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Abstract

Background

Human head and neck squamous cell carcinoma (HNSCC) is the sixth most malignant can-

cer worldwide. Despite significant advances in the delivery of treatment and surgical recon-

struction, there is no significant improvement of mortality rates for this disease in the past

decades. Radiotherapy is the core component of the clinical combinational therapies for

HNSCC. However, the tumor cells have a tendency to develop radiation resistance, which

is a major barrier to effective treatment. HIV protease inhibitors (HIV PIs) have been re-

ported with radiosensitizing activities in HNSCC cells, but the underlying cellular/molecular

mechanisms remain unclear. Our previous study has shown that HIV PIs induce cell apo-

ptosis via activation of endoplasmic reticulum (ER) stress. The aim of this study was to ex-

amine the role of ER stress in HIV PI-induced radiosensitivity in human HNSCC.

Methodology and Principal Findings

HNSCC cell lines, SQ20B and FaDu, and the most commonly used HIV PIs, lopinavir and ri-

tonavir (L/R), were used in this study. Clonogenic assay was used to assess the radiosensi-

tivity. Cell viability, apoptosis and cell cycle were analyzed using Cellometer Vision CBA.

The mRNA and protein levels of ER stress-related genes (eIF2α, CHOP, ATF-4, and XBP-

1), as well as cell cycle related protein, cyclin D1, were detected by real time RT-PCR and

Western blot analysis, respectively. The results demonstrated that L/R dose-dependently

sensitized HNSCC cells to irradiation and inhibited cell growth. L/R-induced activation of

ER stress was correlated to down-regulation of cyclin D1 expression and cell cycle arrest

under G0/G1 phase.
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Conclusion and Significance

HIV PIs sensitize HNSCC cells to radiotherapy by activation of ER stress and induction of

cell cycle arrest. Our results provided evidence that HIV PIs can be potentially used in com-

bination with radiation in the treatment of HNSCC.

Introduction
Human head and neck carcinoma includes a heterogeneous group of malignancies of the oral
cavity, oropharynx, hypopharynx, larynx, lips, paranasal sinuses and salivary glands [1]. More
than 90% of these cancers are squamous cell carcinomas (HNSCC). HNSCC represents the
sixth most common malignancy worldwide [2]. The major risk factors include tobacco and al-
cohol consumption, poor oral hygiene, and infection by human papillomavirus (HPV) [3–5].

The majority of HNSCCs are diagnosed in locally advanced stages. Surgery, radiotherapy
and chemotherapy are the current main strategies to treat HNSCC patients. Local recurrence
remains the dominant pattern of treatment failure. Recent advances in the understanding of
the molecular mechanisms of disease initiation and progression have led to the development of
more specific therapies, such as Cetuximab, a monoclonal antibody against the epidermal
growth factor receptor (EGFR). Cetuximab has been approved for combinational therapy with
radiation in patients with unresectable HNSCC [6]. Overexpression of EGFR was often associ-
ated with a poor prognosis in HNSCC [7]. Although enhanced efforts have been put into effect
and new therapies have been introduced during the last decade, the morbidity rate of HNSCC
has not been reduced significantly [8]. A major challenge of current available therapies (radia-
tion and chemotherapy) is the rapid development of resistance. Therefore, identification of cel-
lular/molecular mechanisms responsible for resistance and development of new therapeutic
strategies to overcome the resistance would improve the efficiency of current therapies.

Human immunodeficiency virus protease inhibitors (HIV PIs) are key components of high-
ly active anti-retroviral therapy (HAART) for HIV infection. Previous studies from our labora-
tory and other laboratories demonstrated that HIV PIs are able to trigger the unfolded protein
response (UPR) and endoplasmic reticulum (ER) stress [9, 10]. Three main branches of the
UPR have been identified so far, including IRE1, PERK and ATF6 [11, 12]. PERK pathway acti-
vation is considered tightly correlated with cell apoptosis and survival. PERK activation-
induced phosphorylation of eIF2α, a key mediator of protein translation, further disrupts
translation initiation complexes and subsequently leads to global suppression of protein ex-
pression. Phosphorylation of eIF2α further induces the expression of ATF4, which leads to ac-
tivation of CHOP, a proapoptotic factor [13–15]. Emerging evidence demonstrated that HIV
PI-induced ER stress activation is linked to cell apoptosis in different types of cells [16–20].
Several studies reported that HIV PIs induced apoptosis through activating the STAT3/ERK1/
2 pathway in human multiple myeloma cells and prostate cancer cells [21, 22]. HIV PIs are
also able to induce cell cycle arrest and cell death by triggering the ER stress response [23, 24].
Recent studies further suggest that HIV PIs could be potential anti-cancer drugs due to their
inhibitory effects on the PI3K-Akt signaling pathway, which is considered to be an important
survival mechanism in various cancer cells [25]. Several preclinical studies indicated that
down-regulation of Akt phosphorylation by HIV PI treatment or by the proteasome inhibitor,
Bortezomib, resulted in increased radiosensitivity of cancer cells [20, 26, 27]. Despite the fact
that HIV PIs have been identified as potential radio-sensitizers, the underlying mechanisms
are still unclear. The current study was aimed at examining whether the most commonly used
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HIV PIs (lopinavir and ritonavir, L/R) are able to increase the radiosensitivity in HNSCC and
further identify the underlying mechanisms for that increase.

Materials and Methods

Materials
HIV protease inhibitors, lopinavir (L) and ritonavir (R), were obtained from NIH AIDS Re-
search & Reference Reagent Program, Division of AIDS, NIAID, NIH. Thapsigargin (TG) and
dimethyl sulfoxide (DMSO) was purchased from Sigma-Aldrich (St. Louis, MO). Cell Count-
ing Kit-8 (CCK-8) was from Dojindo Molecular Technologies (Kumamoto, Japan). Antibodies
against p-ERK1/2, ERK1, ERK2, CHOP, ATP-4, XBP-1, Lamin B, p-eIF-2α, and eIF-2α were
from Santa Cruz Biotechnology (Santa Cruz, CA). Mouse monoclonal antibody against β-actin
and polyclonal antibodies against p-AKT, AKT, and cyclin D1 were from Thermo Scientific
(Wilmington, DE). IRDye secondary antibodies were purchased from LI-COR Biosciences
(Lincoln, NE). Bio-Rad protein assay reagent, Precision Plus Kaleidoscope Standards, iQTM
SYBR Green Supermix were obtained from Bio-Rad (Hercules, CA). QIAzol Lysis Reagent was
obtained from QIAGEN Sciences (Germantown, MD). High Capacity cDNA Reverse Tran-
scription Kit was from Life Technologies (Grand Island, NY). Cell culture medium and supple-
ment components were products from Invitrogen (Carlsbad, CA, USA)

Cell culture and treatment
Human HNSCC cells, FaDu hypopharyngeal cancer cell line (HTB-43) and SQ20B cell line,
were obtained from ATCC. FaDu cells were cultured in MEMmedium with 10% Fetal Bovine
Serum, penicillin G (100 U/ml), streptomycin (100 μg/ml) and 1% non-essential amino acids
(NEAA). SQ20B cells were cultured in RPMI 1640 medium with 10% Fetal Bovine Serum, pen-
icillin G (100 U/ml) and streptomycin (100 μg/ml). HIV PIs (L/R, 4/1 ratio) and TG were dis-
solved in DMSO. Drugs were directly added into the cell culture medium and incubated for
different periods as described previously [28–31].

Cell proliferation assay
SQ20B and FaDu cells were seeded into 96-well plates with complete medium and treated with
HIV PIs. The viable cell numbers were determined by Cell Counting Kit-8 (CCK8), from
Dojindo Molecular Technologies, Inc. (Rockville, MD). Victor3 Multilabel Plate Counter from
Perkin Elmer (Waltham, MA) was used to measure the absorbance at 450nm as described pre-
viously [32].

Clonogenic survival assay
SQ20B and FaDu cells were cultured in 24-well plates with or without HIV PI treatment for
24 h and followed by irradiation with different doses, 2Gy or 4Gy. After 24 h, cells were de-
tached and plated for colony-formation assays to assess clonogenic survival. Cells were cul-
tured for 12 days, fixed in 10% formaldehyde, and stained with 0.5% violet crystal. Colonies
containing 50 or more cells were counted to determine the surviving fractions of clonogenic
cells using an Olympus microscope as described previously [33].

Annexin V and Propidium Iodide (PI) staining
SQ20B and FaDu cells were cultured in 6 well plates. After 24h treatment, cells were harvested
and resuspended into a density of 106cells/ml. BD Pharmingen FITC Annexin V Apoptosis De-
tection Kit I (BD Science, San Diego, CA) was used to perform the staining, according to the
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protocol recommended by the manufacturer as described previously [30]. The stained cells
were then analyzed by Cellometer Vision CBA Analysis System (Nexcelom Bioscience, Law-
rence, MA).

Cell cycle assay
SQ20B and FaDu cells were treated with HIV PIs or TG or vehicle control for 24h. Cells were
fixed in ice-cold methanol for 15 min and stained with a Cellometer PI Cell Cycle Kit (Nexce-
lom Bioscience, Lawrence,MA) according to the protocol recommended by the manufacturer.
The Cellometer Vision CBA Analysis System was used to analyze the results.

RNA isolation and quantitative real-time RT-PCR
Cells were treated with HIV PIs or vehicle control for 24 h. Total Cellular RNA was isolated
using QIAzol Lysis Reagent and reverse transcribed into first-strand cDNA using a High-
Capacity cDNA Transcription Kit. The mRNA levels of ATF-4, XBP-1, CHOP, and GAPDH
were quantified with real-time RT-PCR as described previously [16, 17, 19, 28–30, 34, 35].

Western Blot analysis
The nuclear proteins and total proteins were isolated as previously described [16]. The protein
levels of target genes were detected using specific primary antibodies and IRDye secondary an-
tibodies on an Odyssey Fluorescence Imaging System (LI-COR Biosciences, USA) as described
previously [19, 35, 36]. The density of the immunoblots was analyzed using Odyssey
V3.0 software

Wound healing assays
SQ20B cells were plated into 12-well plates at a concentration of 5 x 105 cells per well for over-
night and allowed to form a confluent monolayer. After that the monolayer was scratched with
a sterile pipette tip, cells were washed gently with serum free medium to remove floating and
detached cells and photographed (time 0 h) using an Olympus 1x71 microscope using a 10 x
objective. Cells were treated with different amounts of L/R (0–25 μM) or vehicle control
(DMSO) or TG (100 nM). After 6h, the wounded area was photographed as described previous-
ly [32]. The images acquired for each treatment group were further analyzed using IPLab 4.0.

Statistical analysis
All of the experiments were repeated at least three times and the data were expressed as the
mean ± SD. One-way ANOVA was employed to analyze the differences between sets of data.
To confirm the differences that occurred between groups, post hoc tests were used for follow-
up tests. Statistics were performed using GraphPad Prism 5.0 (GraphPad, San Diego, CA) as
described previously [32, 36]. A value of P<0.05 was considered statistically significant.

Results

Effect of HIV PIs on radiosensitivity of HNSCC cells
To evaluate the effect of the most commonly used HIV PIs (L/R) on HNSCC proliferation,
SQ20B and FaDu cells were treated with different concentrations of L/R (0, 6.25, 12.5, 25 or
50 μM) for 48 h. As shown in Fig 1, L/R significantly inhibited cell growth at concentrations of
25 and 50 μM in both SQ20B and FaDu cells. To further determine whether HIV PIs were able
to sensitize HNSCC to radiation, SQ20B and FaDu cells were pretreated with L/R (12.5 or
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25 μM) for 24 h and then irradiated at 2 Gy or 4 Gy. As shown in Fig 2, L/R significantly in-
creased the radiosensitivity and reduced the number of survival colonies in both SQ20B and
FaDu cells.

Effect of HIV PIs on ER stress activation and cell apoptosis
Our previous studies have shown that HIV PIs induce ER stress and cell apoptosis in macro-
phages, hepatocytes, intestinal epithelial cells, and adipocytes [16, 18, 19, 34]. To examine
whether L/R also activates ER stress in HNSCC cells, we first examined the effect of L/R
on mRNA expression of the key genes involved in the UPR. As shown in Fig 3, L/R dose-
dependently increased CHOP, ATF-4, and XBP-1 mRNA levels in both SQ20B and FaDu cells.

Fig 1. The effects of HIV PIs on HNSCC cell growth.Human HNSCC cell lines SQ20B and FaDu were cultured in complete medium and treated with
different concentrations of HIV PIs (Lopinavir/Ritonavir, L/R, 0–50 μM) or Thapsigargin (TG, 50 nM) for 48h. At the end of treatment, cell viability was
assessed using the CCK-8 kit according to the instructions provided by the manufacturer. Relative numbers of viable cells were calculated. (A) SQ20B; (B)
FaDu. Values of each group are mean ± S.E. of six independent experiments. *** P<0.001, Statistical significance relative to control group.

doi:10.1371/journal.pone.0125928.g001

Fig 2. Effect of HIV PIs on radiosensitivity of HNSCC cells. Human HNSCC cells (SQ20B and FaDu) were cultured in complete medium and treated with
different concentrations of HIV PIs (L/R, 12.5μM or 25μM) for 24h. At the end of treatment, cells were exposed to 2Gy or 4Gy of radiation. After irradiation,
cells were detached and plated for colony-formation assays to assess clonogenic survival as described in “Methods”. Relative numbers of survival colonies
are presented. (A) SQ20B; (B) FaDu; Values are mean ± S.E. of three independent experiments. ** P<0.01, *P<0.05, Statistical significance relative to
control group.

doi:10.1371/journal.pone.0125928.g002
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Fig 3. Effect of HIV PIs onmRNA levels of the UPR genes in HNSCC. HNSCC cells, SQ20B and FaDu,
were cultured in complete medium and treated with different concentrations of L/R (0, 12.5, 25, and 50 μM) or
TG (50 nM) for 24h. At the end of treatment, total RNAs were isolated and reverse transcribed. The relative
mRNA levels of ATF-4, CHOP, spliced XBP-1 (XBP-1s) and unspliced XBP-1 (XBP-1u) were detected by
real-time RT-PCR and normalized using GAPDH as an internal control as described under “Methods”. Values
are mean ± S.E. of three independent experiments. Statistical significance relative to vehicle control,
*P<0.05; **P<0.01; ***P<0.001. (A) SQ20B cells; (B) FaDu cells.

doi:10.1371/journal.pone.0125928.g003
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TG was the positive control for ER stress induction. As shown in Fig 4, L/R-induced mRNA ex-
pression of the UPR genes was correlated to up-regulation of the corresponding protein level.
L/R had a more profound effect on ATF-4 expression. To further determine whether L/R-in-
duced UPR activation was able to promote cell apoptosis, Annexin V-PI staining was used to
detect apoptotic and necrotic cells after treatment with L/R (25 μM) or TG (50 nM) for 24 h.

Fig 4. Effect of HIV PIs on protein levels of the UPR genes in HNSCC.HNSCC cells, SQ20B and FaDu,
were cultured in complete medium and treated with different concentrations of L/R (0, 12.5, 25, and 50 μM) or
TG (50 nM) for 24h. At the end of treatment, nuclear proteins were isolated. The protein levels of CHOP, ATF-
4, XBP-1 and lamin B were determined byWestern blotting analysis. Lamin B was used as a loading
control. Representative images of immunoblots are shown. Values are mean ± S.E. of three independent
experiments. Statistical significance relative to vehicle control, *P<0.05; **P<0.01. (A) SQ20B cells;
(B) FaDu cells.

doi:10.1371/journal.pone.0125928.g004

ER Stress and Head and Neck Carcinoma

PLOSONE | DOI:10.1371/journal.pone.0125928 May 1, 2015 7 / 17



As shown in Fig 5, L/R alone did not induce significant apoptosis in SQ20B and FaDu cells.
However, pre-treatment with L/R markedly increased radiosensitivity of both HNSCC cell
lines. Compared to the control group, L/R reduced cell viability by 60% (data not shown).

Effect of HIV PIs on HNSCC cell migration
Cancer cells spread from the initial site of tumor growth by first invading the surrounding tis-
sue (migration). The ability of tumor cells to migrate is closely linked to tumor growth and in-
vasiveness. To determine the effect of HIV PIs on HNSCC cell migration, we did a wound
healing assay in SQ20B cells as described in Methods. As shown in Fig 6, L/R dose-dependently
inhibited cell migration. Similar results were obtained with TG, the ER stress inducer.

Effect of HIV PIs on cell cycle distribution
In order to identify the potential mechanisms underlying HIV PI-induced radiosensitivity of
HNSCC, we examined the effect of L/R on cell cycle distribution. After treatment with L/R
(25 μM) or TG (50 nM) for 24h, cells were analyzed using the Cellometer PI Cell Cycle Kit
from Nexcelom. As shown in Fig 7, L/R significantly increased SQ20B and FaDu cells at G0/G1
phase and cells at S/G2 phases were markedly decreased. These results indicated that L/R in-
creased radiosensitivity of SQ20B and FaDu cells through inducing G0/G1 phase arrest rather
than promoting apoptosis.

Overexpression of EGFR is detected in 90% of HNSCC. EGFR-mediated activation of PI3K/
Akt and mitogen-activated/extracellular signal-regulated kinase (MEK) contributes to activa-
tion of NF-ƙB and induction of inflammatory response. Activation of Akt also induces activa-
tion of the mammalian target of rapamycin (mTOR). Emerging evidence indicates that
phosphorylated Akt plays an important role in radio-resistance in cancer cells [37–39]. It also
has been reported that the HIV PI, nelfinavir, has an inhibitory effect on Akt activation and
mTOR [26, 27]. To determine whether L/R have any effect on Akt activation in HNSCC, we
measured the phosphorylation level of Akt in SQ20B and FaDu cells after treatment with L/R
for 24 h by western blot analysis. The results indicated that L/R had no significant effect on Akt
activation in HNSCC (Data not shown).

Effect of HIV PIs on the expression of cyclin D1
HNSCC exhibits increased expression of cyclin D1, a key moderator in cell cycle progression
from G1 phase to S phase. Overexpression of cyclin D1 correlates to poor prognosis of HNSCC
[40]. It has been shown that ER stress-mediated activation of the PERK/eIF2α/ATF-4 signaling
pathway down-regulated expression of cyclin D1 by suppressing global protein synthesis. To
further identify the mechanism underlying HIV PI-induced cell cycle arrest in HNSCC, we ex-
amined the effect of HIV PIs on PERK/eIF2α activation and cyclin D1 expression. As shown in
Fig 8A and 8B, L/R dose-dependently increased the protein levels of phosphorylated eIF2α
(p-eIF2α) in both SQ20B and FaDu cells. Furthermore, L/R-induced increase of p-eIF2α was
correlated to the decrease of cyclin D1 protein levels (Fig 8C), suggesting the contribution of
activation of ER stress to HIV PI-enhanced radiosensitivity of SQ20B and FaDu cells.

Discussion
HNSCC is still a devastating malignancy worldwide. The overall five-year survival rate is only
about 50% despite recent advances in therapy. Radiotherapy is the cornerstone of current ther-
apy for HNSCC. The major challenge to the management of HNSCC is the rapid development
of resistance to radiotherapy [41]. HIV PIs have been successfully used to inhibit HIV

ER Stress and Head and Neck Carcinoma

PLOSONE | DOI:10.1371/journal.pone.0125928 May 1, 2015 8 / 17



replication and have significantly reduced the morbidity and mortality of HIV patients in the
past two decades. Several studies have reported that HIV PIs, such as nelfinavir, can increase
the radiosensitivity of certain cancer cells including HNSCC [20–23, 27, 42–44]. However, the
toxicity of nelfinavir is relatively higher than other HIV PIs and the underlying mechanisms
still remain unknown.

Fig 5. Effect of HIV PIs on apoptosis in SQ20B and FaDu cells.Human HNSCC cells SQ20B and FaDu
were cultured in complete medium and treated with HIV PIs L/R (25μM) or TG (50 nM) for 24h. At the end of
treatment, cells were stained with Annexin V- PI and analyzed using the Cellometer Vision CBA system. FL1
represents Annexin V staining for apoptotic cells and FL2 represents PI staining for necrotic cells.
Representative images of flow cytometry analysis and percentages of apoptotic and necrotic cells from three
independent experiments are shown: (A) SQ20B; (B) FaDu. Statistical significance relative to vehicle control,
*P<0.05.

doi:10.1371/journal.pone.0125928.g005
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In the present study, we investigated the effects of the most commonly used HIV PIs, L/R,
on cell proliferation, migration, and radiosensitivity of HNSCC and further identified the po-
tential mechanisms. The results indicated that L/R significantly inhibited cell growth and mi-
gration, and markedly enhanced radiosensitivity. Previous studies from our groups and others’
suggested that HIV PIs induce ER stress and apoptosis in different types of cells [18–20, 45]. It
has been reported that ER stress sensitizes cancer cells to radiation [46, 47]. Although L/R did
not directly induce apoptosis in HNSCC cells, radiosensitivity was significantly enhanced after
pretreatment with L/R. Several studies have reported that nelfinavir sensitized HNSCC cells to
radiation mainly by inhibiting the PI3/Akt signaling pathway [27]. The Ras/PI3K/Akt signaling
pathway is considered to be an important radio-resistance pathway in cancer cells because of
modulation of cell cycle progression, especially at the G1/S transition, and DNA damage repair
after radiation exposure [24, 37–39, 48]. Cells under G1 phase prepare proteins and enzymes
for the following DNA synthesis in S phase. The formation of two critical complexes, Cyclin
D1/CDK4 and Cyclin E/CDK2, is the core mechanism of cell cycle progression from G1 to S
phase. Akt is an important regulator of the activation of cyclin D1 and inhibition of P27kip1, a
suppresser of the cyclin D1/CDK4 complex, and induces cell proliferation by promoting cells
to pass through the G1 checkpoint [49, 50]. In addition, Akt also increases cancer cell survival
after radiation by helping to repair radiation-induced DNA damage [51]. These findings sug-
gested that targeting Akt represents a promising new anti-cancer therapy. However, inhibition
of the Akt-signaling pathway alone is not enough to enhance radiosensitivity of HNSCC [27].
In contrast to nelfinavir, which required longer (3-day) treatment, L/R only required a shorter
(1-day) treatment to enhance radiosensitivity of HNSCC cells. Also, L/R had no effect on Akt
activation, suggesting that another Akt-independent pathway is involved in L/R-mediated
radio-sensitization.

ER stress-mediated activation of the UPR has been implicated in cell growth arrest and inhi-
bition of cell migration. In the current studies, we identified that L/R significantly activated the
IRE1α/XBP1 and PERK/eIF2α/ATF4 in SQ20B and FaDu cells. Although L/R significantly up-
regulated CHOP, a proapoptotic factor, there was no significant change in terms of cell

Fig 6. Effect of HIV PIs on cell migration. HNSCC SQ20B cells were plated on 12-well plates until
confluent. Cells were scratched to simulate a wound and images were recorded as “0h”. Cells were treated
with different amounts of HIV PIs (L/R, 0–25 μM) for 6 h. The images of wound areas were recoded as
described in Methods. Representative images are shown.

doi:10.1371/journal.pone.0125928.g006
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apoptosis. These results suggest that an L/R-mediated increase of radiosensitivity of HNSCC
cells is independent of suppression of Akt activation and induction of apoptosis.

Regulation of cell cycle checkpoints is important for cell growth. Our results indicated that
L/R significantly arrested SQ20B and Fadu cells at the G0/G1 phase. Previous studies have
shown that ER stress-mediated activation of PERK/eIF2α was correlated to the down-regulation
of cyclin D1 by global translation suppression [52, 53]. Overexpression of PERK also induced
significant reduction of CDK2 activity [53]. In addition, crosstalk between PERK-induced eIF2α

Fig 7. Effect of HIV PIs on cell cycle distribution of HNSCC cells.Human HNSCC cells (A) SQ20B and
(B) FaDu were cultured in complete medium and treated with L/R (25μM) or TG (50 nM) for 24h. At the end of
treatment, cells were stained with the Cellometer PI Cell Cycle kit and analyzed by the Cellometer Vision
CBA system. Cell population percentages of G0/G1, S and G2/M phases are shown. Values of each group are
mean ± S.E. of three independent experiments. *P<0.05, Statistical significance relative to control group.

doi:10.1371/journal.pone.0125928.g007
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Fig 8. Effect of HIV PIs on PERK/eIF2α activation and cyclin D1 expression in HNSCC cells.Human
HNSCC cells, SQ20B and FaDu, were cultured in complete medium and treated with different concentrations
of L/R (0, 12.5, 25, and 50 μM) or TG (50 nM) for 24h. At the end of treatment, total cellular proteins were
isolated. The protein levels of p-eIF2α, eIF2α, cyclin D1, and β-actin were determined byWestern blotting
analysis. β-actin was used as a loading control. Representative images of immunoblots are shown. Values
are mean ± S.E. of three independent experiments. Statistical significance relative to vehicle control,
*P<0.05; **P<0.01. (A) Protein levels of p-eIF2α and eIF2α; (B) Protein levels of cyclin D1.

doi:10.1371/journal.pone.0125928.g008
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Fig 9. Proposedmechanism of HIV PI-induced radiosensitivity in HNSCC cells.HIV PIs induce ER
stress and activate the UPR in HNSCC cell. Activation of PERK/eIF2α/ATF-4 will repress global protein
translation, reduce cyclin D1 protein level and induce cell cycle arrest. ATF-4 also induces the expression of
CHOP, which will inhibit cell growth. PERK, double-stranded RNA-activated protein kinase-like ER kinase;
CHOP is also called GADD153 (growth arrest and DNA damage-inducing gene).

doi:10.1371/journal.pone.0125928.g009
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phosphorylation and cyclin D1 protein degradation was reported recently [54]. Our studies also
showed that L/R-mediated activation of the PERK/eIF2α pathway was linked to G0/G1 cell cycle
arrest and down-regulation of cyclin D1 protein levels in SQ20B and FaDu cells. During the last
decade, several chemotherapeutic agents, which induce cell cycle arrest, such as flavopiridol and
paclitaxel, have been used to enhance radiosensitivity of cancer cells [55]. Our studies suggest
that the HIV PIs, L/R, can be used to treat HNSCC in combination with other chemotherapies
and radiotherapy.

Conclusions
In summary, our study demonstrated that administration of HIV PIs (L/R) significantly en-
hanced radiosensitivity of SQ20B and FaDu cells. As illustrated in Fig 9, L/R induced activation
of the ER stress response and subsequently activated PERK/eIF2α/ATF-4 and reduced cyclin
D1 protein levels. L/R induced cell cycle arrest mainly through the inhibition of global protein
translation and cell growth. Our studies suggest that activation of ER stress response represents
one of the key mechanisms underlying HIV PI-induced radiosensitivity. This study provides a
rationale for clinical investigation of the combination therapy using the FDA-approved HIV
PIs (L/R) with radiotherapy in patients with HNSCC.
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