which was estimated by scoring miRNAs
(4,000) belonging in the same species as the high-confidence ones. Their localization was
highly statistically significant (ranksum test, p = 4.3558e-45). These results suggest that

Table 3. End Absolute Error (EAE) in nts.

Prediction Accuracy (%) of MiRduplexSVM with respect to the <0 <1 <2
comparative genomics results K55 81.82 95.45 100
K53 63.64 9545 100
k35 85.71 100 100
k33 100 100 100

MiRduplexSVM versus comparative genomics on missing duplexes prediction. The table shows the
prediction accuracy per corner of MiRduplexSVM when the results of a comparative genomics approach
are set as the ground truth. When considering an error tolerance of up to 2nts, MiRduplexSVM gives
exactly the same predictions as a strict comparative genomics algorithm.

doi:10.1371/journal.pone.0126151.t003
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Fig 5. Identification of high confidence miRNAs. As shown in the figure MiRduplexSVM assigned a higher
score to 554 high confidence miRNAs (blue bars, median = 0.53 and mean = 0.44) than to 554 randomly
selected miRNAS (red bars, median = -0.24 and mean = -0.14) with the observed differences being
statistically significant (ranksum: p = 8.3084e-47 and t-test: p = 3.9577e-50). The x axis shows
MiRduplexSVM’s scores and the y axis shows the percentage of hairpins assigned with the

respective scores.

doi:10.1371/journal.pone.0126151.g005

MiRduplexSVM can also be used to identify the most promising, newly discovered miRNA
candidates.

Discussion

In this paper we address the problem of predicting and evaluating the miRNA:miRNA* duplex
stemming from a miRNA hairpin as a first step in identifying the mature miRNA(s); the latter
is important both for experimentally verifying the miRNA and for computationally predicting
target mRNAs. We present the need for stringent assessment of deep sequencing data during
miRNA discovery, focusing on the duplex evaluation as a means of this implementation. We
employ biological knowledge and constraints in converting the problem to a classification one
and train a high-order polynomial SVM model to identify the true duplex among numerous
candidates.

Features of MiRduplexSVM that may underlie its high performance

We show that our methodology generates models that outperform a distance based Simple
Geometric Locator and four existing miRNA mature prediction tools, namely MatureBayes,
MiRPara, MaturePred and MiRdup. Enhancement in performance is very high (10-60%) and
seen on both duplex and miRNA or miRNA* prediction. It should be noted that in the compar-
isons reported here, MiRduplexSVM was trained on the training set of each compared tool to

PLOS ONE | DOI:10.1371/journal.pone.0126151 May 11,2015 13/18



@’PLOS ‘ ONE

MiRNA Duplex Prediction

ensure fairness (tools were not available for retraining). It is likely that this improvement
would be even higher if the comparison was made against our final model.

The reasons behind this increase in accuracy achieved by MiRduplexSVM are multiple:
first, our tool is trained to recognize miRNA:miRNA* duplexes, as opposed to strand-specific
miRNAs, which is the standard approach of existing tools [11, 12, 13]. Duplex formation is an
indispensable stage in the biogenesis of all miRNAs, regardless of which strand will end up pro-
ducing the functional molecule [4]. MiRduplexSVM takes into account this biological process
and while it does not learn to distinguish which of the two strands is the functional miRNA
(this information is often not available), our results show that learning duplexes is a very suc-
cessful strategy for identifying strand specific miRNAs. Second, our tool learns to identify both
the start and the end positions of the miRNA:miRNA* sequences, while most existing tools
predict only the starting nucleotide and use a fixed size length of 22nts to find the end position
[11, 12]. To achieve this MiRduplexSVM uses a variable length parameter for each miRNA
molecule. As a result, MiRduplexSVM does not only outperform other tools in predicting the
start position of strand-specific miRNA molecules, but it also succeeds in specifying their
length. Third, MiRduplexSVM does not assume a fixed size (2nt) overhang length like most ex-
isting approaches [10, 11, 12, 13]. In contrast, due to the duplex generation, the length of each
overhang is defined using a simple, yet important algorithm and explicitly learned by the train-
ing examples. This feature is likely to also contribute to the algorithm’s success. In addition to
the above, there may be other reasons for increased performance. For example, the Naive
Bayes Classifier employed in MatureBayes [12] makes the assumption that each feature (i.e.,
nucleotide at a given position) is probabilistically independent of each other feature given the
class (i.e., whether a sub-sequence forms a mature miRNA or not). This assumption may not
be satisfied in these data. In contrast, SVMs make a different set of assumptions which may be
more appropriate for this problem; namely, they assume the statistical distributions of the two
classes are separated well by a hyper-plane once they are mapped in kernel space. A priori
there is no theoretical way for determining which set of assumptions (and which classifier) is
better in a given problem. Fourth, the zero padding, flank regions, and the representation to a
fixed-vector size ensure that the start and end locations of all mature molecules are represented
in the same way, which may also be a performance factor. Fifth, the use of different cost hyper-
parameters in the objective function of the SVM to handle the imbalance of the positive and
negative classes is also critical for the specific problem. Our experience with training the mod-
els shows that optimization and tuning of the SVM hyper-parameters (cost and polynomial
kernel degree) is crucial for achieving good performance.

Finally, an important advantage of our model is its simplicity and cost effectiveness that re-
sults from the use of sequence information alone, as opposed to structure and thermodynamics
that are often used by other tools [11-13]. However, some structural information is implicitly
incorporated in the complete procedure that regards the following: (a) selection of the miRNA
hairpin sequence by removing multibranch hairpins and unfoldable hairpins during both
training and testing, (b) estimation of the ranges of overhangs and mature miRNA lengths, and
(c) computation of candidate miRNA duplexes so they observe the overhang and mature
miRNA constraints. Thermodynamic features and information is not explicitly employed by
any stages of the method. In fact, the incorporation of structural features in the model did not
improve performance, as shown in section “Set of features used” in the S1 Text. There are two
explanations why these features do not improve performance. The first explanation is that the
predictive information they carry is contained in the sequence features and the classification
methods we use are able to capture (learn) this information thus making the structural and
thermodynamic features superfluous for prediction. A second explanation is that the latter fea-
tures do carry additional predictive information, but the classifiers we employed cannot
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capture it. Thus, they seem superfluous. It is impossible to distinguish between the two scenari-
os in general, but given the success and accuracy of the models we used, as well as the diligence
in optimizing them and employing several flexible SVM kernels able to detect non-linear pat-
terns, there is enough evidence to claim that the structural and thermodynamic features are su-
perfluous given the sequence features.

MiRduplexSVM can facilitate the miRNA discovery process

MiRduplexSVM can be used to identify the miRNA:miRNA* duplex of a miRNA gene given
the hairpin sequence. The hairpin sequence does not need to be precisely defined; it may be
generated by one of the numerous computational tools that predict miRNA genes [23-27].
Such an approach is useful when searching for novel miRNAs that may be involved in a partic-
ular phenotype. For example, we recently developed and used a miRNA gene finding tool to lo-
cate potential new miRNAs residing in cancer associated genomic regions [24]. Similar efforts
have been reported in a number of other studies, where new miRNA genes were computation-
ally predicted [26, 28]. In order to verify that a predicted miRNA gene/hairpin produces a func-
tional miRNA however, a number of wet-lab experiments must be performed, requiring
significant amount of time, money and effort [29]. MiRduplexSVM can provide reliable predic-
tions about the most likely sequence of the miRNA molecule in these cases, thus guiding exper-
imental efforts and ultimately reducing working hours and costs.

Another case where MiRduplexSVM would be useful is the in-silico study of factors that de-
termine the cleavage sites of drosha and dicer, which define the miRNA:miRNA* duplex [16].
This could be done by performing in silico mutagenesis experiments, generating predictions
that can then guide the much more demanding wet—lab mutagenesis experiments [30, 31].

MiRduplexSVM complements deep sequencing methods

MiRduplexSVM can also be applied in the assessment of confidence for newly discovered po-
tential miRNA sequences which are produced in large amounts by experimental methods such
as deep sequencing. Many algorithms focus on the evaluation of the miRNA hairpins in order
to categorize deep sequencing miRNA candidates as true miRNAs [6]. While this is a valid ap-
proach, identification of a hairpin is not sufficient to determine whether a small RNA sequence
is indeed a miRNA. Given the cumulating increase in the number of newly discovered potential
miRNAg, this issue was also recently raised by miRBase [9]. It is has now become necessary to
apply new algorithms that can further process miRBase entries in order to provide confidence
scores for each entry. We believe that an integrated miRNA evaluation process should start by
applying programs like miRDeep, which utilize deep sequencing data to computationally pre-
dict the hairpin sequences that may have produced the respective RNA sequences. A second
step should include evaluation of the duplex(es) that can be produced by these hairpins in
order to provide additional evidence for the possibility of a given sequence to correspond to a
true miRNA. To our knowledge, one other algorithm has tried to address the issue of scoring
duplexes for miRNAs evaluation [10], albeit with a much lower performance than the one
achieved by MiRduplexSVM or even a trivial classifier[14]. These results suggest that use of
MiRduplexSVM for duplex evaluation would greatly facilitate miRNA discovery by taking ad-
vantage of the large amounts of experimental data currently available. A third step that would
further facilitate the discovery process could include automatic target identification for high
confidence miRNAs and search for anti-correlations in expression profiles of miRNAs and
their respective targets. Future work could address this challenging problem.
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Conclusions

In conclusion, we present a novel methodology for the computational identification of the ma-
ture molecule(s) within novel miRNA hairpins. Our methodology takes into account several
aspects of the biogenesis of miRNAs, whereby a duplex is formed before the mature molecule
is selected. Our tool is the first that predicts miRNA duplexes and is shown to achieve much
higher performance that four existing tools on both duplex and strand-specific miRNA predic-
tion for mammalian hairpins. Moreover, the tool performs equally well on plant hairpins, with-
out any particular customization. Importantly the tool has a number of applications including
the identification of opposite strand miRNAs and the evaluation of potential miRNAs detected
experimentally through scoring of their computationally identified duplexes. These findings
highlight the importance of our method, both as a step forward form the current state of the
art in miRNA duplex prediction but also as a useful tool for experimental biologists. The tool is
freely available online, via a friendly web interface and can be used either as a web service or a
stand-alone application.

Supporting Information

S1 Text. Supporting information. Detailed explanation of MiRduplexSVM’s methodology.
S1 Text includes a figure depicting the statistical distribution of the overhangs’ length

(Figure F1), a figure depicting the mean prediction accuracies when using different input fea-
tures (Figure F2), a figure depicting the mean prediction accuracy for the “Sequence” and “Se-
quence—Entropy” models (Figure F3) and a figure depicting the procedure for building the
test sets (Figure F4). S1 Text also includes tables depicting prediction accuracies of the various
compared tools for up to 20nts deviation from the truth (Table T1) and up to 8 nts deviation
from the truth (Table T2)

(DOCX)

S2 Text. List of predicted missing duplexes. MiRduplexSVM was used to predict all missing
duplexes of human and mouse hairpins (1,240 mature miRNAs).
(TXT)
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