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Abstract
In this study, we introduce an original distance definition for graphs, called the Markov-in-

verse-F measure (MiF). This measure enables the integration of classical graph theory indi-

ces with new knowledge pertaining to structural feature extraction from semantic networks.

MiF improves the conventional Jaccard and/or Simpson indices, and reconciles both the

geodesic information (random walk) and co-occurrence adjustment (degree balance and

distribution). We measure the effectiveness of graph-based coefficients through the appli-

cation of linguistic graph information for a neural activity recorded during conceptual pro-

cessing in the human brain. Specifically, the MiF distance is computed between each of the

nouns used in a previous neural experiment and each of the in-between words in a sub-

graph derived from the Edinburgh Word Association Thesaurus of English. From the MiF-

based information matrix, a machine learning model can accurately obtain a scalar parame-

ter that specifies the degree to which each voxel in (the MRI image of) the brain is activated

by each word or each principal component of the intermediate semantic features. Further-

more, correlating the voxel information with the MiF-based principal components, a new

computational neurolinguistics model with a network connectivity paradigm is created. This

allows two dimensions of context space to be incorporated with both semantic and neural

distributional representations.

Introduction
Complex networks are frequently represented in the form of graphs consisting of nodes (verti-
ces) denoting individual (or atomic) entities, and edges that link them according to informa-
tion about semantic attributes or some weighting value. Graph coefficients have a long history,
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especially in well-developed social networks, such as the Jaccard or Simpson indexes. In cogni-
tive linguistics and psychology, a network view can be applied to the world of language, and
conceptual interrelations can be represented in graph form as a semantic network. Word asso-
ciation norms representing the relationship between words are a traditional and conventional
object of research—such associations have undoubtedly served as valuable language resources
in the construction of semantic networks.

Since the work of Galton, word association [1–4] has been used as an empirical method for
observing thought processes, memory, and mental states in clinical and cognitive psychology
[5–10]. Associative Concept Dictionaries (ACDs) consist of word-pair data from psychological
experiments in which participants provide a semantically related response word to the given
stimulus word [11–15].

At the start of the 21st century, advanced techniques involving complex networks began to
be applied to language corpora to enhance lexical semantic analysis. Dorow et al. [16] utilised
graph clustering techniques to detect lexical ambiguity and acquire semantic classes. Tenen-
baum and Steyvers [17] conducted a noteworthy study that examined the structural features of
three semantic networks (the free association norms of Nelson et al., Roget’s thesaurus, and
WordNet). Rising interest in complex networks is rooted in the work of Watts and Strogatz
[18] and Ferrer i Cancho and Sole [19], who elucidated the “small-world” phenomenon, and
especially that of Barabási and Albert [20], who suggested that the degree distributions of scale-
free network structures obey a power law.

A new similarity coefficient that integrates the classical indices of graph theory with new
knowledge pertaining to structural feature extraction from semantic networks represents an
important advance. In addition, as there are few objective methods for treating network simi-
larity information in the domain of corpus analysis and psychological experimentation (aside
fromWord Association Space [21], for example), machine learning methods in neurolinguis-
tics may provide a new means of evaluation for semantic network computing [22–25]. Note
that, despite the significance of semantic networks built on word association norms in cognitive
science and psychology, no attempt has yet been made to apply any linguistic graph informa-
tion to human neural activity data recorded during conceptual processing.

This idea has great potential in light of a study reported by Mitchell et al. [26] using a large
corpus of web text (the Google Web 1T 5-gram Collection). They proposed a computational
model that allows the functional magnetic resonance imaging (fMRI) activity associated with
thinking about arbitrary nouns to be predicted. The underlying theory is that the neural basis
of the semantic representation of specific nouns is related to the distributional properties of
those words in a broad-based corpus. Recently, the model of Mitchell et al. has been extended
to use crowd-sourced judgments of semantic properties [27] or broader corpora [28–31].

From this perspective, a computational neurolinguisticsmodel that utilises graph theory
might be feasible if we could create a set of intermediate semantic features (and their weights)
by applying appropriate graph coefficients for complex networks built from a small dataset of
word association norms. Computational neurolinguistics is an emerging research area that
aims to integrate computational linguistics and cognitive neuroscience to better understand
word semantics. It takes advantage of machine learning methods to mediate datasets from neu-
ral recordings and language corpora (cf. https://sites.google.com/site/compneurowsnaacl10/).
The advantage of using a graph-form representation for ACDs is that we can compute the dis-
tance or similarity coefficient between any two words from a minor lexical dataset based on the
degree (the number of links held by one vertex), the degree distribution (the probability distri-
bution of the degrees over a graph), or the shortest path information specific to a complex net-
work (minimum number of steps from one vertex to another).
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In this article, we propose a new similarity index that is indicative of various characteristics
of semantic networks, regardless of size and complexity. Furthermore, the semantic space
formed by applying this similarity index to word association norms might be different from
those based on co-occurrence pattern information derived from the usual lexical corpora. The
n-grams extracted from a web document collection could effectively simulate the fMRI neural
data from a property generation task performed on word stimuli. It is also important to deter-
mine whether semantic network information given by applying graph theory to ACDs would
be effective in predicting the activity of the human brain.

Tapping into the other paradigm of complex networks, we propose an original use for neu-
roimaging studies using fMRI. Previously, functional connectivity MRI (fcMRI) [32–43] has
been employed as an intriguing technique for uncovering chains of voxels (pixels with volume
as units of neuro-imaging data) that simultaneously fire under particular task-driven or resting
conditions. As a variant of fcMRI, we describe a system of informative voxels as vertices within
a neural circuit that is correlated with semantic network information derived from a dataset of
word association norms.

Materials and Methods

Definition of MiF
In this section, we introduce the Markov-inverse-F measure (MiF), a new definition of distance
on a graph. MiF improves the conventional Jaccard and Simpson indices, and reconciles both
the geodesic information (random walk) and co-occurrence adjustment (degree balance and
correlation).

To give the co-occurrence adjustment, it is known that the Jaccard similarity can be intui-
tively formulated as

jA \ Bj
jA [ Bj ð1Þ

for two sets A and B. Indeed, for two vertices, this index is usually computed as

jNðaÞ\NðbÞj
jNðaÞ[NðbÞj ; ð1Þ0

where N(a) denotes the set of all neighbours of vertex a. To enhance the accuracy with which
the distance between remote nodes is evaluated, we extend the interpretation of expression (1)
such that the numerator is the distance of the shortest path connecting vertices a and b. The de-
nominator in (1) is the sum of the degrees of vertices a and b, or, in some cases, all of the steps
starting from these vertices that have an identical step length. In this article, we adopt the latter
definition for the denominator, and set the step length equal to the shortest path between a and
b in the numerator. Fig 1 illustrates this coefficient using the friendship network of Zachary’s
famous “Karate Club” [44].

Certain disadvantages of the Jaccard similarity have been described. For example, it can pro-
duce values that are too small and not intuitively plausible. This is because the denominator for
normalisation, i.e. the cardinality of the union of two sets, is often too large [45–46]. To com-
pensate for this perceived weakness, the Simpson index was introduced. Given by

jA \ Bj
MinðjAj; jBjÞ ; ð2Þ

this index tends to return a larger similarity score for connections with a small-degree vertex,
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which would bias the degree imbalance of the two vertices of interest. In (2), |A| and |B| repre-
sent the number of paths starting from vertices a and b, respectively. Note that the step length
for |A| and |B| in the denominator of (2) is the same as that for the numerator, namely, the
shortest path between the two nodes.

Inspired by the Simpson index, we generalise this to reflect multiple features of a network.
Our idea consists of modifying the denominator using the weighted harmonic mean

Hbða; bÞ ¼
1

1�b
a
þ b

b

¼ ab
baþ ð1� bÞb ð3Þ

of all i-step paths leaving the two vertices. Our new distance for two sets A and B is then

jA \ Bj
HbðjAj; jBjÞ

: ð4Þ

Thus, the weight of the free parameter 0< β< 1 enables the flexible adjustment of the mag-
nitude of the denominator in a similar manner to the F-measure (in the field of information re-
trieval for making trade-offs between recall and precision). By this means, our graph index can

Fig 1. Friendship network of Zachary’s famous “Karate Club”. There is one shortest path between vertices 2 and 7 (red edges), with a step length of 2. It
follows from the sum of the elements in the second and seventh rows (or columns) of the second power of the adjacency matrix that there are 52 and 25 two-
step paths starting from vertices 2 and 7, respectively. Thus, the Jaccard similarity between them is calculated as (52+25)−1 = 0.012987, if we take into
account all of the steps starting from each of the two vertices that have a step length of 2. In this figure, the yellow nodes are reachable in two steps from both
vertices 2 and 7, whereas, under the same path condition, the blue nodes can only be reached from vertex 2, and the green node can only be reached from
vertex 7. In addition, these two vertices have a Simpson coefficient of 25−1 = 0.04 and a MiF value of 0.0185583. It is widely known that the friendship network
among the Karate club members was split into two factions. According to the degree to which the final attachments to each faction match with the results of
graph clustering, it is possible to evaluate the effectiveness of the clustering technique (based on an adjacency matrix) for simulating the social relationships.
The two factions are represented here by the vertex labels with red italic font (one group composed of vertices {1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 17, 18, 20,
22}) and those with blue bold font (the other group of {9, 10, 15, 16, 19, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34}). Misclassification always occurred by
binding vertices 3 and 10 at early stages when the Jaccard index, Simpson index, and MiF with the default β value (0.5) were applied to the hierarchical graph
clustering of this network. With a small value of β (for example, 0.01), which can reflect the asymmetrical roles played by the two agents in terms of
connectivity, MiF predicts the composition of the two factions with 100% accuracy. For further details, see S2 Program. This figure was created using
Mathematica 8.

doi:10.1371/journal.pone.0125725.g001
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reflect the value of the degree correlation [47–49], which might be important for some network
settings, especially in weighting the vertices. For example, when there is no degree correlation,
as in the Barabási-Albert model, we could assign a significantly high (or low) β-value to vertices
with particularly high (or low) degrees. Adjusting β has a significant effect on the results of sim-
ulations such as graph clustering. With a small β (for example, 0.01), MiF enables us to attain
perfect accuracy when applied with Ward’s minimum variance dissimilarity to simulate the
fragmentation of the famous Karate Club. In contrast, the Jaccard index, Simpson index, and
MiF with the default β value (0.5) all fail to correctly assess the affiliation of a specific vertex.
Further details are provided in Fig 1.

In addition to evaluating the co-occurrence information, our method takes into account the
geodesic-based idea of a random walk [50–51]. Between vertices x and y, it is natural to consid-
er that a greater number of connecting paths indicates a closer relationship in the graph. How-
ever, the number of shortest path lengths greater than one step, or that of bypasses including
redundant loops, can be an important factor [21, 52–54] if the other weight parameter is con-
figured for the path steps of a random walker on a graph. The values of this parameter for i-
steps, αi, should decrease with similarity in accordance with the procession of a random walk.

This combination of a random walk transition (Markov process) on a graph and a harmonic
mean for information retrieval explains the name of our new similarity coefficient, the Mar-
kov-inverse-F Measure, or MiF.

We now present some notation and definitions that we use to describe a complex network:
A: anm�m adjacency matrix for a graph havingm vertices,
Ax,y: the (x, y)-th element of A,
Ap

x;y: the (x, y)-th element of the path matrix Ap,

SðiÞx;y ¼ Ai
x;y : the number of paths (routes) connecting vertices x and y with i steps,

PðiÞ
x ¼

Xm

c¼1

Ai
x;c: the number of paths (routes) starting from vertex x that have a length of

i steps.
Regarding αi, we implement the constraints

0 < ai < 1; a1 > a2 > . . .;
Xg

i¼1

ai ¼ 1 ð5Þ

for the scaling between 0 and 1 to be imposed to MiF, as the values of this parameter are re-
duced with an increase in path steps. Let γ denote a small integer delimiting the maximum
number of steps i. This can be determined by the extent of small-worldness [18], and is usually
less than around ten for a graph built on a language corpus (cf. [17]: the maximum average
shortest path length recorded in WordNet is 10.56). Values of αi can be provided empirically
by the following reference coefficient list, whose number of elements is set to this provisory
limit.

Given

c ¼ f1:; 1:61803; 1:83929; 1:92756; 1:96595; 1:98358; 1:99196; 1:99603; 1:99803; 1:99902g

as the maximum real roots of
Xk

i¼1

1
x

� �i ¼ 1 for all integers k (0< k� 10), the expressions αi = c

(γ)−i and (5) always hold. For instance, with γ = 2 as the maximum step length, we have:

Xg

i¼1

ai ¼
X2

i¼1

cð2Þ�i ¼ 1:61803�1 þ 1:61803�2 ¼1;
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with γ = 4:

Xg

i¼1

ai ¼
X4

i¼1

cð4Þ�i ¼ 1:92756�1 þ 1:92756�2 þ 1:92756�3 þ 1:92756�4 ¼1;

and with γ = 10,

Xg

i¼1

ai ¼
X10

i¼1

cð10Þ�i ¼ 1:99902�1 þ 1:99902�2 þ 1:99902�3 þ 1:99902�4 þ 1:99902�5

þ1:99902�6 þ 1:99902�7 þ 1:99902�8 þ 1:99902�9 þ 1:99902�10 ¼ 1

In addition, a constant value β, where 0< β< 1, is given to define the weighted harmonic
mean in (4). For the purpose of illustration, we set β = 0.5 as the default for treating all vertices
with equal weight. Based on these parameters, MiF is formulated as

Dxy ¼
Xg

i¼1

aiS
ðiÞ
x;y

HbðPðiÞ
x ; P

ðiÞ
y Þ

¼
Xg

i¼1

aiS
ðiÞ
x;yðbPðiÞ

x þ ð1� bÞPðiÞ
y Þ

PðiÞ
x P

ðiÞ
y

¼
Xg

i¼1

aiA
i
x;yðb

Xm

c¼1

Ai
x;c þ ð1� bÞ

Xm

c¼1

Ai
y;cÞ

Xm

c¼1

Ai
x;c

Xm

c¼1

Ai
y;c

ð6Þ

It can be ascertained that 0� Dxy < 1 is true in any case. S1 Program implements functions
for computing the MiF, Jaccard, and Simpson coefficients between any vertices in a network
whose adjacency matrix is provided as a sparse array.

Application of MiF
As noted in the Introduction, ACDs contain word-pair data obtained from psychological ex-
periments in which the participants are typically asked to provide a semantically related re-
sponse word that comes to mind when presented with a stimulus word. The Edinburgh Word
Association Thesaurus of English (EAT, [1]) is a typical English-language ACD, and is well-
balanced though small in size (approximately 3 MB). The characteristic aspect of this database
is that word association norms were collected by growing the network from a nucleus of words
to obtain further responses. Such a chain association gave rise to linkages among seemingly un-
related words with diverse semantic relationships.

In this research, we extract a subgraph from the EAT that connects all 60 nouns used as
stimulus items in the fMRI experiments of Mitchell et al. [26] (Fig 2). These fMRI nouns are
classified into 12 semantic categories (animals, body parts, buildings, building parts, clothing,
furniture, insects, kitchen items, tools, vegetables, vehicles, and other man-made items), each
including five nouns. EAT contains all of these fMRI nouns, except ‘CELERY’ and ‘REFRIGER-
ATOR’, so ‘CABBAGE’ and ‘FRIDGE’ are instead selected as synonyms for these absent
nouns. This non-directed and non-weighted subgraph (see S1 and S2 Datasets) has 2768 verti-
ces (60 fMRI nouns plus 2708 in-between words), a connection rate of 0.005, mean degree of
7.23, and clustering coefficient of 0.042. The maximum and mean shortest path lengths be-
tween the fMRI nouns and the in-between words are 6 (so we set γ = 6) and 4.09, respectively.
The degree distribution follows a clear power law (or, more specifically, Zipf’s law) [20,17].

For our computational neurolinguistics modelling, we applied our MiF Mathematica pro-
gram (see S1 Program) with β = 0.5 and γ = 6 as the maximum shortest path length to the
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subgraph described above. We then measured the distance between each of the 60 fMRI target
nouns and the 836 in-between words with degree greater than 5. This threshold was conve-
niently set for exemplary purposes, taking into account the importance of the words. Further,
using the ‘princomp2.R’ routine (http://aoki2.si.gunma-u.ac.jp/R/src/princomp2.R), we ran a
principal component analysis (PCA) on the 60 × 836 MiF-based distance matrix (S3 Dataset).
This R function enables the PCA of a data matrix in which the column dimension is greater
than the row dimension. Sixty principal components were extracted, and a 60 × 60 PC-score
matrix representing the essential information about a partial semantic network of EAT
was formed.

All the principal components extracted from the MiF-based distance matrix are identified
by the short-hand notation ‘MiF-PC’, with a number in descending order of eigenvalues. Be-
cause each MiF-PC is a complex, multifaceted semantic entity, it would be difficult (besides a
few exceptions, such as PC3 signifying “sex”) to unify all possible interpretations under a single
heading. Thus, we instead give certain statistical information. For instance, the combination of
the most contributory fMRI noun with the largest principal component score is enclosed in
single quotation marks, and the most constitutive semantic features with the largest principal
component loadings are written in italic font (e.g. MiF-PC1: ‘train’-RAIL-TRAVEL-OMNI-
BUS-ENGINE-BUS. . .). Detailed information about the MiF-PCs derived from EAT can be
found in the S1 Table.

Evaluation of MiF
It is worth noting that the semantic space underlying the 60 fMRI nouns of Mitchell et al. re-
flects some conceptual relationships suited to word association when using MiF applied to
EAT. Fig 3 shows the results of multi-dimensional scaling (MDS) applied to the 60 × 60
MiF-EAT PC-score matrix and the 60 × 25 co-occurrence probability matrix of Mitchell et al.’s
original model computed from the Google Web 1T 5-gram Collection. In MDS, each of the
fMRI nouns is assigned coordinates in each dimension of the between-object distance matrix,
showing the level of similarity. Some words belonging to different semantic categories become
close to each other, and this closeness can be interpreted as a type of derivedmetonymic

Fig 2. EAT subgraph around the lexical stimuli used in by Mitchell et al. This graph is composed of the 60 fMRI nouns used by Mitchell et al. [26] (red
circles) and the 2708 in-between words (blue circles) linking them on the shortest path routes in the EAT semantic network. The magnitude of the radius for
each vertex corresponds to the degree value. This visualisation was made with R using the igraph package.

doi:10.1371/journal.pone.0125725.g002
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relationship. Contiguity (‘apartment’ and ‘bell’), target objects (‘key’ for ‘barn’ and ‘apart-
ment’), intended or unintended uses (‘pants’ and ‘arm’, ‘hand’, ‘leg’; ‘window’ and ‘hammer’),
mediated associations (‘igloo’ and ‘fridge’ through ‘cold’ or ‘icy’), and so on can be retrospec-
tively construed as reasons for affinity (even a lexical association at the level of collocation
(‘cup’–‘chisel’) might be produced ex-post facto). As for the MDS map representing the co-oc-
currence matrix between the nouns and the 25 basic verbs for the original Mitchell et al. model,
some categories (body parts, tools) have a tendency to conglomerate at the centre, and meto-
nymic ex-post interpretation was not as easy on the periphery as the MDS map for MiF-EAT
lexical information.

In light of the original modelling of Mitchell et al., this MiF-based association matrix played
the role of fi(w) in the following expression, proposed by [26]:

yv ¼
Xn

i¼1

cvifiðwÞ; ð7Þ

that is, a matrix recording the value of the ith intermediate semantic feature (in our case, princi-
pal component) for word w. We adopted the distance information matrix instead of using the
normalised co-occurrence frequency of the stimulus noun with each of 25 basic verbs, because

Fig 3. MDS results for the two distance matrices on the 60 fMRI nouns.We compared the PC-score
matrix of MiF-EAT (top) with the co-occurrence matrix of Mitchell et al.’s model from the Google Web 1T
5-gram collection (bottom). The natural numbers attached to the nouns represent the semantic categories
(animals: cyan-(1), body parts: magenta-(2), buildings: red-(3), building parts: green-(4), clothing: blue-(5),
furniture: black-(6), insects: cyan-(7), kitchen items: magenta-(8), man-made objects: red-(9), tools: green-
(10), vegetables: blue-(11), and vehicles: black-(12)). The computation and visualisation were made using
Statistics Toolbox and Matlab.

doi:10.1371/journal.pone.0125725.g003
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Mitchell et al. used a text corpus consisting of over a trillion tokens (http://www.cs.cmu.edu/~
tom/science2008/semanticFeatureVectors.html).

For the other terms in (7), yv, the predicted activation at voxel v for word w, was taken from
the fMRI datasets obtained by Mitchell et al. from nine participants (http://www.cs.cmu.edu/
afs/cs/project/theo-73/www/science2008/data.html). In this experiment, nine participants
(P1–P9) were requested to execute a property generation task for each of 60 nouns (with a 3 s
stimulus period), and then rest for a period of 7 s with a fixation mark. fMRI scans were per-
formed using an echo planar imaging sequence with a 1000 ms repetition time, and for six dif-
ferent stimuli presentation orders.

The scalar parameter cvi was computed by the algorithm of Mitchell et al. For the details on
the experimental settings, we fundamentally adhered to Mitchell et al., using the stability score
over the runs for each voxel to select 500 features (top voxels) and the leave-two-out cross-vali-
dation procedure for the machine learning. For each participant’s fMRI dataset, the leave-two-
out procedure was iterated 60! / (59! × 2!) = 1770 times, leaving out each of the possible word
pairs for testing. Each item pair for evaluation was used to compute the cosine similarity be-
tween the predicted and actual fMRI scans. The expected accuracy in matching the two left-out
words to their left-out fMRI images is 0.50 if the matching is performed at chance levels. Ac-
cording to the permutation test of Mitchell et al., observing an accuracy of 0.62 or higher for
the within-subject decoding would be statistically significant at P< 10−11.

Results and Discussion

Methodological comparison
We applied MiF to the EAT subgraph, and adopted the stability score to construct graph-based
models from Mitchell et al.’s fMRI datasets. The precision of our decoding models was P1:
0.85, P2: 0.79, P3: 0.78, P4: 0.68, P5: 0.89, P6: 0.74, P7: 0.78, P8: 0.75, and P9: 0.76 (mean: 0.78).
The corresponding results with the 60 principal components were P1: 0.87, P2: 0.75, P3: 0.76,
P4: 0.66, P5: 0.89, P6: 0.72, P7: 0.76, P8: 0.70, and P9: 0.69 (mean: 0.76). The original Mitchell
et al. study recorded accuracies of P1: 0.81, P2: 0.74, P3: 0.76, P4: 0.69, P5: 0.81, P6: 0.79, P7:
0.74, P8: 0.76, and P9: 0.82 (mean: 0.77). We also computed predictive models with 60 princi-
pal components extracted from the distance matrix using the inverse shortest path step lengths
(mean: 0.72), Jaccard index (mean: 0.74), and Simpson index (mean: 0.75) considering the geo-
desic information between nodes. A non-parametric Wilcoxon signed rank test was performed
between the MiF modelling result and the closest one based on the Simpson index, both with
60 principal components. The difference was found to be highly significant (p = 7.6600e-04),
and MiF outperformed the other graph similarity coefficients. Figs 4 and 5 compare the partici-
pant-wise decoding accuracy and the mean discrimination accuracy of the two MiF-based EAT
analysis models, inverse shortest path step lengths, Jaccard/Simpson indices for subsequent
PCA, and the replicated Mitchell et al. results with the Google 5-grams Collection. Fig 6 repre-
sents an item-wise confusion matrix generated as a result of cross-validating our decoding
model trained with the 60 MiF-based principal components and averaged over all nine partici-
pants. The precision in discriminating nouns is generally good, despite a slight penalty in the
within-category comparisons and the cross-category ones involving the nouns of man-made
objects.

The advantage of MiF as a graph-based similarity coefficient lies in certain characteristic
traits, which we now discuss. This graph-theoretical method integrates both geodesic knowledge
(given by a random walk) and a strength relationship (expressed by the degree balance) from a
complex network into a convenient mathematical formula. It assimilates fine-grained informa-
tion about the mutual relationship between nodes, and is effectively a medium for a two-fold
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distributional representation of conceptual processing. The significance of MiF is underscored
in terms of its predictive modelling ability across multiple research domains. A semantic net-
work extracted from a database of word association norms (ACD) might reflect, and indeed
track, the intellectual process through which corpus data grow in a chain association from a
nucleus set of words. Through the intermediate semantic features shared by words in the ACD
semantic network, MiF provides a good weight matrix for predicting the fMRI brain activity
that might partially represent this intellectual process in another psychological experiment.

MiF-based neuro-computational networks
Thus far, we have considered a graph-theoretical analysis through a similarity metric applied
to word association norms as a source of lexical co-occurrence networks. As such, this metric
might indeed be circumscribed to the semantic distance between words at the ACD level. How-
ever, an approach whereby connectivity information could be mathematically formalised may
also be effective for deriving components (as neural correlates) from the patterns of fMRI sig-
nal changes detected during the processing of word senses.

Fig 4. Heatmap representing the subject-wise decoding accuracy. This result was obtained under the
two MiF-EAT conditions (836 words and 60 principal components), inverse shortest path step lengths,
Jaccard/Simpson indices for subsequent PCA, and the replicated results of the Google-Science paper
research of Mitchell et al.[26].

doi:10.1371/journal.pone.0125725.g004

Fig 5. Mean discrimination accuracies obtained from the participants of Mitchell et al.'s research [26].
These results were obtained under the two MiF-EAT conditions (836 words and 60 principal components),
inverse shortest path step lengths, Jaccard/Simpson indices for subsequent PCA, and the replicated results
of the Google-Science paper research [26].

doi:10.1371/journal.pone.0125725.g005
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This valuable insight prompts us to envision another graph-form for information in brain
regions that are supposed to serve the process of conceptual association. Further details con-
cerning this methodology, partly inspired by the ideas of fcMRI [32–43], are fully demonstrat-
ed in the S1 Text. To integrate these linguistic and physiological networks, we correlate selected
features in the machine learning of fMRI signals (known as multi-voxel pattern analysis or
MVPA, see [26, 31, 55–65]) to semantic features for fMRI stimulus nouns, which are treated as
objects of natural language processing.

This modelling involves detecting, with respect to these nouns, a subset of informative vox-
els (as “neuro-anatomical features”) that elicit a neural activation pattern that is significantly
homologous to each MiF principal component vector (derived as “lexico-semantic features”).
We set a threshold for the pairwise Pearson correlations between these two features at
0.330104 (p< 0.01) in accord with the no-correlation test for a dimension size of 60 (equal to
the number of fMRI stimulus nouns), and created a participant-wise bipartite graph between
MiF principal components and important voxels (see S1 Text, Section I and S1 Fig). Our dis-
cussion here is confined to the theoretical implications of superimposing these separate feature
layers in the context of computational neurolinguistics.

Fig 6. Item-wise confusion matrix from the participants of Mitchell et al.’s research [26]. The result was obtained from 60 principal components of
MiF-EAT and averaged over all nine participants. The point at (row i, column j) shows the proportion of participants whose datasets allowed us to derive a
correct match between the predicted noun i and the observed noun j. The number following each item name corresponds to one of these conceptual
categories: (1) animals, (2) body parts, (3) buildings, (4) building parts, (5) clothing, (6) furniture, (7) insects, (8) kitchen items, (9) man-made objects, (10)
tools, (11) vegetables, and (12) vehicles.

doi:10.1371/journal.pone.0125725.g006
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We address the issue of whether and how such a twofold modelling can incorporate aspects
of distributional representations in a paradigm of network connectivity. The distributional re-
presentation implies the following propositions in different rubrics: the meaning of a word is
defined as a set of properties or features specified in various views and contexts (see literature
reviews in [66–70]); activation, even by thinking of a single word, is scattered across the whole
brain [22, 25, 30–31].

Fig 7 shows an example mapping for two circuits (or contexts) in parallel, i.e. conceptual re-
latedness with extending scope or growing complexity, and unexpectedly widespread fMRI re-
sponses to a lexical task, both associated with the nouns ‘bed’ and ‘hand’ (representative words
for MiF-PC3: ‘bed’-HARD-SLEEVE-FINGER-SEX-LINING. . . and MiF-PC18: ‘hand’-CAP--
BAG-SHOPPING BAG-WAVE-EXCHANGE. . .). Instead of determining some categorically-
classified semantic atlas on the cortex (like “furniture” for ‘bed’ and “body parts” for ‘hand’), we
generate a binding of informative voxels as a “neural context” (similar to a “semantic space”
[71]), which serves as a counterpart to a lexical mapping of a key noun together with its seman-
tic features. Note that all of these words are treated via fine-grained serial information as freely
associated concepts under MiF-based principal components (extended to connotations such as
sex, motions, and hand-carried goods; see the third column of S1 Table) that are intricate, con-
text-sensitive, and in some way systematic.

Although the free association norms gathered in a thesaurus reflect the social, cultural, and
linguistic backgrounds of the informants who contributed to the data collections [12], the con-
sequent attenuation of individual traits is a common and ineluctable process in data compila-
tion. However, our modelling of double-articulated components enables us to extract
individual variability (or, as it were, idiosyncrasies in fMRI responses) from such a synthesised
and averaged dictionary, through the biased correlation between MiF-PCs and relevant infor-
mative voxels. For example, in the case of P1, we can recognise a sort of signature pattern in
that 46.2% of feature-voxels (161 out of 348, see the first column of S2 Table) form a wide
range of neural context exclusively mediated by MiF-PC3, which is biased towards various
sexual implications.

Individuals differ markedly in terms of the location of voxels sensitive to each MiF-PC. It is
worth noting that some neural contexts, such as the voxels taken from P4 corresponding to
MiF-PC3 (and P8 sensitive to MiF-PC44, see S1 Text, Section II with S4 Fig), can be inter-
preted by simulation semantics [72–76], which is a field of linguistics embodiment theory [77–
88]. An intriguing consistency emerges, if only partially, between areas andmeanings, with a
relationship prescribed as somatomotor or somatosensory in the literature of functional anato-
my. In fact, P4’s voxels related to MiF-PC3 show that, as if connoting some rehearsal of previ-
ous tangible (perceptual-motor) experiences, the Left Precentral, Left Superior Frontal Lobe,
Left Supplementary Motor Area, Left Inferior Parietal Lobe, etc., are coupled with some of the
most constitutive semantic features with the largest principal component loadings, such as
“HARD”, “SLEEVE”, “FINGER”, “SEX”, “FEET”, “BODY”, “REACH”, and “WRIST”.

However, as such a finding is somewhat narrow, our modelling must be considered as no
more than preliminary; delineating an exact parallel map between a neural circuit and semantic
network remains a task for future research, at least for a robust signature of an individual sub-
ject. We are not yet in a position to introduce any full-fledged hodological view into a seman-
tico-anatomical distributional representation in the context of computational neurolinguistics.
Similarly, we cannot argue that, for instance, expanding conceptual associations could gain
contiguous neural resources as a clearly articulated counterpart. The overlaid components
based on our fcMRI-like modelling merely create a chain of fully connected complete graphs
on the neural side. Whether already-known anatomical networks underlie the neural contexts
that bundle selected voxels that are sensitive to particular concepts remains an open question.
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Fig 7. Example of conceptual association overlaid on brain images representing its neural context.
Top: lexical adjacency graph extracted from the semantic network of EAT (Fig 2). This represents MiF
Principal Components (MiF-PCs) 3 (red labels) and 18 (black labels) with the fMRI nouns having the largest
principal component scores (“bed” and “hand”, respectively) and the top twenty semantic features recording
the largest principal component loading values. Most notably, the second fMRI noun for MiF-PC3 with the
most sex-related connotation is also “hand”, so the graph shares various semantic contexts pertaining to this
effector (body, sex, motions, and hand-carried goods). Bottom: anatomical location of the feature voxels
selected from each participant of Mitchell et al. [26] as neural contexts corresponding to those two MiF-PCs.
For example, “P1-PC3” denotes feature voxels from the P1 dataset that have neural activation patterns
significantly homologous to the principal component vector of MiF-PC3 with respect to the 60 nouns used in

Computational Neurolinguistics by Complex Networks

PLOS ONE | DOI:10.1371/journal.pone.0125725 April 30, 2015 13 / 20



However, the results shown in the Supporting Information demonstrate that the most-watched
fcMRI anatomical areas frequently emerge in neural contexts, such as the Extrastriate Cortex
with Fusiform, Middle Occipital Gyrus, Lingual, and Precuneus (see S1 Text, S2, S3 and S5
Figs) [89].

Conclusions
In this article, we have proposed a novel distance definition for a graph. This Markov-inverse-
F measure (MiF) exploits both geodesic information and the co-occurrence adjustment. By ap-
plying our new similarity coefficient to complex networks built from word association norms
(EAT), we created a set of intermediate semantic features and their coupling weights for pre-
dicting the neural responses to words. In spite of a size constraint, our MiF-based decoding
model allowed us to predict, in the wake of Mitchell et al. [26], but using conceptual associa-
tions with various interpretations, the neural response to each unknown word with better pre-
dictive accuracy than other decoding models based on conventional similarity coefficients.

Moreover, those voxels most responsive to a particular concept were extracted as members
of a neural context by leveraging a basic idea of fcMRI. We briefly described the formation of
this neural context in terms of the MiF-based principal components as the most overarching
and informative semantic features. Although, at the single subject level, we found some cases
that seem to embody the physiological process of cognition, large individual differences were
observed in the location and scope of neural contexts as a modality of distributional representa-
tion. Further challenges will aim to elucidate the mutual relationship between semantic and
neural networks as two layers in a globally unified space of computational neurolinguistics.

Supporting Information
S1 Text. Details on MiF-based neuro-computational networks.
(DOCX)

S1 Fig. Nine bipartite graphs between the 59 MiF principal components and the 500 select-
ed voxels. These graphs were obtained for participants P1–P9 of Mitchell et al. [26] between i)
the corpus-related set of 59 MiF principal components (numbered circles on the left) from the
EAT dataset, and ii) the participant-wise brain-related set of 500 top voxels (feature voxels) se-
lected by ANOVA (circles on the right), both in terms of the 60 nouns used as stimulus items
in the fMRI experiments. Nodes on either side with r values greater than 0.330104 are con-
nected. This figure was created using Mathematica 8. We can see that some MiF-PC hubs are
linked to many selected voxels, but the pattern is different for each participant. For example,
46.2% of the feature voxels collected from P1 form a wide range of neural context exclusively
mediated by MiF-PC3.
(TIF)

S2 Fig. Semantic adjacency graphs (top) corresponding to the largest neural contexts (bot-
tom). These contexts were built from the P1–P9 datasets of Mitchell et al. [26]. Isolated nodes
have been removed. The series of sagittal slices for mapping the feature voxels of the largest
neural context in the standard brain was smoothed using SPM8 with the full-width at half max-
imum parameter of [3 3 3] to enhance visual effects. We can see that the core neural contexts

the fMRI experiment. These sagittal brain images were smoothed using SPM8 with the full-width at half
maximum parameter [3 3 3] to enhance visual effects. The Supporting Information and its figures clarify how
to couple a neural component and an MiF-PC using an original fcMRI method applied to this semantico-
neural paradigm.

doi:10.1371/journal.pone.0125725.g007
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(largest components) tend to produce bead-like shapes, and encompass a wide range of areas
with conspicuous variability across participants.
(TIF)

S3 Fig. Semantic and neuro-anatomical adjacency graphs (top) and mapping of their neu-
ral contexts (bottom) from participant P2. Components C1–C5 illustrate the conceptual re-
latedness within each MiF-PC and the selected feature-voxel networks that it sustains and
overlays in the space of computational neurolinguistics. For the AAL notation, refer to S3
Table. These neural contexts are either global bead-like networks, large but local networks, or
purely local fully connected graphs. The distribution of important voxels in P2 tends to be bi-
ased toward the Extrastriate Cortex and its peripheral areas.
(TIF)

S4 Fig. MiF-PC44 corresponding to a network in the Frontal Lobe of participant P8.
MiF-PC44 (‘bicycle’-TWO-PEDALLER-CLIP-BRAKE-BIKE. . .) is mainly composed of nodes
located in the Frontal Lobe (such as ‘Frontal_Inf_Tri_L’, ‘Frontal_Mid_L’, ‘Frontal_Sup_L’,
‘Frontal_Sup_Medial_L’, and so on). Some of these voxels are extracted from regions (Brod-
mann areas 6, 8, and 9) connected to executive functions with visual control, which is a favour-
able phenomenon for simulation semantics in embodiment theory. For the AAL notation,
refer to S3 Table.
(TIF)

S5 Fig. Neural contexts with multiple feature voxels mediated by MiF-PCs 3 and 18.
MiF-PC3 represents the series (‘bed’-HARD-SLEEVE-FINGER-SEX-LINING. . .) and
MiF-PC18 denotes (‘hand’-CAP-BAG-SHOPPING BAG-WAVE-EXCHANGE. . .). These were
examined in the section on MiF-based neuro-computational networks in the main text. “Pi-
PCj” denotes feature voxels in dataset Pi that exhibit neural activation patterns significantly ho-
mologous to the principal component vector of MiF-PCj. This figure shows adjacent clusters
sharing at least one feature voxel. Other MiF-PCs adjacent to PC 3 or 18 in a participant-wise
neural context are abbreviated in this figure, with the most contributive fMRI noun with the
largest principal component score illustrated, such as PC6-fly. We can glimpse an interlocking
scheme between conceptual association and neural response in P4-PC3, where the perceptuo-
motor simulation postulated by embodiment theory (see the main text) is linked with
MiF-PC59 (‘closet’-CUPBOARD-WARDROBE-SPACE-LOVE-WHITE. . .).
(TIF)

S1 Table. Information on MiF-PCs given by top two PC scores and top twenty PC loadings.
This file should be used with the name “Information on MiF-PCs through the top two PC
scores and the top twenty PC loadings.csv”.
(CSV)

S2 Table. Participant-wise number of feature-voxels mediated by each MiF-PC. This file
should be used with the name “Participant-wise number of feature-voxels mediated by each
MiF-PC.csv”.
(CSV)

S3 Table. Abbreviations for AAL list. This file should be used with the name “Abbreviations
for AAL.csv”.
(CSV)

S1 Dataset. Adjacency matrix (under the format ofmatrix market) of EAT. This file should
be used with the name “adjacencyMatrix.mtx”. Subgraph extracted from EAT for connecting
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the 60 fMRI stimulus nouns used by Mitchell et al. [26].
(MTX)

S2 Dataset. Vertex labels of S1 Dataset. This file should be used with the name “vertexLabels.
csv”.
(CSV)

S3 Dataset. MiF distance matrix computed from the semantic network of EAT. This file
should be used with the name “MiFdistanceMatrix.csv”. Rows: 60 fMRI stimulus nouns; Col-
umns: the 836 in-between words with degree greater than 5.
(CSV)

S1 Program. Mathematica script for the computation of MiF, Jaccard, and Simpson coeffi-
cients between any pair of vertices in a network given as a sparse array. This file should be
used with the name “MiF.m”.
(M)

S2 Program. Mathematica script for evaluating graph clustering results obtained fromMiF
with different β values, Jaccard, Simpson, and cosine similarity.
(PDF)
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