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Abstract
Viroporins are a family of low-molecular-weight hydrophobic transmembrane proteins that

are encoded by various animal viruses. Viroporins form transmembrane pores in host cells

via oligomerization, thereby destroying cellular homeostasis and inducing cytopathy for

virus replication and virion release. Among the Picornaviridae family of viruses, the 2B pro-

tein encoded by enteroviruses is well understood, whereas the viroporin activity of the 2B

protein encoded by the foot-and-mouth disease virus (FMDV) has not yet been described.

An analysis of the FMDV 2B protein domains by computer-aided programs conducted in

this study revealed that this protein may contain two transmembrane regions. Further bio-

chemical, biophysical and functional studies revealed that the protein possesses a number

of features typical of a viroporin when it is overexpressed in bacterial and mammalian cells

as well as in FMDV-infected cells. The protein was found to be mainly localized in the endo-

plasmic reticulum (ER), with both the N- and C-terminal domains stretched into the cytosol.

It exhibited cytotoxicity in Escherichia coli, which attenuated 2B protein expression. The re-

lease of virions from cells infected with FMDV was inhibited by amantadine, a viroporin in-

hibitor. The 2B protein monomers interacted with each other to form both intracellular and

extracellular oligomers. The Ca2+ concentration in the cells increased, and the integrity of

the cytoplasmic membrane was disrupted in cells that expressed the 2B protein. Moreover,

the 2B protein induced intense autophagy in host cells. All of the results of this study demon-

strate that the FMDV 2B protein has properties that are also found in other viroporins and

may be involved in the infection mechanism of FMDV.

Introduction
Foot-and-mouth disease (FMD) is a highly contagious disease in animals and is on the Office
International Des Epizooties (OIE) list of notifiable animal diseases[1]. The causative agent
of FMD is the foot-and-mouth disease virus (FMDV), which is a non-enveloped virus with
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icosahedral symmetry. The FMDV belongs to the Aphthovirus genus of the Picornaviridae
family. It has a single-stranded, plus-sense RNA genome that consists of approximately 8,500
bases. The genome is divided into 3 regions, a 5’ non-coding region, a protein-coding region,
and a 3’ non-coding region [2]. The protein-coding region can be further divided into the P1,
P2, and P3 regions. The P1 region encodes four capsid proteins, and the P2 and P3 regions en-
code non-structural proteins, including the 2B protein. The research on FMDV non-structural
proteins has increased over the last few years, but additional efforts are needed to obtain more
information, especially on the 2B protein, which may act as a viroporin.

Viroporins are small, hydrophobic proteins encoded by a wide range of viruses [3]. In recent
years, a growing number of viral proteins have been added to the viroporin family and have
garnered significant interest because of their central role in the viral life cycle. Viroporins can
oligomerize in host cell membranes to form hydrophilic pores that disrupt the physiological
properties of host cells. Viroporins are typically composed of 60–120 amino acids and contain
one or two highly hydrophobic domains that can form an amphipathic α-helix after insertion
into the phospholipid bilayer. In addition to their common architecture, viroporins share com-
mon functions, such as modifying membrane permeability, disturbing the Ca2+ balance in host
cells, and inducing autophagy and apoptosis after expression in cells [3–7].

The influenza A virus (IAV) M2 protein was the first protein to be studied as an ion channel
[8, 9]. Subsequently, many viral proteins, including HIV-1 viral protein U (Vpu), the hepatitis
C virus (HCV) p7protein, the classical swine fever virus (CSFV) p7protein, and the togavirus
6K protein, have been identified as members of the viroporin family [5]. Regarding the Picor-
navirus family of viruses, only the 2B proteins of poliovirus and coxsackie virus have been ex-
tensively studied. The 2B proteins of poliovirus and coxsackie virus contain two hydrophobic
regions, and they can insert themselves into the membrane of the endoplasmic reticulum (ER)
or the Golgi apparatus to modify cellular membrane permeability once they are expressed in
host cells [10–12]. Additionally, these 2B proteins can disrupt the Ca2+ balance in host cells, in-
ducing apoptosis [13, 14]. However, few reports are available on the 2B protein of FMDV,
which belongs to the Picornavirus family.

To obtain more information on the FMDV 2B protein, we analyzed the sequence of this
protein and predicted its structure. The results of this analysis indicated that the 2B protein of
FMDV contains two hydrophobic regions and inserts itself into the membrane of the ER with
its N- and C-termini oriented towards the cytosol. During expression in host cells, the 2B pro-
tein increases the membrane permeability of bacterial and mammalian cells and can increase
the Ca2+ content in host cells, thereby inducing autophagy. Altogether, these results demon-
strate that the FMDV 2B protein has the same properties as other viroporins, suggesting that
the 2B proteins of picornaviruses may play the same role in virus infection.

Materials and Methods

Mammalian cells and Escherichia coli
Baby hamster kidney 21 (BHK-21) cells and H1299 cells were purchased from China Center
for Type Culture Collection (CCTCC, Wuhan, China). H1299-LC3 cells demonstrating stable
expression of LC3 were established according to previously report [15]. Briefly, the H1299 cells
were transfected with the pEGFP-LC3 plasmid, and the stable transfectants were selected by
G418. The GFP-LC3 protein expression was analyzed by Western blot. The fluorescent signals
were detected by inverted fluorescence microscope. All of the cell lines were maintained in Dul-
becco’s modified Eagle’s medium (DMEM, Gibco, California, USA) supplemented with 10%
fetal calf serum (FBS, Gibco, California, USA) and1% penicillin-streptomycin (Invitrogen,
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California, USA). The Escherichia coli C43(DE3)pLysS and BL21(DE3)pLysS strains were
stored at -80°C.

Construction of plasmids
The FMDV 2B gene was amplified by polymerase chain reaction (PCR) from a vector that con-
tained the full-length genome of the FMDV serotype Asia1 using specific primers. For topology
analysis, different recombinant plasmids with various tags fused to the 2B gene at the N- or
C-terminus were constructed using previously described methods[16]. The plasmids included
pSUMO-2B, pEGFPN1-2B, pCS2-2B, pXJ-FLAG-2B with a FLAG epitope tag (DYKDDDDKS)
connected to the N-terminal domain, pXJ-2B-HA with an HA epitope tag (YPYDVPDYA) con-
nected to the C-terminal domain, and pXJ-2BΔ(amino acids 110–111) with a FLAG epitope tag
inserted between the 110th and 111th amino acid of the 2B protein. All of the plasmids were
verified using standard sequencing techniques.

The cDNA of human microtubule-associated proteins 1A/1B light chain 3B (LC3, NCBI
RefSeq NM_022818.4) was amplified from cDNA of H1299 cells using the primers 5’-
CCGGAATTCCATGCCGTCGGAGAAGAC-3’ and 5’-CGGGGTACCAACAATTCTAGAA
GAGCTGCA-3’. The PCR product was digested with EcoRI and KpnI and inserted into the
vector pEGFP-C1 (Clontech). The resulting plasmid was named pEGFP-LC3.

Transmembrane domain prediction for the 2B protein
The 2B protein of the FMDV was analyzed using the TMpred (http://www.ch.embnet.org/
software/TMPRED_form.html), DAS-TMfilter (http://mendel.imp.univie.ac.at/sat/DAS/), and
PredictProtein (https://www.predictprotein.org/) programs.

Subcellular localization of the 2B protein in BHK-21 cells
The plasmid pEGFPN1 and the recombinant plasmid pEGFPN1-2B were transfected into
BHK-21 cells using Lipofectamine 2000 (Invitrogen, California, USA). At 12 hours post-
transfection, both dishes of cells were washed with phosphate-buffered saline (PBS) 3 times.
The ER organelle was stained with ER-Tracker Red (Beyotime, Jiangsu, China) according to
the manufacturer’s instructions. The nucleus was stained with 4',6-diamidino-2-phenylindole
(DAPI, Beyotime, Jiangsu, China,0.5 μg/mL). The cells were observed under a laser-scanning
confocal microscope (LSCM, Leica SP8, Solms, Germany) at the wavelengths 340nm, 488nm,
and 561nm.

Membrane topology of the 2B protein in BHK-21 cells
The plasmids pXJ-FLAG-2B, pXJ-2B-HA, and pXJ-2BΔ(amino acids 110–111) were trans-
fected into BHK-21 cells usingLipofectamine2000 (Invitrogen, California, USA). At 12 hours
post-transfection, all of the cells were fixed with 4% paraformaldehyde at room temperature
for 15 minutes and washed with PBS 3 times. Subsequently, the two groups of transfected
BHK-21 cells were treated with Triton X-100 (0.01% [vol/vol]) or digitonin (0.01 mg/mL) at
room temperature for 10 minutes. All of the cells were incubated with corresponding primary
and secondary antibodies for 1 hour at 37°C. After washing, all of the cells were dyed with
DAPI (0.5 μg/mL) and washed again with PBS 3 times. All of the samples were observed under
a LSCM at the wavelengths 340nm and 488nm.
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Cytotoxicity of the 2B protein in Escherichia coli
The recombinant plasmids pSUMO and/or pSUMO-2B were transformed into the Escherichia
coli BL21(DE3)pLysS and C43(DE3)pLysS strains, respectively. Positive bacterial clones were
cultured overnight in TB medium with 10 μg/mL kanamycin at 37°C. Subsequently, the bacte-
ria were diluted 100-fold in TB medium that contained similar antibiotics. When the OD600 of
the cultures reached 0.6–0.7, 1 mM isopropyl-β-d-thiogalactoside (IPTG) was added. The bac-
terial solution was collected at different time. The OD600 of the samples was measured, and a
Western blot analysis was performed to assess the expression level of the 2B protein.

Effect of amantadine on the release of FMDV
BHK-21 cells were grown to a density of 80% confluence, infected with FMDV (multiplicity of
infection [MOI] = 0.1) for 1 hour, and then washed twice with PBS. Next, the cells were incu-
bated in growth medium with the indicated concentrations of amantadine for 4 hours. The su-
pernatant was collected, and the amount of viral progeny released into the supernatant was
determined based on the TCID50.

Oligomerization of the 2B protein
The 2B protein was expressed and purified after transformation of the pSUMO-2B plasmid
into the Escherichia coli C43(DE3)pLysS strain. A 20 μL aliquot of the solution that contained
the purified 2B protein was added to a glutaraldehyde solution at different concentrations to
obtain the final concentrations 0 mM, 0.1 mM, 0.5 mM, 1 mM, 1.5 mM, 2 mM, and 3 mM.
The solution was rotated on a rotator device at 4°C for 2 hours and evaluated by Western blot
analysis with a specific antibody.

The recombinant plasmids pXJ-FLAG-2B and pXJ-2B-HA were transfected into BHK-21
cells simultaneously or alone. At 12 hours post-transfection, the cells were collected for co-
immunoprecipitation according to the instructions of the Pierce HA-Tag IP/Co-IP Kit
(Thermo, Massachusetts, USA). The co-IPed proteins were detected via western blot with the
corresponding antibodies

Changes in cellular Ca2+ concentrations
The pXJ-2B-HA plasmid was transfected into BHK-21 cells, and untreated cells were used as a
negative control. At 12 hours post-transfection, the cells were stained with propidium iodide
(PI) and Fluo-3 AM following the protocol provided by the manufacturer. The samples were
analyzed using flow cytometry at the wavelengths 561 nm and 535 nm.

Autophagy induced in host cells expressing the 2B protein
BHK-21 cells were cultured and subjected to different treatments. Cells that were not treated or
were transfected with the pXJ vector were used as a negative control, and cells treated with
rapamycin (200 nM) were used as a positive control. The cells were collected in cell lysis buffer
that contained a proteinase inhibitor at 12 hours post-transfection. Western blot analysis was
performed with specific antibodies to detect the LC3-Iand LC3-II expression levels.

For the indirect immunofluorescence assay (IFA), cells that were not treated or were trans-
fected with pCS2 were used as a negative control, and cells treated with rapamycin (200 nM)
were used as a positive control. The cells in the experimental group were transfected with the
pCS2-2B plasmid. At 12 hours post-transfection, the cells in each group were fixed with 4%
paraformaldehyde and incubated with specific antibodies. Fluorescence was detected using a
LSCM at the wavelengths 340 nm, 488 nm, and 561 nm.

Viroporin Activity of FMDV 2B Protein

PLOS ONE | DOI:10.1371/journal.pone.0125828 May 6, 2015 4 / 18



The H1299 cell line, which stably expresses GFP-LC3, was transfected with the pCS2-2B
plasmid. Cells that were not treated or were transfected with pCS2 were used as a negative con-
trol, and cells treated with rapamycin (200 nM) were used as a positive control. At 12 hours
post-transfection, the cells in each group were fixed with 4% paraformaldehyde, and the fluo-
rescence was detected using a LSCM at the wavelengths 340 nm, 488 nm, and 561 nm.

Statistical analysis
Differences between the blank control group and the target protein expression group were ana-
lyzed using the SPSS Statistics 19.0 software. A one-way ANOVA followed by a Least Signifi-
cance Difference (LSD) test was applied to compare the expression of the 2B protein in
Escherichia coli BL21(DE3)pLysS and C43(DE3)pLysS and to compare the numbers of
GFP-LC3 puncta in cells expressing 2B protein and controls. At test was used to analyze the
significance of the effect of amantadine on cells infected with FMDV and the effect of 2B pro-
tein expression on the cellular Ca2+ concentration. The level of significance for all statistical
tests was set at 0.05 (p< 0.05).

Results

Transmembrane domain of the FMDV 2B protein
Computer-assisted topology predictions are useful for experimental studies on transmembrane
proteins. A bioinformatic prediction of the FMDV 2B protein was conducted using three popu-
lar prediction methods, which provide online predictions of the characteristics of the protein of
interest based on the submitted amino acid sequence. This analysis revealed that the FMDV 2B
gene contains 462 bases that encode 154 amino acids. Sequence analyses of the 2Bprotein pre-
dicted that there are two putative transmembrane domains in the peptide, from aa83-104 and
from aa119-137, which are connected by a short basic segment (Fig 1).

Subcellular localization of the FMDV 2B protein in BHK-21 cells
Several studies have indicated that most viroporins are located intracellularly[3]. Further stud-
ies have revealed that the 2B proteins of poliovirus and coxsackie virus are located in the ER or
the Golgi apparatus. Additionally, Moffat et al. studied the effects of FMDV 2BC and 3A on
the early secretion pathway in infected cells and found that they block the delivery of proteins
to the cell surface by interacting with the ER [17]. They also proposed that 2B is associated
with the ER in Vero cells. To determine the subcellular localization of the FMDV 2B protein in
BHK-21 cells, the recombinant plasmid pEGFPN1-2B, which expresses the GFP-2B fusion
protein, was constructed, and the eukaryotic expression vector pEGFPN1 was used as a nega-
tive control. ER-Tracker Red, a red fluorescent probe, was used to stain the ER with a specific
fluorescence in viable cells. As shown in Fig 2A, the green and red fluorescence did not co-
localize in the cells that expressed GFP. However, in the cells that expressed GFP-2B, the green
fluorescent GFP protein co-localized with the red fluorescence of the ER, as shown in Fig 2B.
This finding suggests that the FMDV 2B protein was mainly located in the ER of cells that over-
expressed the protein. Our results are consistent with the findings reported by Moffat et al.

Membrane topology of the FMDV 2B protein in BHK-21cells
Based on previous studies [16, 18] and the prediction of the transmembrane domain in this
study, plasmids were constructed to confirm the topology of the FMDV 2B protein. These plas-
mids included pXJ-FLAG-2B, which expresses the 2B protein with a FLAG tag fused to the N-
terminus; pXJ-2B-HA, which expresses the 2B protein with an HA tag fused to the C-terminus;
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Fig 1. A schematic representation of the FMDV proteins and amultiple alignment of the 2B protein
among FMDV serotypes.One isolate of each serotype of the 2B protein sequences was listed in the
alignment. The sequences labeled in red represent the two transmembrane domains predicted by the
online software.

doi:10.1371/journal.pone.0125828.g001

Fig 2. The subcellular localization of the FMDV 2B protein in BHK-21 cells. BHK-21 cells were transfected with pEGFPN1 (A) and pEGFPN1-2B (B) and
evaluated using a LSCM. The blue fluorescence represents the nucleus, the green fluorescence represents the GFP protein or GFP-2B protein, and the red
fluorescence represents the ER.

doi:10.1371/journal.pone.0125828.g002
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and pXJ-2BΔ(aa 110–111), in which a FLAG tag was inserted between aa 110–111. After cells
were transfected with these plasmids and subjected to different permeabilization treatments,
the tags were detected via IFA using specific antibodies. As shown in Fig 3, no green fluores-
cence was observed in the untreated cells transfected with the different plasmids, suggesting
that these specific antibodies could not pass through the intact plasma membrane into the cells
(Fig 3A). After Triton X-100 treatment [19–21], green fluorescence was observed in the cells
transfected with pXJ-FLAG-2B, pXJ-2B-HA, or pXJ-2BΔ(aa 110–111), suggesting that Triton
X-100 completely permeated the plasma membrane and that the antibodies specifically de-
tected the overexpressed 2B proteins with the corresponding tags (Fig 3B). However, after digi-
tonin treatment [16, 22], green fluorescence was still observed in the cells transfected with
pXJ-FLAG-2B or pXJ-2B-HA, but not in the cells transfected with pXJ-2BΔ(aa110-111) (Fig
3C). This finding suggests that the antibodies could not penetrate the ER membrane after treat-
ment with 0.01 mg/mL digitonin to detect the FLAG tag between the two transmembrane do-
mains. Furthermore, this finding also revealed that the FLAG tag inserted between the two
transmembrane domains was located inside the ER membrane with a lumen orientation. These
results confirmed that the FMDV 2B protein contains two transmembrane domains, with a cy-
tosolic orientation of the N- and C-termini, as shown in Fig 3D. Therefore, the FMDV 2B pro-
tein may be a member of the class IIB viroporins according to its transmembrane topology.

Cytotoxicity of the 2B protein in Escherichia coli
Several studies have investigated the cytotoxicity of viroporins in Escherichia coli, such as the
IAVM2 protein [8], the poliovirus 2B protein [23] and the severe acute respiratory syndrome-
associated coronavirus envelope protein [24]. To confirm the cytotoxicity of the FMDV 2B
protein, two bacterial strains, BL21(DE3)pLysS and C43(DE3)pLysS, were used. Escherichia
coli BL21(DE3)pLysS is a widely used impressionable strain; therefore, this strain was used to
express the 2B protein as a control. The Escherichia coli C43(DE3)pLysS strain can improve
the stability of plasmids during the expression of toxic recombinant proteins [25, 26]. After
transformation of the two Escherichia coli strains with the pSUMO and pSUMO-2B plasmids,
the expression of the 2B protein was induced using IPTG at different time points. As shown in
Fig 4A, both the BL21(DE3)pLysS cells and the C43(DE3)pLysS cells that were transformed
with the pSUMO plasmid grew well and demonstrated similar growth tendencies according to
the obtained OD600 values. However, a dramatic decrease in cell density occurred in the BL21
(DE3)pLysS cells that expressed the 2B protein. In contrast, the density of the C43(DE3)pLysS
cells continued to increase. A comparison of the data between pSUMO(BL21) and pSUMO-2B
(BL21) and between pSUMO(C43) and pSUMO-2B(C43), showed that there was a significant
difference between pSUMO(BL21) and pSUMO-2B(BL21) (p = 0.000, p<0.01) and between
pSUMO(C43) and pSUMO-2B(C43) (p = 0.000, p<0.01). Additionally, it also showed
that there was a significant difference between pSUMO-2B(BL21) and pSUMO-2B(C43)
(p = 0.000, p<0.01). However, there was no difference between pSUMO(BL21) and pSUMO
(C43) (p = 0.502, p>0.05). These results suggest that the FMDV 2B protein, but not SUMO, is
lytic in BL21(DE3)pLysS cells.

To further confirm whether the decreased growth of bacterial cells negatively affected the
expression of the 2B protein, Western blot analysis with a specific antibody was used to detect
the 2B protein level. Fig 4B shows that the SUMO protein was expressed in the bacterial cells at
2 hours post-induction. Additionally, the C43(DE3)pLysS cells transformed with the pSUMO-
2B plasmid expressed the 2B protein at 2 hours post-induction. However, no specific band was
detected in the lysed BL21(DE3)pLysS cells. These results are consistent with those presented
in Fig 4A and further suggest that the 2B protein is toxic to BL21(DE3)pLysS cells.

Viroporin Activity of FMDV 2B Protein

PLOS ONE | DOI:10.1371/journal.pone.0125828 May 6, 2015 7 / 18



Fig 3. The topological structure of the FMDV 2B protein. Three groups of cells were transfected with pXJ-FLAG-2B, pXJ-2B-HA, or pXJ-2BΔ(110–111).
(A) Cells cultured without any treatment. (B) Cells treated with Triton X-100. (C) Cells treated with digitonin. (D) A schematic representation of the predicted
topology of the FMDV 2B protein in the ERmembrane. The blue fluorescence represents the nucleus, and the green fluorescence represents the FLAG-2B
protein or the 2B-HA protein.

doi:10.1371/journal.pone.0125828.g003
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Effect of amantadine on the release of FMDV
Amantadine is an effective inhibitor of viroporins, including the IAVM2 protein [27, 28], the
HCV p7 protein [29], and the C-terminal subunit of the p13 protein (p13-C) of GB virus B
(GBV-B) [30]. As previously demonstrated, viroporins can promote the release of virions. To
investigate the possible mechanism of virion release, the effects of amantadine on FMDV repli-
cation were evaluated [31]. BHK-21 cells were treated with or without amantadine for 30 min-
utes after infection with FMDV. The supernatant was collected at 4 hours post-infection,
diluted from 10-1 to 10-9, and then added to fresh BHK-21 cells. The virus titer (TCID50) was
determined after culturing the cells for 72 hours. Fig 5 shows that the virus titer decreased as
the amantadine concentration increased, which suggests that amantadine inhibited the release
of the virus from the cells and that viroporins may be involved in this process.

Oligomerization of FMDV 2B protein monomers
Pore-forming activity is an important property of viroporins. The monomers of viroporins,
such as the IAVM2 protein [32], the HCV p7 protein [33] and the CSFV p7 protein [16], can
oligomerize to form pores. Furthermore, the 2B proteins of poliovirus and coxsackie virus also
demonstrate pore-forming activity [34–36].

To determine whether the FMDV 2B monomers interact with each other in vitro and in
vivo, oligomerization of the 2B protein was detected by Western blot analysis using a cross-
linking agent. The 2B protein was expressed in the Escherichia coli C43(DE3)pLysS strain and
purified from the supernatant of bacterial lysates. Then, glutaraldehyde, a widely used cross-
linking agent [37], was used to cross-link the 2B oligomers. Fig 6A shows that the His-SUMO
protein, which was used as a control, did not oligomerize in the presence of different concen-
trations of glutaraldehyde (left side). In contrast, the His-SUMO-2B protein oligomerized, and
dimer, tetramer and hexamer bands appeared as the glutaraldehyde concentration increased
(right side). This result suggests that the purified FMDV 2B protein can oligomerize to form
a homomultimer.

A co-immunoprecipitation (co-IP) assay was performed to study the self-interactions of the
2B protein. BHK-21 cells were transfected with the pXJ-FLAG-2B and pXJ-2B-HA plasmids,

Fig 4. The cytotoxicity of the 2B protein in Escherichia coli. (A) The proliferation curves of the recombinant bacteria carrying different plasmids are
presented. The pSUMO and pSUMO-2B plasmids were transfected into the Escherichia coli BL21(DE3)pLysS or C43(DE3)pLysS strain. The OD600 was
determined at 0h, 1h, 2h, 3h, 4h, and 5h post-induction. (B) Expression of the 2B protein in the bacteria. The pSUMO and pSUMO-2B plasmids were
transfected into the Escherichia coli BL21(DE3)pLysS or C43(DE3)pLysS strain. The products were analyzed byWestern blot analysis with an anti-
His antibody.

doi:10.1371/journal.pone.0125828.g004
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simultaneously or alone, and collected at 12 hours post-transfection for co-IP. Fig 6B shows
that the FLAG tag and the HA tag were simultaneously detected in the cells transfected with
the pXJ-FLAG-2B and pXJ-2B-HA plasmids, regardless of whether co-IP was performed. This

Fig 5. The effect of amantadine on the release of FMDV virions. BHK-21 cell cultures were infected with FMDV (MOI/0.1) and then treated with
amantadine. The virus in the supernatant was collected at 4 hours post-infection. The virus titer was determined by TCID50. Asterisks indicate significant
differences between the indicated samples (*P<0.05,** P<0.01).

doi:10.1371/journal.pone.0125828.g005

Fig 6. The pore-forming activity of the 2B protein. (A) Purified Sumo-2B protein was incubated with a glutaraldehyde cross-linker at the indicated
concentrations (0, 0.1, 0.5, 1.0, 1.5, 2.0, and 3.0 mM). The monomers and oligomers of the 2B protein were detected by immunoblot analysis with an anti-His
monoclonal antibody. (B) BHK-21 cells were transfected with pXJ-FLAG-2B or pXJ-2B-HA. The cell lysates were subjected to immunoprecipitation using
anti-HA antibodies.

doi:10.1371/journal.pone.0125828.g006
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result suggests that the 2B protein monomers interacted with each other after expression in
BHK-21 cells.

Changes in the Ca2+ concentration in BHK-21 cells
The significant effects of viroporins on host cells include disruption of the Ca2+ balance [7, 14,
38] and increased plasma membrane permeability [10, 35, 39]. Therefore, the concentration of
Ca2+ in BHK-21 cells that express the 2B protein was measured using Fluo-3 AM [40], a fluo-
rescence indicator of intracellular Ca2+. Simultaneously, PI was used to detect changes in mem-
brane integrity [16, 40]. In Fig 7, the Q1 quadrant represents the fluorescence intensity of PI,
which indirectly indicates the amount of membrane damage. The Q4 quadrant represents the
fluorescence intensity of Fluo-3, which indirectly indicates the concentration of Ca2+. The fluo-
rescence intensity in the Q1 quadrant increased from 0.2% (Fig 7A) to 32.5% (Fig 7B), and the
fluorescence intensity in the Q4 quadrant increased from 0.1% (Fig 7A) to 5.2% (Fig 7B).
These results suggest host 2B protein expression disrupts membrane integrity and increases the
Ca2+ concentration in the cytoplasm. The data from the Q1 and Q4 quadrants shown in both

Fig 7. The effects of the 2B protein on the Ca2+ content andmembrane integrity in host cells.Untreated BHK-21 cells (A) and cells transfected with
pXJ-2B-HA (B) were stained with Fluo-3 AM and propidium iodide (PI) at 12 hours post-transfection. The increase in intracellular Ca2+ (Fluo-3 AM) is shown
in Q4. This increase was associated with a change in the PI in BHK-21 cells. A histogram was constructed to reveal the changes in the intracellular Ca2+

concentration (C). Asterisks indicate significant differences between the indicated samples (*P<0.05,** P<0.01).

doi:10.1371/journal.pone.0125828.g007
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Fig 7A and 7B are also shown in a histogram for a better comparison of the changes in the Ca2+

content (Fig 7C).

Autophagy induced by the 2B protein in BHK-21 cells
Many cellular changes, such as changes in the Ca2+ content, result in autophagy[41–43]. Viro-
porins, such as the IAVM2 protein, the rotavirus non-structural protein 1 (NSP1) and NSP4,
and the Flavivirus non-structural protein 4A (NS4A), can induce cell autophagy [6, 44–46]. A
study on the NSP4 protein further suggested that autophagy is associated with changes in the
Ca2+ content [6]. As our results demonstrated that the FMDV 2B protein increases the Ca2+

content in cells, it would be interesting to determine whether 2B protein expression in host
cells induces autophagy by detecting the lipidation of LC3-I to produce LC3-II and the punta
formation of LC3 in cells [47]. Cells that were not treated or that were transfected with the pXJ
vector were used as a negative control. Cells treated with rapamycin were used as a positive
control. All of the cells were collected at 12 hours post-transfection to determine the LC3-I and
LC3-II levels by Western blot analysis. Fig 8A shows that the LC3-II band obtained from the
cells transfected with pXJ-2B-HA was thick, similar to the band corresponding to the treatment
with rapamycin, which is an inducer of autophagy.

The punta formation of LC3 in BHK-21 cells was observed using IFA. Cells that were not
treated or were transfected with pCS2, which expresses red fluorescence protein (RFP), were
cultured as a negative control. Cells that were treated with rapamycin were used as a positive
control. All of the cells were collected at 12 hours post-transfection for fluorescence observa-
tion using a LSCM. Fig 8 shows that a low level of LC3 puncta formation was present in both
the untreated cells (Fig 8B) and the cells transfected with pCS2 (47), indicating a basal level of
autophagy induction in the negative control (Fig 8C). However, significantly more LC3 puncta
(238, p = 0.000, p<0.01) were found in the cells transfected with pCS2-2B (Fig 8D), which was
similar to the results observed in the positive control (263, p = 0.000, p<0.01) (Fig 8E). Thus,
consistent with the Western blot data, the IFA result suggests that the 2B protein activates
autophagy induction in BHK-21 cells.

Autophagy induced by the 2B protein in H1299 cells
To eliminate false-positive results in the IFA, the puncta formation of GFP-LC3 reporter in
H1299 cells induced by the 2B protein was evaluated using a LSCM. No significant GFP-LC3
puncta formation was observed in the untreated cells (6) (Fig 8F) or the cells transfected with
pCS2 (5) (Fig 8G), which is consistent with the results obtained in the BHK-21 cells. In con-
trast, GFP-LC3 puncta formed extensively in the cells transfected with pCS2-2B (54, p = 0.000,
p<0.01)(Fig 8H) and in the cells used as a positive control (73, p = 0.000, p<0.01)(Fig 8I).
These results indicate that only the FMDV 2B protein induced autophagy in the host cells
after expression.

Discussion
Viroporins disrupt the cellular membrane integrity, leading to an increase in permeability.
This type of activity has been reported for many viruses. Viroporins can form hydrophilic
pores in biological membranes [5]. Additionally, they can also disturb cellular Ca2+ homeosta-
sis, induce autophagy, and cause apoptosis [4, 48]. Thus, viroporins enhance the release of viral
progeny. In the Picornavirus family, the 2B proteins of poliovirus and coxsackie virus, which
belong to the Enterovirus genus, have been extensively studied as viroporins [38, 49–51]. How-
ever, few studies have been conducted on the 2B protein of FMDV, which belongs to the
Aphthovirus genus of the Picornaviridae family of viruses.
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Fig 8. Autophagy induced by the 2B protein in BHK-21 cells and H1299 cells. Four groups of BHK-21
cells were cultured with different treatments, and the LC3-I and LC3-II levels were determined byWestern
blot analysis with an anti-LC3 antibody (A). Untreated cells (B, F), cells transfected with pCS2 (C, G) or pCS2-
2B (D, H), or treated with rapamycin (E, I) were cultured and observed under a LSCM to evaluate LC3
aggregation using IFA in BHK-21 cells (B-E) or based on the green and red fluorescence in H1299 cells (F-I).
The blue fluorescence represents the nucleus, the green fluorescence represents the LC3 protein, and the
red fluorescence represents the RFP-2B protein.

doi:10.1371/journal.pone.0125828.g008

Viroporin Activity of FMDV 2B Protein

PLOS ONE | DOI:10.1371/journal.pone.0125828 May 6, 2015 13 / 18



In the last several years, significant advances have increased our understanding of the viro-
porin architecture. Viroporins are classified into two major groups, class I and class II, depend-
ing on whether they contain one or two transmembrane domains [5]. Class I viroporins
contain only one transmembrane domain and can be further divided into two subgroups: class
IA viroporins, with N-termini that face the organelle lumen and C-termini that face the cyto-
plasmic matrix, and class IB viroporins, with N-termini that face the cytoplasmic matrix and
C-termini that face the organelle lumen. Class II viroporins contain two transmembrane do-
mains and are further divided into two subgroups: class IIA viroporins, with both the N-
terminus and C-terminus extending into the organelle lumen, and class IIB viroporins, with
both the N-terminus and C-terminus extending into the cytoplasmic matrix. In this study, the
FMDV 2B protein was predicted to have two hydrophobic regions and was located in the ER.
Additionally, this protein exhibited a transmembrane topology similar to that of class IIB viro-
porins. These results suggest that this protein shares characteristics with viroporins. However,
a definitive identification of the domains and function of the two transmembrane regions re-
quires further study.

The solubility and purity of a protein are two important aspects in biochemical and struc-
tural analyses of proteins [52], in which the expression of the protein is the first step. We in-
tended to study the pore-forming activity of the FMDV 2B protein in the Escherichia coli BL21
(DE3)pLysS strain. However, it is difficult to express the FMDV 2B protein in a prokaryote be-
cause of the high hydrophobicity of the protein. Fortunately, SUMO fusion technology over-
comes this obstacle [52]. The addition of SUMO to the N-terminus of the protein of interest
enhances their solubility [53–56]. We intended to confirm the toxicity of the FMDV 2B protein
in the Escherichia coliBL21(DE3)pLysS strain [8], but the 2B protein was not expressed in this
strain. Fortunately, the toxic effect of the 2B protein was confirmed by comparing the BL21
(DE3)pLysS cells with the C43(DE3)pLysS cells.

Amantadine is an effective inhibitor of viroporins, such as the IAVM2 protein and the
HCV p7 protein. It is well established that FMDV infection is highly sensitive to weak bases
that increase endosomal pH. Treatment with amantadine may result in alkalinization of endo-
somes where FMDV pH-mediated uncoating takes place, thus inhibiting infection. To avoid
the pH increase caused by amantadine, we used 1-amantadine hydrochloride instead of aman-
tadine to maintain a weakly acidic pH. Because amantadine inhibited the replication of FMDV,
we speculated that amantadine abolished the pore-forming activity of the 2B protein. To verify
this proposal, the interactions between 2B protein monomers were analyzed in cells and in
vitro. Monomer interactions, which may contribute to the pore-forming property of this pro-
tein, were detected. In the previous experiment, 2B protein was detected at 2–2.5 h post-
infection by immunofluorescence staining. However, no 2B protein expression was detected at
different times post-transfection with plasmid pRSV-2B, neither by Western blotting nor by
immunofluorescence. This difference may due to cell toxicity. The detection of transient 2B ex-
pression has been reported using a modified 2B that included a tag motif [57]. The results were
consistent with our findings. We found that the 2B protein changed the cell morphology from
fusiform to round and that the cells subsequently died (data not shown), most likely due to the
pore-forming activity of the protein. A TEM assay may be needed to further evaluate the ion
channel formed by the 2B protein [58].

Many studies on viroporins, including poliovirus 2B and coxsackie virus 2B, have found
that these proteins induce Ca2+ abnormalities [7]. The flow cytometry analysis indicated that
the FMDV 2B protein damaged the membrane integrity and disrupted the Ca2+ concentration
in host cells, similar to the effects of other viroporins.

Ca2+ is one of the most universal and versatile signaling molecules and is involved in most
cellular processes [59], including the autophagic pathway. Autophagy is a necessary balancing
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process, which degrades and reuses intracellular components in response to nutritional defi-
ciencies and other stresses, including viral infection [60, 61]. This study demonstrated that
autophagy was upregulated in cells that expressed the FMDV 2B protein at high levels. The
disrupted Ca2+ levels may have contributed to the increase in autophagy. Adenosine 5’-
monophosphate (AMP)-activated protein kinase (AMPK) is a critical protein kinase that in-
duces autophagy, and the phosphorylation of AMPK is regulated by Ca2+. An increased
Ca2+concentration first activates Ca2+/calmodulin dependency kinase kinase beta (CaMKK-β),
an upstream regulator of AMPK. Then, CaMKK-β induces AMPK phosphorylation, and
autophagy occurs [62, 63]. The role of the FMDV 2B protein in this process should be further
investigated. In summary, the findings of this study suggest that the FMDV 2B protein exhibits
viroporin-like properties and may play an important role in FMDV infection. Additional stud-
ies using novel technologies are needed to elucidate the mechanism of action of the FMDV
2B protein.
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