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Abstract

Background

Osteosarcoma is a rare but highly malignant cancer of the bone. As a consequence, the

number of established cell lines used for experimental in vitro and in vivo osteosarcoma re-

search is limited and the value of these cell lines relies on their stability during culture. Here

we investigated the stability in gene expression by microarray analysis and array genomic

hybridization of three low metastatic cell lines and derivatives thereof with increased meta-

static potential using cells of different passages.

Principal Findings

The osteosarcoma cell lines showed altered gene expression during in vitro culture, and it

was more pronounced in two metastatic cell lines compared to the respective parental cells.

Chromosomal instability contributed in part to the altered gene expression in SAOS and

LM5 cells with low and high metastatic potential. To identify metastasis-relevant genes in a

background of passage-dependent altered gene expression, genes involved in "Pathways

in cancer" that were consistently regulated under all passage comparisons were evaluated.

Genes belonging to "Hedgehog signaling pathway" and "Wnt signaling pathway" were sig-

nificantly up-regulated, and IHH, WNT10B and TCF7 were found up-regulated in all three

metastatic compared to the parental cell lines.

Conclusions

Considerable instability during culture in terms of gene expression and chromosomal aber-

rations was observed in osteosarcoma cell lines. The use of cells from different passages

and a search for genes consistently regulated in early and late passages allows the analysis

of metastasis-relevant genes despite the observed instability in gene expression in osteo-

sarcoma cell lines during culture.
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Introduction
Osteosarcoma (OS) is a rare but highly malignant bone disease that affects predominantly children
and adolescents. Patients with metastases still face a poor prognosis with a 5 year survival rate of
less than 20% despite pre- and postoperative chemotherapy. Research in the field of OS is ham-
pered by the low prevalence of the disease and by tumor cell heterogeneity. Moreover, OS is associ-
ated with chromosomal instability that appears to be caused by chromothripsis-like events that
contribute to genomic heterogeneity in tumor cell populations [1–3]. Although the number of es-
tablished OS cell lines is relatively low compared to other cancer entities, a few cell line systems are
available for in vitro and in vivo research investigating mechanisms of OS progression [4]. These
cell line systems consist of parental cell lines with a lowmetastatic potential, and derivatives thereof
with increased metastatic activity in vivo [5–13]. The value of these systems for experimental OS
research largely depends on the stability of the cell lines during culture. To our knowledge, the ge-
nomic stability in OS cell lines of these systems during serial passaging has so far not been investi-
gated in detail. One previous study investigated the stability of a frequently used osteoblastic OS
cell line (SAOS) during culture using functional assays and RT/PCR for an expression analysis of
some selected genes [14]. The authors concluded that these cells are fairly stable, but that the ex-
pression of some selected genes differs considerably in cells derived from different passages. Anoth-
er study concluded that osteoblastic OS cells derived from a primary tumor and a skip metastasis
thereof remained stable for more than 100 passages, but no supporting data were included [13].

Malignant mesothelioma cells showed increasing chromosomal abnormalities during cul-
ture associated with deregulated gene expression assessed by array comparative genomic hy-
bridization (aCGH) and microarray gene expression analysis [15]. Using a proteomic
approach, instability in protein expression during culture was also described in lung adenocar-
cinoma cells [16]. A study using microarray gene expression analysis in oral cancer cell lines
showed that a considerable number of genes is differentially expressed during culture despite
the fact that serial passaging had no significant effect on global gene expression of cancer relat-
ed genes [17]. Chromosomal instability together with in vitro evidence for an increased trans-
formed phenotype was observed during culture of spontaneously immortalized but non-
tumorigenic keratinocytes and in lung epithelial cells, in a spontaneously immortalized non-tu-
morigenic breast epithelial cell line and in ovarian cancer cells [18–21]. However, tumorigenic-
ity was reduced during culture of melanoma cells [22].

Stimulated by the lack of information on the stability of OS cells, we investigated in the pres-
ent study global changes in gene expression during culture of frequently used human (SAOS/
LM5 and HOS/143B [5,7]) and mouse (Dunn/LM8 [9]) OS cell line systems. The results
showed limited stability of gene expression in the parental low metastatic cell lines (SAOS,
HOS, Dunn), and remarkably increased instability during culture of the metastatic derivatives
of the two osteoblastic cell lines (LM5 and LM8), the most common OS subtype. Passage relat-
ed changes in gene expression may influence the data analysis of microarray studies addressing
the search for metastasis relevant genes in OS. In an attempt, described herein, to search for
passage-independent metastasis relevant genes, we were able to identify several genes that are
up-regulated in highly compared to low metastatic cell lines in the investigated systems and be-
long to groups of genes involved in the regulation of hedgehog andWNT signaling pathways.

Materials and Methods

Cell lines and culture
Human SAOS (HTB-85), HOS (CRL-1543) and 143B (CRL-8303) cells were obtained from
ATCC (Rockville, MD). Human LM5 cells, derived from parental SAOS cells [5], were kindly
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provided by E.S. Kleinerman (M.D. Anderson Cancer Center, Houston, TX). The mouse Dunn
cells, originally established by T. B. Dunn [23], and the LM8 cells, derived from parental Dunn
cells [9] were provided by T. Ueda (Osaka University Graduate School of Medicine, Osaka,
Japan). Animal experiments for the generation of LM5 and LM8 cells were approved by the
local ethic committees (personal communication from E. Kleinerman and T. Ueda). Cells were
cultured in DMEM (4.5 g/l glucose)/F12 (1:1) medium supplemented with 10% heat-inacti-
vated fetal calf serum in a humidified atmosphere of 5% CO2. Cells were split at ratios and for
passage numbers given in Table A in S1 File when they reached near confluence to ensure that
proliferation was maintained throughout the culture process. Authentication of the human cell
lines was performed at the early and late passages by multiplex PCR (Microsynth, Balgach,
Switzerland) using the PowerPlex16HS system (Promega, Madison, WI) and verified by com-
parison with the database at the German Collection of Microorganisms and Cell Cultures
(DSMZ, Braunschweig, Germany). The cells were free of mycoplasma and not contaminated
by other human cell lines. The mouse cell lines were also mycoplasma free and not contaminat-
ed by human cell lines.

Aliquots of early passage cells were frozen. Late passage cells, derived from early passage
cells, as described above, were also frozen after they reached the required doublings. For RNA
and DNA extraction and microarray and aCGH analysis, respectively, early and late passage
cells were thawed and cultured for additional three passages under identical culture conditions.

RNA extraction and Agilent GeneChip processing
Sub-confluent cells were detached with trypsin/EDTA, centrifuged and cell pellets immediately
frozen in liquid nitrogen and stored at -80°C until RNA extraction. Total RNA was isolated
from frozen cell pellets of individual cell lines (three samples per condition) with TriReagent
(Sigma-Aldrich, St. Louis, MO) as described [24]. The RNA was quantified by measuring the
absorption at 260 and 280 nm in a UV-spectrophotometer. The integrity of the RNA was as-
sessed by standard agarose gel-electrophoresis and with a Bioanalyzer 2100 (Agilent Technolo-
gies, Palo Alto, CA). Complementary RNA preparation and array hybridization was performed
by the Functional Genomics Center (Zurich, Switzerland). Microarray data for human cell
lines were generated with Agilent SurePrint Human Gene Expression 8x60k microarray kit
(chip ID: 028004) containing 42,545 probe sets that match to 21,339 genes identifiable by the
Kyoto Encyclopedia of Genes and Genomes (KEGG) number (Agilent, Santa Clara, CA). For
the mouse cell lines, Agilent Mouse GE 4x44k v2 microarray kit (chip ID: 026655) was used
containing 39,485 probe sets that match to 23,074 genes identified by KEGG number. The
chromosomal distribution of genes is presented in Table B in S1 File.

cDNA synthesis and real-time PCR analysis
Total RNA (1 μg of the RNA used for the microarray analysis) was reverse-transcribed to
cDNA with a high capacity RNA-to-cDNA kit (Applied Biosystems, Foster City, CA) in a final
volume of 20 μl according to the protocol provided by the manufacturer. RNA of three inde-
pendent extracts from the individual cell lines was reverse-transcribed. Real-time PCR was car-
ried out in a StepOne Plus Real-Time PCR system (Applied Biosystems) in 96 well plates.
Primers (Table C in S1 File) were designed for amplification of cDNA sequences derived from
selected genes using NCBI Primer blast (http://www.ncbi.nlm.nih.gov/tools/primer-blast/)
software. PCRs from individual RT reactions were carried out in triplicates. cDNA equivalent
to 50 ng of RNA and appropriate primers were added to Power SYBR Green PCR master mix
(Applied Biosystems) and the samples were pre-incubated at 50°C for 2 min and at 95°C for
10 min and then subjected to 40 cycles of incubation at 95°C for 15s and at 60°C for 1 min. The
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threshold for Ct values was set to 0.325. To verify the amplification of a single product in any
of the PCR reactions, a melting curve was generated and analysed after every run. Relative ex-
pression levels were calculated by the comparative cycle threshold (ΔΔCT) method and were
normalized to GAPDH expression.

DNA extraction and Affymetrix CytoScan HD array
RNA-free DNA from the individual OS cell lines was extracted using the Gentra Puregene kit
(Qiagen, Hilden, Germany) according to the protocol recommended by the supplier. DNA
concentration and purity was determined with a NanoDrop 1000 spectrophotometer (Thermo
Scientific, Wohlen, Switzerland). Since non-degraded DNA was needed, the size of the double-
stranded genomic DNA was assessed on a 1% agarose gel. DNA was concentrated and resus-
pended in nuclease-free water, and the concentration was measured with a NanoDrop 1000
spectrophotometer. Microarray CGH was performed with the CytoScan HD Array Kit (Affy-
metrix, Santa Clara, CA) according to the instructions of the manufacturer at the Laboratory
for Oncology Diagnostics (Kinderspital Zurich, Switzerland). The files obtained from the scan-
ner were analyzed with softwares from different companies: the Affymetrix Chromosome
Analysis Suite (ChAS) 2.0.0.195 and the BioDiscovery Nexus Copy Number 7.0. Copy number
variants (CNV) according to the Database of Genomic Variants (http://dgv.tcag.ca/dgv/app/
home), DNA copy number alterations smaller than 100 Kb or 50 adjacent probes and loss of
heterozygosity (LOH) smaller than 3 Mb were not considered if not known as recurrent aberra-
tions for any neoplasia.

ArrayMap and KEGG pathway analysis
Called copy number aberrations were combined with a published reference dataset from an
SAOS genome array (GSM170249; [25], all (re)mapped to Human Genome version 19.
Changes in relative copy numbers between early and late passage SAOS and LM5 cells were
mapped and evaluated with respect to their overlap with the genome positions of top scoring
genes showing the corresponding expression change (i.e. genes with increased expression vs.
regions with relative copy number gains), using custom software implementations. Ratios of
corresponding gains and losses and same directional expression changes were calculated com-
pared to the expected values of a random genomic distribution of genes with altered
expression values.

Chromosomal and cytoband localization of differentially expressed genes (>2-fold;
p<0.05) and KEGG pathway analysis was performed using ''TheDatabase for Annotation, Vi-
sualization and IntegratedDiscovery'' (DAVID) v6.7 (http://david.abcc.ncifcrf.gov/) [26] by
entering the Entrez gene ID lists of regulated genes. To compare human and mouse arrays the
IDs were converted using MADGENE (http://cardioserve.nantes.inserm.fr/mad/madgene/).

Microarray and aCGH data were deposited in GEO under the accession numbers
GSE66673, GSE66674 and GSE67125, respectively.

Statistical analysis
P and fdr (false discovery rate) values in microarray analysis were obtained after two group
analysis of triplicate samples using t test and Benjamini-Hochberg fdr according to with Bio-
conductor software package limma (http://www.bioconductor.org/packages/release/bioc/html/
limma.html) [27]. P values for the enrichment of regulated genes were obtained by a modified
Fisher’s exact test (EASE score) using DAVID (http://david.abcc.ncifcrf.gov/) [26].
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Results

Number of genes undergoing differential expression during serial
passaging
The parental human SAOS, HOS and mouse Dunn cells with low metastatic potential were cul-
tured to achieve>150 doublings, respectively (Table A in S1 File). A total of 1297, 1105 and
626 genes were differentially expressed (>2-fold; p<0.05) in late versus early passages in
SAOS, HOS and Dunn cells, respectively. The number of differentially expressed genes per
doubling was 7.9, 3.5 and 1.3 for SAOS, HOS and Dunn cells, respectively (Fig 1). Therefore,
considerable differences in the stability of gene expression during serial passaging of parental
cell lines are observed. The in vivo selected sub-lines LM5 and LM8 with increased metastatic
potential, derived from parental SAOS and Dunn cells, respectively, were cultured to achieve
similar doublings as compared to parental cell lines. In LM5 and LM8 cells 12.5 and 1.3 genes
were differentially expressed per doubling. LM5 cells, therefore, seem to be less stable than pa-
rental SAOS cells and this became even more pronounced at higher stringency levels (Fig 1). A
similar trend was observed for LM8 cells, which also presented with more differentially ex-
pressed genes than the Dunn cells at higher stringency levels. The metastatic 143B cells, derived
from HOS cells by Ki-ras transformation, presented 430 differentially expressed genes after
275 doublings, corresponding to 1.7 differentially expressed genes per doubling. In this cell line
system, the metastatic subline was more stable than the parental cell line. Taken together, the
results imply that OS cells display limited stability in gene expression during culture and that
the instability is more pronounced in the in vivo selected metastatic derivatives than in the pa-
rental cell lines.

In human SAOS and LM5 cells, 810 (3.80%) and 1035 (4.85%) genes, respectively, were up-
regulated (>2-fold; p<0.05) with increasing passage number and 487 (2.28%) and 912 (4.27%)
genes were down-regulated. 201 (0.94%) up-regulated and 94 (0.44%) down-regulated genes
were found to be the same in the two cell lines; these numbers were 5.2- and 4.5-times higher
than statistically expected (0.18% and 0.097% for up- and down-regulated genes, respectively).
Similarly, in mouse Dunn and LM8 cells, 313 (1.36%) and 327 (1.42%) genes were up-regulated
and 313 (1.36%) and 338 (1.47%) genes were down-regulated, respectively, after serial passag-
ing. The two lines had 33 (0.14%) up- and 66 (0.29%) down-regulated genes in common and
these numbers were 7.4- and 14.5-times higher than statistically expected (0.019% and 0.02%
for up- and down-regulated genes, respectively). In contrast, in human HOS and 143B cells,
only 24 common up-regulated and 3 common down-regulated genes were found and these
numbers were only 2.1- and 1.7-times higher than statistically expected. This indicates a signif-
icant common change in gene expression patterns in the parental low metastatic cell lines and
the metastatic derivatives during serial passaging in the human SAOS/LM5 and the mouse

Fig 1. Number of differentially expressed genes after serial passaging. The number of differentially expressed genes at different significance levels was
normalized to calculated doublings in order to compare the three cell line systems. Note the different y-axis scales for each cell line system. fdr; false
discovery rate.

doi:10.1371/journal.pone.0125611.g001
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Dunn/LM8 cell line systems, but not in the human HOS/143B cell line system in which the
changes in gene expression patterns were largely different.

To compare the number of differentially expressed genes after serial passaging with that of
the comparison of the metastatic versus the parental cell lines, we pooled the data sets of early
and late passages of each parental and metastatic cell line before the comparison between low
and highly metastatic cell lines was performed. In the most unstable SAOS/LM5 cell system,
the sum (3244) of differentially expressed genes after serial passaging of SAOS and LM5 cells
was in the same range as after the comparison between low and highly metastatic cell lines
(2578). In the other two cell line systems, the comparison between low and highly metastatic
cell lines yielded higher numbers of differentially expressed genes than the sum of differentially
expressed genes in respective cell lines after serial passaging (Table D in S1 File). Altered gene
expression after serial passaging may nevertheless affect the analysis of metastasis-relevant
genes in all these cell systems.

Chromosomal localization of genes differentially expressed after serial in
vitro passaging
After serial passaging, significant (p<0.01) clustering of up- or down-regulated genes on dis-
tinct chromosomes was observed in all cell lines except in 143B cells, the most stable cell line
during in vitro culture (Table D in S1 File). In SAOS and LM5 cells, such clusters of differen-
tially regulated genes were found on four and seven chromosomes, respectively. Up-regulated
genes in SAOS (64 genes) and LM5 (99 genes) cells were found enriched on chromosome 12.
Based on the fact that 22 of the up-regulated genes on chromosome 12 were found to be identi-
cal in the two cell lines and only two were expected by chance, corresponding chromosomal
loci appear to be hot spots for changes in gene expression during serial passaging of SAOS and
LM5 cells. The same applies to 22 genes (only 4 expected by chance) located on chromosome
1. In SAOS cells, 28 up-regulated genes clustered in the central to distal region of the long arm
of chromosome 1 from 1q41-1q42.13, and 21 genes clustered in the distal region 12p13.31-
12p13.33. In LM5 cells, up-regulated gene expression clustered in distal parts in 4p16.1-4p16.3
(41 genes), 12p13.31–12p13.33 (21 genes) and 16p13.3 (18 genes), whereas down-regulated
genes clustered in the central part of 10p12.1-10p12.31 (17 genes) and in adjacent 10p13 (10
genes). Of the 22 genes on chromosome 12 found up-regulated in both, the SAOS and LM5
cells, 11 genes map to the region 12p13.31-12p13.33. Taken together, all findings support the
notion that genes, which undergo differential expression during serial passaging of SAOS and
LM5 cells are not randomly distributed in the genome, but are located in clusters on distinct
chromosomes or even in cytobands. Even though more chromosomes and regions thereof are
affected in the metastatic LM5 cells than in parental SAOS cells, some of the hot spots of differ-
entially expressed genes identified in the two cell lines were found to be identical.

Serial passaging of HOS cells revealed preferential down-regulation of genes on chromo-
somes 17 (28 genes) and 19 (50 genes) whereas in 143B cells no enrichment on distinct chro-
mosomes was recognized. Clustering of 11 down-regulated genes in the central region 5q31
and of 12 up-regulated genes in distal region 19p13.3 was noted in HOS cells. In 143B, no cyto-
bands were affected to any great extent.

In serially passaged mouse Dunn and LM8 cells, differentially regulated genes were located
on three and one chromosomes, respectively. In Dunn cells, up-regulated genes were mainly
found on chromosomes 14 (24 genes) and 18 (20 genes), and down-regulated genes on chro-
mosome 9 (24 genes). In LM8 cells preferential up-regulation was observed only on chromo-
some X (46 genes). Clustering was low with three and one affected cytobands in Dunn and
LM8 cells, respectively, containing only 9 to 11 genes. Taken together, chromosomal events
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during culture, which remain to be defined, appear to contribute to differential gene expression
predominantly in the SAOS/LM5 cell system and to a lesser extent in the other two systems.

During selection for metastatic activity of OS cell lines in the individual systems, changes in
gene expression occurred on more chromosomes than during serial passaging (Table D in S1
File). In the SAOS/LM5 cell system, 11 of the 22 autosomes and the X chromosome showed
significant enrichment of up- and down-regulated gene expression. In the HOS/143B cell sys-
tem 9 autosomes were affected, and in the Dunn/LM8 cell system 6 of the 19 autosomes exhib-
ited significant enrichment of differentially expressed genes. Taken together, chromosomal
instability appears to contribute to altered gene expression during culture and to a greater ex-
tent during selection for increased metastatic activity of OS cell lines.

Analysis of chromosomal aberrations by aCGH in SAOS and LM5 cells
subjected to serial passaging or selection for increased metastatic
activity
OS display on average a high rate of genomic imbalances (25% genome fraction vs. ~14% in all
cancer entities; data based on [28]). In the present study, an analysis of copy number (CN)
gains and losses was carried out by aCGH analysis in SAOS and LM5 cells at early and late pas-
sages (Fig 2A). The analysis of published chromosomal aberrations in SAOS cells
(GSM170249; [25]) revealed differences in CN of 52% of the genes of the normal human dip-
loid genome, consisting of 46% gains and 6% losses in CN (Fig 2B). Our population of early
passage SAOS cells showed 9% CN differences compared to GSM170249, with a total aberrant
fraction of 48% consisting of 43% gains and 5% losses in CN compared to the diploid genome.

During serial passaging of SAOS and LM5 cells, changes in CN between early and late pas-
sages involved 12.1% (4.4% gain and 7.7% loss) and 10.8% (3.9% gain and 6.9% loss) of the
genes of the entire genome, respectively (Fig 2C). The largest difference (20.7%) of total CN
variation was observed when early passage SAOS cells were compared to late passage
LM5 cells.

“Macro”-aberrations, defined as loss or gain of at least one cytoband, during serial passaging
of SAOS and LM5 cells, are summarized in Table E in S1 File. Seventeen macro-aberrations
were identified in both SAOS (5 gains and 12 losses) and LM5 cells (9 gains and 8 losses). Inter-
estingly, 6 out of 17 chromosome regions with CN changes during culture were the same in the
two cell lines. They included 3q (loss), 9q (loss), 12p (gain) and 14q (loss). A comparison of the
list of the up- and down-regulated genes obtained by microarray analysis with the regions of
dynamic CN status found by aCGH analysis revealed a 2–2.2 fold ratio of observed over ex-
pected total coincidence (Table F in S1 File). A 3-fold most prominent coincidence was found
for up-regulated genes in late versus early LM5 cells. This indicates that a substantial fraction
of observed expression differences following serial passaging results from changes in CN of the
affected genes. “Hotspots" of coincidence in changes of gene CN and expression were up-regu-
lated genes in 1q and 12p in late passage SAOS cells and up-regulated genes in 4p, 12p and 21q
in late passage LM5 cells (Fig A in S1 File). Coincidence of down-regulated genes and CN loss
was observed in late passage LM5 cells in 9q and 10p. These results largely confirm the above
described significant clustering of differentially expressed genes in distinct chromosomes and
cytobands (Tables D and E in S1 File).

Macro-aberrations, defined as losses or gains in CN in LM5 compared to SAOS cells, which
occurred independent of passage number during selection for increased metastatic activity are
summarized in Table G in S1 File. Seventeen regions (8 gains and 9 losses) with macro-aberra-
tions were identified on 10 chromosomes. The largest changes in CN observed were losses in
3p, 4q, 8q, 20q and Xq and gains in 1q, 5p, 15q and 20p. Thus, considerable changes in CN in
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distinct regions of individual chromosomes occurred also during selection for increased meta-
static activity of LM5 compared to SAOS cells, but in locations different from those that
showed CN changes during serial passaging of the individual cell lines.

Genes deregulated after serial passaging
Pathway analysis of differentially expressed genes in early and late passage cells revealed a sig-
nificant enrichment (p<0.05) of genes involved in the "Focal adhesion" pathway in all cell lines

Fig 2. Copy number (CN) aberrations in the SAOS/LM5 cell system. (A) CN gains (yellow) and losses (blue) compared to normal diploid human genome
were analyzed in SAOS and LM5 cells of early and late passages and compared to published data of SAOS cells (GSM170249; [25]) using arrayMap as
described inMethods. (B) Statistics of CN gains and losses compared to normal human diploid genome. (C) Total CN differences between early and late
passages of SAOS and LM5 cells.

doi:10.1371/journal.pone.0125611.g002
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investigated except in 143B cells (Table 1). Genes of all other pathways listed in Table 1 were
only significantly enriched in three out of the six cell lines investigated. The analysis also
showed that genes, which were differentially regulated in both the SAOS and LM5 cell lines at
early and late passages belonged to pathways involved in "Focal adhesion", "Cytokine-cytokine
receptor interaction" and "PPAR signaling pathway" (not listed in Table 1). Similarly, in the
Dunn/LM8 cell line system, genes belonging to the three pathways "Focal adhesion", "ECM-re-
ceptor interaction" and "Pathways in cancer" were differentially regulated in both cell lines
upon serial passaging. In the HOS/143B cell systems, on the other hand, only genes involved in
"Neuroactive ligand-receptor interaction" were differentially regulated in both cell lines.

In SAOS and LM5 cells 13 and 20 genes, respectively, involved in "Focal adhesion" were up-
regulated in late versus early passage, and four genes (CCND1, ITGA4, PARVG and MYL10)
were up-regulated in both cell lines. This was confirmed by real-time PCR analysis (Fig B in S1
File), in which CCND1, ITGA4 and PARVG (3 out of 4) genes also showed a> 2-fold increase
in expression in late versus early passage. No gene involved in "Focal adhesion" was found
down-regulated in both the SAOS and LM5 cell lines. Thirty and 37 genes belonging to "Cyto-
kine-cytokine receptor interaction" were enriched in SAOS and LM5 cells, respectively. The
two cell lines had 6 down-regulated (IL15, IL15RA, IL20RB, BMPR1B, EDA and INHBE) and
five up-regulated genes (TNFRSF8, TNSF10, CNTFR, NGFR and CXCL14) in common. In the
"PPAR signaling pathway" 11 and 13 genes were enriched in SAOS and LM5 cells, respectively.
FABP6 was up-regulated and PCK2 and SCD5 were down-regulated in both cell lines.

In the Dunn and LM8 cell lines, 7 and 17 genes, respectively, of the "Focal adhesion" path-
way were down-regulated in late versus early passage and three genes (COL4A1, COL4A2 and
ITGA11) were down-regulated in both cell lines. These genes are also involved in "ECM-recep-
tor interaction" and are the only genes in this pathway, which are regulated in both Dunn and
LM8 cells. None of the up-regulated genes involved in "Focal adhesion" and "ECM-receptor in-
teraction" was found altered in both Dunn and LM8 cells. Interestingly, in the Dunn/LM8 cell
line system also genes involved in "Pathways in cancer" were significantly deregulated during
serial passaging. No up-regulated genes, but four down-regulated genes (COL4A1, COL4A2,
EPAS1 and FGF15) of the "Pathways in cancer" were found in both cell lines.

In the HOS/143B cell line system, only genes involved in "Neuroactive ligand-receptor inter-
action" were significantly deregulated, but with minimal commonly affected genes. But in HOS
cells, like in the Dunn/LM8 cell line system, also genes of the "Pathways in cancer" were deregu-
lated during serial passaging.

Taken together, the results of the pathway analysis imply deregulation of genes involved in
"Focal adhesion" during serial passaging in all three cell line systems. A partial common shift in
gene expression of genes belonging to other pathways was also observed in the SAOS/LM5 and

Table 1. Number of differentially regulated genes enriched in KEGG pathways after serial passaging of indicated cell lines.

KEGG pathways SAOS LM5 HOS 143B Dunn LM8

Focal adhesion 22 (13/9) 33 (20/13) 20 (12/8) 16 (9/7) 20 (3/17)

Cytokine-cytokine receptor interaction 30 (18/12) 37 (15/22) 25 (15/10)

ECM-receptor interaction 19 (9/10) 9 (3/6) 12 (1/11)

Neuroactive ligand-receptor interaction 26 (17/9) 24 (17/7) 9 (5/4)

TGF-beta signaling pathway 16 (11/5) 21 (9/12) 8 (4/4)

Pathways in cancer 27 (20/7) 21 (13/8) 26 (12/14)

Pathways are listed that are significantly (p<0.05) enriched in at least three cell lines. The numbers in brackets indicate up-/down-regulated genes

(>2-fold; p<0.05). Comparison is performed from pooled data sets from early and late passages.

doi:10.1371/journal.pone.0125611.t001
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the Dunn/LM8, but not the HOS/143B cell systems. Moreover, some genes deregulated in dur-
ing serial passaging might also play a role in cancer.

Genes deregulated after selection for increased metastatic activity
In order to analyze genes that increase the metastatic activity of LM5, 143B and LM8 cells, in-
dependent of the observed in vitro instability, two approaches were followed. First, the expres-
sion data sets of early and late passaged cells were pooled before the comparison of the data
obtained for the metastatic and parental cell lines was performed for each of the three cell line
systems. Second, the comparison between low and highly metastatic cell lines was performed
for each of the four individual combinations of passage data sets (metastatic early/parental
early; metastatic late/parental early; metastatic early/parental late; metastatic late/parental late).

Pathway analysis of the pooled data sets revealed significant enrichment of differentially
regulated (p<0.05) genes belonging to "Pathways in cancer", "Basal cell carcinoma", "Focal Ad-
hesion", "ECM-receptor interaction" and "Wnt signaling pathway" in all three cell line systems
(Table 2). 56, 95 and 59 genes belonging to "Pathways in cancer" were differentially regulated
in the SAOS/LM5, HOS/143B and Dunn/LM8 cell systems, respectively. As genes belonging to
some of the pathways were also significantly deregulated during serial passaging of parental
and/or metastatic cell lines, we searched for genes belonging to "Pathways in cancer" that were
consistently regulated (>2-fold; p<0.05) in all individual combinations of early and late pas-
sage data sets of metastatic and parental cell lines. Compared to the pooled analysis, the num-
ber of differentially regulated genes was now reduced to 14 (25%), 58 (61%) and 29 (49%)
genes in the SAOS/LM5, HOS/143B and Dunn/LM8 cell systems, respectively. The herewith
identified potential metastasis-relevant genes for each cell line system together with the fold
regulation are listed in Table H in S1 File.

Among the signaling pathways the "Wnt signaling pathway" and the "Hedgehog signaling
pathway" also showed significant enrichment in the pathway analysis of the pooled data sets

Table 2. Number of differentially regulated genes enriched in KEGG pathways in high and lowmeta-
static cell lines.

KEGG pathways LM5/SAOS 143B/HOS LM8/Dunn

Pathways in cancer 56 (29/27) 95 (49/46) 59 (32/27)

Basal cell carcinoma 18 (11/7) 21 (13/8) 13 (11/2)

Focal adhesion 36 (16/20) 67 (24/43) 40 (14/26)

ECM-receptor interaction 23 (8/15) 37 (12/25) 16 (4/12)

Wnt signaling pathway 29 (13/17) 41 (25/16) 31 (25/6)

Bladder cancer 14 (9/5) 13 (8/5)

Colorectal cancer 29 (19/10) 18 (14/4)

Small cell lung cancer 31 (15/16) 17 (7/10)

ErbB signaling pathway 24 (13/11) 16 (10/6)

MAPK signaling pathway 76 (36/40) 40 (22/18)

Hedgehog signaling pathway 16 (11/5) 19 (12/7)

Calcium signaling pathway 34 (12/21) 54 (22/32)

Gap junction 27 (14/14) 17 (13/4)

Adherens junction 22 (11/11) 15 (10/5)

Pathways are listed that are significantly (p<0.05) enriched in at least two cell line systems. The numbers in

brackets indicate up-/down-regulated genes (>2-fold; p<0.05). Comparison is performed from pooled data

sets from early and late passages.

doi:10.1371/journal.pone.0125611.t002
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(Table 2) and both pathways are known to play an important role in bone development [29].
Genes involved in these pathways were also deregulated after serial passaging of parental and/
or metastatic cell lines (Table I in S1 File), with the SAOS/LM5 cell system being the most af-
fected. Therefore, we performed again individual metastatic versus parental comparisons of
early and late data sets that revealed significant enrichment of up-regulated genes that belong
to "Hedgehog signaling pathway" (3 of 4 comparisons) in all three cell line systems (Table J in
S1 File). Up-regulation of the "WNT signaling pathway" was observed in LM8 (3 comparisons)
and 143B cells (4 comparisons). The combined lists of up-regulated genes (>2-fold; p<0.05)
that are regulated under at least three comparisons together with the fold regulation is shown
in Table K in S1 File. In the SAOS/LM5, HOS/143B and Dunn/LM8 cell systems 17, 24 and 17
genes, respectively, belonging to "Wnt signaling pathway" and/or "Hedgehog signaling path-
way" were up-regulated after selection for increased metastatic potential. In the SAOS/LM5,
HOS/143B and Dunn/LM8 cell systems 7 (41%), 18 (75%) and 10 (59%) genes, respectively,
were significantly up-regulated in all four comparisons. This is consistent with the observation
that in the SAOS/LM5 cell system, 11 of the 17 listed genes (65%) were also deregulated after
serial passaging, whereas in the HOS/143B and Dunn/LM8 cell system only 21% and 18%, re-
spectively, of the genes were differentially expressed upon serial passaging. IHH, WNT10B and
TCF7 were up-regulated in all three metastatic cell lines (Fig 3). The osteoblastic LM5 and
LM8 cells showed the highest overlap in up-regulated genes (47%), reflected by five additional
genes (FZD7, GLI2, NKD2, WNT1 and WNT11) that were found up-regulated in both cell
lines. In summary, by compensation for the gene shift during culture, the analysis applied in
the present study allowed the identification of genes involved in Hedgehog and WNT signaling
pathways that were found up-regulated as a consequence of increased metastatic activity in all
three cell line systems despite the limited stability of the investigated cell lines in culture.

Discussion
The research in the field of OS is hampered by many circumstances. OS is a rare disease, mor-
phologically heterogeneous and characterized by chromosomal instability that can include a
chromothripsis-like pattern (CTLP) [3], which further increases the cell diversity within a
given tumor specimen. There are a few established OS cell lines available that have been propa-
gated in vitro for many doublings unknown in number since the isolation from the primary
tumor. Therefore, there is an inherent risk for selection of certain cellular sub-clones by the in
vitro propagation, e.g. through changes in cellular adhesion properties or proliferation rates as
a consequence of ongoing genomic instability with the potential for altered gene expression
and, as a result cellular in vitro and in vivo behavior. We therefore set out to investigate the
gene expression stability during culture of three frequently used OS cell line systems, consisting
of parental cell lines with low or moderate metastatic potential and derivatives thereof with in-
creased metastatic potential. Two of the metastatic cell lines, the human LM5 [5] and mouse
LM8 cells [9] were obtained by in vivo selection of parental SAOS and Dunn cells, respectively,
whereas the 143B cells were derived from the HOS cells by Ki-ras transformation [30].

When we analyzed under high stringency the gene expression of the cell lines in early and
late passages by microarray analysis, we realized that all cell lines, except the 143B cells, showed
instability in gene expression. Interestingly, the in vivo selected LM5 and LM8 cells showed at
high stringency (>2-fold; fdr<0.01) a 9- and 5-fold higher instability during serial passaging
than the parental cell lines, whereas the Ki-ras transformed 143B cells were apparently more
stable than the parental HOS cells. So far we have no explanation for these findings, and we
can only speculate that in vivo selected highly metastatic cell lines were the result of higher ge-
nomic instability that might contribute to altered gene expression and consequently an increase
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Fig 3. Up-regulated genes involved in hedgehog andWNT signaling in metastatic cell lines. Indicated
genes are up-regulated (>2-fold; p<0.05) in at least three passage comparisons. Genes up-regulated in four
passage comparisons are shown in bold. Genes marked in red are up-regulated in all three metastatic cell
lines. Genes marked in purple, blue and green are shared by LM5 and LM8, LM5 and143B and LM8 and
143B, respectively.

doi:10.1371/journal.pone.0125611.g003
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in metastatic activity. This would be in line with the observed inverse correlation of genome
complexity with patients’ survival in sarcomas and some other cancer entities [31,32]. Ki-ras
transformed 143B cells, on the other hand, might have been in vitro selected during culture as a
genetically relatively stable sub-clone characterized by higher proliferation rate (not shown)
than the parental HOS cells.

Chromosomal instability resulting in altered gene expression during culture was also evi-
dent especially in the SAOS/LM5 cell system, where differentially expressed genes significantly
clustered on certain chromosomes or even in cytobands. We therefore investigated chromo-
somal imbalance by assessing CN gains and losses by aCGH analysis in these cells during cul-
ture. Both cell lines showed indeed ongoing chromosomal imbalance that correlated in part
with altered gene expression. Interestingly, a partial common change in both, the gene expres-
sion and the chromosomal imbalance, was observed during culture, indicating that these pro-
cesses may not randomly occur in these two cell lines. Significant clustering of differentially
expressed genes on distinct chromosomes (>2-fold; fdr<0.01) was less evident in the other
two cell line systems, suggesting that other mechanisms are employed. Interestingly, genes en-
coding products important for "Focal adhesion" were deregulated in all cell lines, except for the
apparently stable cell line 143B. Other pathways, e.g. "ECM–receptor interaction" were also sig-
nificantly deregulated in some cell lines, indicating that indeed adhesive selection during cul-
ture on plastic ware may alter the composition of cell populations with time during in vitro
culture. The high degree of chromosomal instability during in vitro culture observed here dif-
fers from observations in mouse xenograft sarcoma cultures also including OS samples [33].

In light of the observed instability in gene expression in OS cell lines during culture, the
question arises whether a prediction of metastasis-relevant genes can be made by comparing
differentially expressed genes in parental cell lines and their metastatic derivatives. In an analy-
sis in which data sets of early and late passaged cells were pooled before they were analyzed for
potential metastasis relevant genes, the number of genes regulated during selection for in-
creased metastatic activity was 3-fold higher than that observed after serial passaging of the
more unstable metastatic cell line. A pathway analysis of these pooled data sets revealed enrich-
ment of genes involved in "Pathways in cancer" and "Wnt signaling pathway" in all three cell
line systems, and in "Hedgehog signaling pathway" in two cell line systems. However, we also
observed deregulation of genes belonging to these pathways during serial passaging of both the
parental and metastatic cell lines. In an attempt to compensate for this shift in gene expression
after serial passaging, we performed the comparison between high and low metastatic cell lines
with all combinations of passaging data set comparisons (late/late, late/early, early/late and
early/early). Resulting gene list for genes involved in "Pathways in cancer" revealed 14, 58 and
29 genes that were consistently (in all four comparisons) regulated in metastatic LM5, 143B
and LM8 cells, respectively, compared to parental cell lines (Table H in S1 File). For the analy-
sis of genes involved in "Hedgehog signaling" and "Wnt signaling pathway" the stringency was
released to genes that were consistently regulated in at least three comparisons, as we observed
deregulation of many of these genes also after serial passaging, especially in the SAOS/LM5 sys-
tem. Here, we observed enrichment of 17, 24 and 17 up-regulated genes belonging to the
"Hedgehog signaling" and/or "Wnt signaling pathway" in metastatic LM5, 143B and LM8 cells,
respectively (Table K in S1 File and Fig 3).

The hedgehog (HH) signaling pathway includes among other components the secreted in-
tercellular HH signaling proteins (IHH, DHH, SHH), the transmembrane HH receptors
PTCH1 and -2 that, in the absence of ligands, constitutively repress the transmembrane recep-
tor smoothened (SMO) and downstream the nuclear translocation of GLI family of zinc finger
transcriptional regulators (for review see [34]; for KEGG pathway maps and gene lists see Fig
C in S1 File). The canonical WNT signaling pathway includes among others the secreted WNT
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family of ligands, the frizzled (FZD) family of transmembrane receptors and co-receptors
LRP5 and -6, the cytosolic DVL family of adaptor proteins that, in the presence of WNT ligand,
releases GSK3 from the β-catenin destruction complex, which results in its nuclear transloca-
tion and the formation of a transcriptional complex together with TCF/LEF and finally acti-
vates target genes (for review see [35]). Both the HH andWNT signaling pathways play an
important role in endochondral ossification and osteoblast maturation [29]. In OS there is ac-
cumulating evidence for the involvement of both pathways in tumor development and/or pro-
gression [36–39]. Here, we have identified common up-regulation of IHH, WNT10B and
TCF7 in the metastatic LM5, LM8 and 143B cells compared to the parental cell lines.

In the HH signaling pathway, downstream of up-regulated IHH, PTCH1 or -2 were found
up-regulated in LM5 and LM8 cells, respectively, together with GLI2. To this end, HH proteins
have been shown to be over-expressed in OS cell lines compared to normal human bone [40]
and PTCH1 was over-expressed in human OS biopsies and cell lines compared to normal
human bone [40–42]. This indicates that an autocrine HH signaling may be involved in OS tu-
morigenesis. Downstream, GLI1 and -2 were shown over-expressed in OS cell lines compared
to normal human bone [40–42] and GLI2 was also over-expressed in human OS biopsies
[40,41]. Silencing of GLI2 inhibited OS tumor formation in nude mice [40,41] and arsenic tri-
oxide, an inhibitor of GLI2 transcription, also reduced primary OS tumor formation in an OS
mouse model [43]. Moreover, increased GLI2 expression correlated with poor survival of OS
patients, indicating that GLI2 also contributes to tumor progression [42]. BMP2, a downstream
target of GLI, was found up-regulated in 143B cells, and BMP2 was also increased in metastatic
K7M2 compared to parental K12 OS cells [44]. Reanalysis of our Affymetrix arrays [4] revealed
also increased PTCH1 expression in metastatic M132 and MG63-M8 compared to parental
HUO9 and MG63 OS cells, respectively. Increased BMP2 expression was confirmed in K7M2
and also found in M132 OS cells. Taken together, the results point to an important role of up-
regulated HH signaling in OS progression.

In the WNT signaling pathway, besides the commonly up-regulated WNT10B, several
other WNT ligands were found to be up-regulated together with the FZD7 or -8 receptors (Fig
3). To this end, OS cells were shown to express several components of the WNT signaling path-
way and the chemotactic response to exogenous WNT was increased in a mouse metastatic OS
cell line compared to the parental cells with low metastatic potential, and increased WNT10B
expression showed a trend (n = 44; P = 0.13) to shorter survival in patients [45,46]. An anti-
body to WNT1 induced cell death in sarcoma cells including OS [47]. Silencing of FHL2, a β-
catenin interacting protein [48], reduced WNT signaling in OS cells, the expression of
WNT5A andWNT10B and tumor formation and lung metastasis in a mouse OS model [49].
Silencing of WNT5A reduced the invasive properties of SAOS cells and WNT5A expression
correlated with Enneking surgical stage and metastasis [50,51]. WNT5A was also over-express-
ed in metastatic sub-lines of the low metastatic human HUO9 OS cells [52] and in metastatic
K7M2 compared to parental K12 cells, as revealed by the analysis of microarray data described
in [4]. To our knowledge, no reports link altered FZD expression to OS tumor progression, but
the expression of LRP5, a co-receptor for FZD, correlated with OS metastasis and high expres-
sion showed a trend (N = 44; P = 0.07) to shorter event free survival [46]. Interestingly, FZD7
was also found up-regulated in metastatic M132 and K7M2 compared to respective parental
HUO9 and K12 OS cells [4]. Moreover, a dominant negative LRP5 mutant reduced tumor and
metastasis formation in an experimental OS mouse model [53]. Downstream of the WNT re-
ceptors, the adaptor proteins DVL1 and DVL2 were up-regulated in 143B and LM8, respective-
ly, and further downstream TCF7 was up-regulated in all 3 metastatic cell lines, and in
metastatic M132 and K7M2 OS cells described in [4]. To this end, inhibition of TCF transcrip-
tional activity reduced tumor growth and potentiated the effect of doxorubicin in an OS mouse
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model [54]. Taken together, our results imply that also up-regulated WNT signaling might
contribute to metastasis formation in OS.

In conclusion, tumor derived cell lines are essential models to study biological aspects of
malignancies, especially since they are amenable to genetic and pharmacological manipulation
and an analysis of induced changes (e.g. DNA, gene expression, cell viability and morphology).
However, cell lines inherently are the product of biological selection processes related to malig-
nant transformation and/or immortality, but also of selection for and adaptation to in vitro
conditions. The latter processes may be supported through an inherent genomic plasticity and
promote the deviation of the cell line’s genotype and phenotype from these of the original
tumor. Here, we have indeed observed instability of OS tumor cells during culture, which ham-
pers the analysis of e.g. metastasis-relevant genes. However, by analyzing gene expression pat-
terns of cells of different passages, we were able to identify up-regulated genes belonging to the
"Hedgehog signaling pathway" and "Wnt signaling pathway" that appear to contribute to ma-
lignant transformation of OS cells.

In view of the here observed in vitro instability of OS cell lines, we would recommend that,
in the future, the establishment of OS derived cells should not be based solely on in vitro propa-
gation. Alternatively, freezing of viable stocks of biopsy or resection derived material should be
envisaged. This can later be used for in vivo propagation in mice as patient-derived xenografts
that have been shown to be genetically more stable [33].

Supporting Information
S1 File. Supporting tables and figures. Table A in S1 File. Culture conditions for cell lines.
Difference (Δ) in passage number between late and early passage cells. Doublings were calculat-
ed based on 4.32 and 7.64 doublings at splitting ratios of 1:20 and 1:200, respectively. Table B
in S1 File. Distribution of genes on chromosomes in the human and mouse arrays. n.p., not
present in mouse; %, per cent of sum. Table C in S1 File. Primers used for real-time PCR analy-
sis. Table D in S1 File. Chromosomal localization of differentially expressed genes after serial
passaging and after selection for increased metastatic activity. Imbalances (p<0.01) of up- or
down-regulated genes (>2fold; p<0.05) on chromosomes are listed when the sum of up- and
down-regulated genes (in parenthesis) was>20. Analysis for metastasis-related genes was per-
formed on pooled data sets obtained from early and late passaged cells. n; number of affected
chromosomes. Preferential up-regulation is indicated in bold. Table E in S1 File. Chromosomal
macro-aberrations after serial in vitro passaging of SAOS and LM5 cells. Commonly affected
regions in SAOS and LM5 are indicated in yellow. Table F in S1 File. Correlation of regulated
genes after serial in vitro passaging of SAOS and LM5 cells in microarray analysis with CN
gains and losses in aCGH analysis. Fig A in S1 File. Chromosomal localization of regulated
genes that correlate with CN gains and losses. A) Up-regulated genes in late compared to early
SAOS that correlate with CN gain. B) Down-regulated genes in late compared to early SAOS
that correlate with CN loss. C) Up-regulated genes in late compared to early LM5 that correlate
with CN gain. D) Down-regulated genes in late compared to early LM5 that correlate with CN
loss. Table G in S1 File. Chromosomal macro-aberrations after selection for increased meta-
static activity in SAOS/LM5 cell system. The most affected regions are indicated in yellow. Fig
B in S1 File. Real-time PCR analysis. Comparison of commonly up-regulated genes belonging
to "Focal adhesion" in late versus early passaged SAOS and LM5 cells by microarray (MA) and
real-time (qPCR) analyses. Table H in S1 File. Regulated (>2-fold; p<0.05) genes after selec-
tion for increased metastatic activity that belong to "Pathways in cancer" and are regulated
under all passage-related comparisons. Table I in S1 File. Regulated genes (>2-fold; p<0.05)
after serial in vitro passaging that belong to the "Hedgehog signaling pathway" and/or "WNT
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signaling pathway". Comparison is late versus early passage. Genes indicated in red are also
regulated after selection for increased metastatic activity (Table K in S1 File). Table J in S1 File.
Enrichment of regulated genes after selection for increased metastatic potential that belong to
"Hedgehog signaling pathway" and "WNT signaling pathway" depending on individual com-
parisons of early and late passage data sets. Metastatic/parental; HH, "Hedgehog signaling
pathway"; WNT, "WNT signaling pathway"; Total, total number of regulated (>2-fold;
p<0.05) genes; Combined, combined gene lists of the four individual comparisons. Number of
regulated genes (p value). Significant enrichment (p<0.05) is indicated in red. Table K in S1
File. Up-regulation of genes that belong to "Hedgehog signaling pathway" and/or "WNT signal-
ing pathway" after selection for increased metastatic activity that are regulated (>2-fold;
p<0.05) under at least three passage-related comparisons. Numbers in red indicate fold
changes that do not meet the criteria>2-fold and/or p<0.05. Genes indicated in red were also
regulated after serial in vitro passaging in either the parental or metastatic cell line (Table H).
The means are calculated for all four comparisons. Fig C in S1 File. KEGG pathways.
(PDF)
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