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Abstract
Several studies have established an association between diabetes and alterations in bone

metabolism; however, the underlying mechanism is not well established. Although zinc is

recognized as a potential preventive agent against diabetes-induced bone loss, there is no

evidence demonstrating its effect in chronic diabetic conditions. This study evaluated the ef-

fects of zinc supplementation in a chronic (90 days) type 1 diabetes-induced bone-loss

model. Male Wistar rats were distributed in three groups: control, type 1 diabetes mellitus

(T1DM), and T1DM plus zinc supplementation (T1DMS). Serum biochemical analysis; tibia

histomorphometric, biomechanical, and collagen-content analyses; and femur mRNA ex-

pression were evaluated. Relative to T1DM, the zinc-supplemented group showed in-

creased histomorphometric parameters such as TbWi and BAr and decreased TbSp,

increased biomechanical parameters (maximum load, stiffness, ultimate strain, and

Young’s modulus), and increased type I collagen content. Interestingly, similar values for

these parameters were observed between the T1DMS and control groups. These results

demonstrate the protective effect of zinc on the maintenance of bone strength and flexibility.

In addition, downregulation ofOPG, COL1A, andMMP-9 genes was observed in T1DMS,

and the anabolic effects of zinc were evidenced by increased OC expression and serum

ALP activity, both related to osteoblastogenesis, demonstrating a positive effect on bone

formation. In contrast, T1DM showed excessive bone loss, observed through reduced histo-

morphometric and biomechanical parameters, characterizing diabetes-associated bone
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loss. The bone loss was also observed through upregulation ofOPG, COL1A, andMMP-9
genes. In conclusion, zinc showed a positive effect on the maintenance of bone architecture

and biomechanical parameters. Indeed, OC upregulation and control of expression ofOPG,

COL1A, andMMP-9mRNAs, even in chronic hyperglycemia, support an anabolic and pro-

tective effect of zinc under chronic diabetic conditions. Furthermore, these results indicate

that zinc supplementation could act as a complementary therapy in chronic T1DM.

Introduction
Type 1 diabetes mellitus (T1DM) is a chronic disease in which pancreatic beta cells are selec-
tively destroyed, leading to chronic hyperglycemia [1], and several consequential long-term
vascular complications such as retinopathy, neuropathy, and nephropathy have been reported
[1–3]. Although skeletal abnormalities and bone disease represent an overlooked complication
of diabetes, the relationship is well established and recognized as a complex pathogenesis in-
cluding mechanical, hormonal, and vascular factors involving an imbalance between bone for-
mation and resorption.

Diabetes-induced bone-loss mechanisms are not fully understood [4–7] although a variety
of bone-related changes are known to be influenced by hyperglycemia such as bone mineral
density, femoral neck geometry, microarchitecture (trabecular, cortical thickness, and bone
area), and biomechanical markers of bone turnover (ultimate strain, strength and load, stiff-
ness, and Young’s modulus) [3,8–11]. In addition, formation of the collagen network is affected
by an increase in matrix metalloproteinase (MMP) expression in diabetic conditions, especially
for MMP-9, which is considered a diabetogenic factor and is upregulated in T1DM, contribut-
ing to collagen degradation and resulting in low bone collagen content and poor bone bio-
mechanical integrity [12–15]. One study showed a decrease in bone mineral content (BMC)
associated with an increase in urinary calcium excretion in diabetic rats. Moreover, low BMC
in diabetic conditions has been associated with low osteocalcin (OC) levels, as this small non-
collagenous protein is produced by osteoblasts and is directly involved in bone inorganic ma-
trix development [16].

Several studies have reported controversial alterations in the RANK/RANKL/OPG (receptor
activator of nuclear factor kappa β/receptor activator of nuclear factor kappa β ligand/osteo-
protegerin) system in hyperglycemic conditions [2,4,8,17–28]. Some studies have shown an in-
crease in RANKLmRNA expression in diabetic bone [2] and decreases in a high-glucose in
vitromodel [18] and diabetic bone [20]. OPG expression has been shown to increase in young
T1DM patients [8], whereas a decrease in gene expression was also observed in T1DM patients
[4], in a T1DM animal model [19], and in an in vitro study [17].

As an alternative, investigators have used zinc supplementation for bone-loss prevention in
both healthy and hyperglycemic conditions because it is an essential element in bone metabo-
lism, acting as a cofactor for several enzymes and stimulating gene expression of various pro-
teins necessary for bone mineralization and collagenous structure development [10,21–25].

Studies involving in vitro and in vivomodels have evaluated the efficacy of zinc supplemen-
tation in preventing bone loss [22,23,26–28]. In vitro results have shown a stimulatory effect
on osteoblastogenesis through increases in DNA, collagen, calcium, insulin-like growth factor
1 (IGF-I), transforming growth factor beta 1 (TGF-β1), alkaline phosphatase (ALP) activity,
and OC [21–22]. Furthermore, an in vivo study involving acute T1DM-induced bone loss and
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zinc supplementation showed a significant effect of zinc on bone formation associated with an
increase in OCmRNA expression [23].

A positive effect of zinc on the recovery of bone architecture has been reported in acute dia-
betic conditions [23], and bone biomechanical tests in rats showed that zinc maintained overall
bone quality and increased fracture resistance [24–25]. Moreover, the effects of zinc on the
RANK/RANKL/OPG system has been reported by Yamaguchi [22], who demonstrated the in-
hibition of RANKL expression in pre-osteoclasts and the stimulation of OPG gene expression
in osteoblastic cells, which could act as a decoy receptor by binding to RANKL and preventing
RANK signaling.

Although a few reports have shown positive effects of zinc supplementation, all of these
studies were performed during an acute period between 7 and 21 days [23,29]. Our aim was to
evaluate the effect of zinc under long-term diabetic conditions to provide proof-of-concept for
the potential use of zinc supplementation in preventing chronic T1DM-induced bone loss. To
the best of our knowledge, this is the first study to evaluate the effects of zinc supplementation
over a period of 90 days, which represents a chronic model of diabetes, and provide evidence
that zinc ingested as dietary supplement can prevent bone loss through anabolic and osteo-pro-
tective effects. We show that this in vivo action results from the stimulation of bone formation
and decreased bone resorption as detected by histomorphometric, collagen-content, bio-
mechanical, and quantitative reverse transcription PCR (RT-qPCR) analyses. Together with
prior evidence showing a relationship between supplementation and bone metabolism, our
data provide compelling evidence for the therapeutic potential of zinc supplementation as a
complementary therapy against chronic T1DM-induced bone loss.

Methods

Experimental Protocol
All animal experiments and protocols were approved by the Committee on the Ethics of Ani-
mal Use and Care of the Federal University of Rio Grande do Norte (permit number 022/2009)
and the Committee on the Ethics in Research of the University of Ribeirão Preto (permit num-
ber 066/09). All procedures were carried out in strict accordance with the recommendations in
the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health
[30]. All surgery was performed under thiopental anesthesia, and all efforts were made to
minimize suffering.

Fifteen male Wistar rats weighing 220 ± 20 g were obtained from the Laboratory Animal Fa-
cility of the University of Ribeirão Preto, Ribeirão Preto, Brazil. During the study period, the
animals were housed in standard conditions (12 h light/dark cycle, 22–24°C, and 50–60% hu-
midity) with food and water ad libitum. After one week of acclimatization prior to the experi-
mental procedures, the rats were randomly assigned and equally distributed (five rats per
group) to three groups: control, T1DM, and T1DM plus zinc supplementation (T1DMS).

Experimental diabetes was induced by a single intravenous injection of streptozotocin (STZ,
Sigma-Aldrich, St. Louis, MO, USA) dissolved in freshly prepared Na citrate buffer (0.1 M, pH
4.5) at a dose of 40 mg/kg of body weight. Equal volumes of vehicle were injected in the control
rats. On day 0, i.e., day 5 after induction, blood samples were collected by tail bleeding, and gly-
cemia was assayed using an ACCU-CHEK Advantage glucometer (Roche Diagnostics, India-
napolis, IN, USA). Animals with blood glucose concentrations�250 mg/dL were considered
diabetic and started receiving a standard (control and T1DM) or supplemented diet (T1DMS).
The blood glucose concentrations and body weight were monitored fortnightly for 12 weeks.
Clinical diabetic signs such as polyphagia, polydipsia, polyuria, and body weight loss were also
monitored [31,32].
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Standard diets were formulated in accordance with rodent-specific rules established by the
American Institute of Nutrition in 1993 (AIN-93) [33]. Dietary ingredients were provided by
Rhoster Industry and Trade Ltd. (São Paulo, Brazil). The control and T1DM groups were fed
daily with 20 g of standard diet for 12 weeks. Because the AIN-93 standard diet contains 30 mg
zinc/kg diet, we supplemented the diet with 500 mg zinc/kg diet; thus, the T1DMS group was
fed a standard diet supplemented with 17-fold geometrically diluted ZnCO3. All animals in the
T1DMS group consumed 20 g of the supplemented diet daily during the 12 weeks of study, to-
taling 10.6 mg ZnCO3 ingestion daily.

Blood and tissue collection and routine biochemical analyses
All animals were euthanized by a lethal dose of thiopental (100 mg/kg), and blood samples
were obtained from the abdominal aorta. To prevent possible daily cyclic variations of the mea-
surements, all animals were euthanized between 7:00 am and 9:00 am. The femurs and tibias
were harvested and stored for subsequent total RNA extraction and histomorphometric, bio-
mechanical, and collagen-content analyses.

Serum glucose concentration and ALP activity were determined in triplicate using routine
methods (BioSystems Reagents and Instruments, Barcelona, Spain) and performed in an RA
50 spectrophotometer (Chemistry System Bayer Diagnostic, Dublin, Ireland). Serum zinc was
measured by atomic absorption spectroscopy using a Spectra AA-200 spectrophotometer (Var-
ian Canada, Georgetown, Ontario, Canada).

Histomorphometric analyses
The right tibia of each animal was fixed in a solution of 10% buffered formalin and processed
after decalcification in 7.5% nitric acid and embedding in paraffin following standard proce-
dures as described by Duarte et al. [34] with modifications. Longitudinal 7-μm sections were
stained with hematoxylin and eosin. The histomorphometric results are presented as the
means of four measurements of trabecular separation (TbSp, μm), trabecular width (TbWi,
μm) and trabecular bone area (BAr, %) obtained from the metadiaphyseal region using a
Nikon Lobophot microscope equipped with a 10× magnification ocular lens (Nikon, Tokyo,
Japan). After analysis using ImageJ 1.48v (National Institutes of Health, Bethesda, MD, USA),
the results were reported in μm. All parameters complied with the guidelines of the Nomencla-
ture Committee of the American Society of Bone and Mineral Research [35].

Collagen content
Paraffin-embedded samples were also used for collagen quantification by picrosirius red stain-
ing according to the procedure described by Rich andWhittaker [36] with modifications. To
evaluate the collagen content in sections stained with picrosirius red, four fields of the metadia-
physeal region were observed with a 10× magnification ocular lens in an AxioImager M2 mi-
croscope (Carl Zeiss, Jena, Germany). In each field, the percentages of tissue area stained in red
and green relative to the total tissue area were calculated according to the formula described by
Black et al. [37]. All analyses were performed using ImageJ 1.48v.

Biomechanical testing
Biomechanical analysis was performed on the left tibias previously stored at −80°C using
three-point bending mechanical tests according to the procedure described by Korres et al.
[12], with modifications. We used a servo hydraulic high-precision universal testing machine,
model AG-X 10 kN (Shimadzu Corporation, Tokyo, Japan). Tibias were placed horizontally on
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the frame with rounded edges at a distance of 30 mm. The load was applied at the mid-shaft of
the diaphysis using a punch with a rounded notch. The rate of the imposed displacement was
selected as 5 mm/min to simulate static loading conditions. The displacement was imposed
continuously until fracture. Failure in the load-displacement curves was defined and observed
by the propagation of a nearly vertical fracture starting almost universally at the lower cortical
bone surface. Ultimate load, stiffness, ultimate stress, ultimate strain, and Young’s modulus
were recorded.

RNA extraction and RT-qPCR
The right femurs of the animals, previously stored at −80°C, were pulverized, and total RNA
was extracted using an RNeasy Plus Mini Kit (Qiagen, Valencia, CA, USA). The RNA integrity
was assessed by electrophoresis in 1.0% agarose gels with MOPS buffer, concentrations were
measured using a Nanodrop ND-1000 spectrophotometer (Thermo Scientific, Wilmington,
DE, USA), and RNA was stored at −80°C. Synthesis of cDNA was performed with 1 μg total
RNA using a High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster
City, CA, USA), according to the manufacturer’s protocol in a MyCycler Thermal Cycler (Bio-
Rad, Philadelphia, PA, USA). The cDNA was obtained in a final volume of 50 μL and stored at
−20°C until it was used for the RT-qPCR expression assays.

RT-qPCR was performed on the following genes using the TaqMan Assay: RANKL
(Rn00589289_m1),OPG (Rn00563499_m1),OC (Rn00566386_g1), COL1A1 (Rn01463848_m1),
MMP-2 (Rn01538170_m1),MMP-9 (Rn00579162_m1), and glyceraldehyde-3-phosphate dehy-
drogenase (GAPDH, Rn00579162_m1) (Applied Biosystems). PCR assays were carried out in
96-well plates using a 7500 Fast Real-time PCR System (Applied Biosystems). Relative expression
was calculated using the 2-ΔΔCTmethod [38], and results are presented as fold-change versus the
control group mean values, normalized to GAPDH; Ct did not show significant variation between
the control and T1DM groups.

Statistical analyses
Statistical analyses were performed with GraphPad PRISM version 5.0 (GraphPad Software
Inc., San Diego, CA, USA). In all data, the normality test failed, and we therefore used the non-
parametric Kruskal-Wallis ANOVA on Ranks and Dunn’s post-hoc method of multiple com-
parisons versus control. p-values< 0.05 were considered statistically significant.

Results

Biochemical analyses and body weight
Biochemical analyses and body weight results are shown in Table 1. As expected, blood glucose
concentrations in T1DM and T1DMS rats were than those in control rats (p< 0.001). Hyper-
glycemia was associated with polyphagia, polydipsia, and polyuria (data not shown) in the dia-
betic rats, indicating that experimental diabetes was successfully induced. The baseline body
weight at the beginning of the study was similar in control and diabetic groups (average
220 ± 20 g). However, after 90 days of the experimental period, which represents a chronic con-
dition, T1DM and T1DMS groups showed significantly reduced body weight (p< 0.001).

No significant difference was observed in serum ALP activity between the T1DM and con-
trol groups. However, ALP activity was significantly higher in the T1DMS group than in the
control and T1DM groups (p< 0.001).
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Serum zinc concentration was decreased in T1DM rats compared to control rats (p< 0.05),
and we observed the expected increase in serum zinc concentration in T1DMS rats compared
to the control and T1DM groups (p< 0.01).

Histological and histomorphometric analyses
Histological and histomorphometric results are shown in Figs 1 and 2, respectively. Increased
TbSp (Fig 2A) and decreased TbWi (Fig 2B) and BAr (Fig 2C) were observed in the T1DM
group compared to the control group (p< 0.001, p< 0.001, and p< 0.01, respectively). The
T1DMS group showed reduced TbSp and increased TbWi and BAr compared to the T1DM
group (Fig 1, p< 0.001, p< 0.001, and p< 0.05, respectively). In addition, T1DMS rats ex-
hibited similar results when compared to control rats. Representative histological data are
shown in Fig 1.

Collagen content
The collagen analysis results are shown in Fig 3. We observed a decrease in total collagen in
T1DM rats compared to control rats (Fig 3A, p< 0.05), whereas there was no difference be-
tween T1DMS rats and control rats. We also found a decrease in type I collagen in T1DM rats
compared to controls (Fig 3B, p< 0.05), and T1DMS results were increased 1.2-fold compared
to the T1DM group; however, this increase was not statistically significant. No differences were
observed for type III collagen (Fig 3C).

Table 1. Biochemical analyses and body weight of control, diabetic, and diabetic plus zinc supple-
mentation groups.

Control T1DM T1DMS

Body Weight(g) 336.00±20.74 153.40±76.51*/### 157±14.44*/###

Glucose(mg/dL) 97.40±18.96 598.40±76.51*/### 604.8±165.80*/###

ALP(U/L) 174.80±126.1 346.20±208.40 1803±474.70*/###

Zinc(μg mL−1) 1.61±0.3889 0.79±0.33*/# 2.71±0.47*/##**/##

T1DM, type 1 diabetes mellitus; T1DMS, T1DM plus zinc supplementation; ALP, alkaline phosphatase. All

data are shown as means ± SEM. Comparisons between groups were analyzed with Kruskal-Wallis

ANOVA on Ranks and Dunn’s post-hoc.

*/# p < 0.05 vs. control group;

*/## p < 0.01 vs. control group;

*/### p < 0.001 vs. control group;

**/## p < 0.01 vs. T1DM group.

doi:10.1371/journal.pone.0125349.t001

Fig 1. Histological analyses of the right tibias.Hematoxylin and eosin staining of longitudinal sections of
tibias of the control (A), type 1 diabetes mellitus (T1DM) (B), and T1DM plus zinc supplementation (T1DMS)
(C) groups. TB, trabecular bone; MS, medullary space; magnification 20X, scale bar: 50 μm.

doi:10.1371/journal.pone.0125349.g001
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Fig 2. Histomorphometric analyses of structural bone architecture. Trabecular separation (TbSP, μm)
(A), trabecular width (TbWi, μm) (B), and trabecular bone area (BAr, %) (C) of control, type 1 diabetes mellitus
(T1DM), and T1DM plus zinc supplementation (T1DMS) rats. All data are shown as means ± SEM.
Comparisons between groups were analyzed with Kruskal-Wallis ANOVA on Ranks and Dunn’s post-hoc.
p < 0.01*/## vs. control group; p < 0.001*/### vs. control group; p < 0.05 **/# vs. T1DM group; p < 0.001**/###

vs. T1DM group.

doi:10.1371/journal.pone.0125349.g002

Protection against T1DM-Induced Bone Loss by Zinc Supplementation

PLOS ONE | DOI:10.1371/journal.pone.0125349 May 1, 2015 7 / 18



Fig 3. Assessment of collagen deposition by picrosirius red staining. Tibia staining for collagen content
(picrosirius red). Total collagen (A), collagen type I (B), and collagen type III (C) contents of the control, type 1
diabetes mellitus (T1DM), and T1DM plus zinc supplementation (T1DMS) groups. All data are shown as
means ± SEM. Comparisons between groups were analyzed with Kruskal-Wallis ANOVA on Ranks and
Dunn’s post-hoc. p < 0.05 */# vs. control group.

doi:10.1371/journal.pone.0125349.g003
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Biomechanical testing data
Biomechanical parameters are shown in Table 2. Significantly decreased values for ultimate
load, stiffness, ultimate strain, and Young’s modulus in the T1DM group was observed relative
to control values (p< 0.01, p< 0.01, p< 0.05, and p< 0.05, respectively). Interestingly, the
values of these parameters were higher (2-, 1.5-, 1.2-, and 1.2-fold, respectively) in the T1DMS
group than in the T1DM group. In addition, we observed that ultimate load, ultimate strain,
and Young’s modulus values in the T1DMS group were similar to the control values. The stiff-
ness was uniquely decreased in T1DMS rats compared to controls (p< 0.05) but showed a
1.2-fold increase compared to T1DM rats. No significant difference was observed in the ulti-
mate stress parameter.

mRNA expression data
Molecular bone metabolic parameters are summarized in Fig 4. The mRNA expression levels
of OPG, COL1A, andMMP-9 (Fig 4B, 4D, and 4F, respectively) were increased 37.8-, 17.3-,
and 344.4-fold, respectively (p< 0.05, p< 0.01, and p< 0.01, respectively) in T1DM rats com-
pared with control rats. Interestingly, the T1DMS group showed decreased expression of these
genes (31.1-, 8.3-, and 313.9-fold, respectively) in comparison to T1DM rats, although this re-
sult was not statistically significant. In addition, no alterations were observed in these genes be-
tween the control and T1DMS groups (Fig 4B, 4D and 4F) except the OCmRNA expression,
which showed a 17.9-fold increase (p< 0.05) compared with the control group (Fig 4C). No
significant difference was found forMMP-2mRNA expression between the groups.

Discussion
Several studies have shown that bone turnover and skeletal integrity are affected by diabetes;
however, the underlying mechanism of diabetes-induced bone loss remains elusive, as does the
influence of disease stage in its development [3,4,17,34].

The STZ-induced diabetes model has been extensively used, making it particularly useful
for building upon and comparing study results [2,10,23,29,37,39–42]. The benefits of the STZ-
induced diabetic model include the ability to induce diabetes in a genetically altered animal,
maintain the model in a controlled environment, regularly monitor and directly measure
serum and bone factors, obtain bone samples for high-resolution analyses, and choose the time
of diabetic induction (compared to waiting for diabetes to occur in spontaneous models) [2].

Table 2. Tibia biomechanical parameters of control, diabetic, and diabetic plus zinc supplementation
groups.

Property/Groups Control T1DM T1DMS

Ultimate load(N) 82.85±8.39 48.42±14.71*/## 66.80±9.04

Stiffness(N/mm) 133.21±4.21 86.95±16.80*/## 102.21±6.75*/#

Ultimate Stress(N/mm2) 413.50±24.32 392.90±122.60 379.60±108.80

Ultimate Strain(%) 1.67±0.24 1.23±0.26*/# 1.52±0.18

Young´s modulus(GPa) 24.04±1.58 20.07±1.83*/# 23.37±3.21

T1DM, type 1 diabetes mellitus; T1DMS, T1DM plus zinc supplementation. All data are shown as

means ± SEM. Comparisons between groups were analyzed with Kruskal-Wallis ANOVA on Ranks and

Dunn’s post-hoc.

*/# p < 0.05 vs. control group;

*/## p < 0.01 vs. control group.

doi:10.1371/journal.pone.0125349.t002
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Indeed, STZ induction of diabetes causes a bone phenotype consistent with human studies
[8,43–49] and with spontaneous mouse models such as NODmice [50], confirming the utility
of the STZ model for studying mechanisms of T1-diabetes-induced bone loss.

Several studies have used zinc supplementation to preserve bone structure and metabolism,
as zinc is an essential nutrient for human and animal growth [22,25,26,51,52]. Zinc deficiency
during adolescence may increase the risk of bone disease later in life due to reduced mineraliza-
tion during the consolidation phase of bone mineral acquisition [53]. The protective effect of
zinc on bone is suggested primarily by its stimulatory effect on cell proliferation, differentia-
tion, and mineralization in osteoblasts, thereby promoting bone formation [21,22].

Fig 4. Relative mRNA expression quantification. RANKL (A),OPG (B),OC (C), COL1A (D),MMP-2 (E),
andMMP-9 (F) mRNA expression in bone tissue of control, type 1 diabetes mellitus (T1DM), and T1DM plus
zinc supplementation (T1DMS) rats. All data are expressed as fold-change vs. control group values,
normalized toGAPDH. Comparisons between groups were analyzed with Kruskal-Wallis ANOVA on Ranks
and Dunn’s post-hoc. p < 0.05*/# vs. control group; p < 0.01*/## vs. control group.

doi:10.1371/journal.pone.0125349.g004
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Additionally, zinc may stimulate the expression of various cellular proteins, including Runx2/
Cbfa1 (Runt-related transcription factor 2/Core binding factor alpha 1), type I collagen, ALP,
and OC. Zinc also increases cellular production of IGF-I and TGF-β1. Moreover, this ion also
suppresses the osteoclast-like cell formation induced by various bone-resorbing factors in bone
marrow culture (e.g., RANKL in pre-osteoclasts) and stimulates OPG gene expression in osteo-
blastic cells, which can inhibit the binding of RANKL to RANK in pre-osteoclastic cells [21].

Herein, we chose to evaluate the zinc protective effect for a period of 90 days of T1DM be-
cause chronic high glucose exposure may present an extreme condition for studying key as-
pects of bone alteration such as architecture, biomechanics, and gene regulation.

Although the beneficial influence of zinc is recognized in T1DM-related bone loss, few stud-
ies have evaluated the effect of zinc supplementation in chronic conditions [23,27,29,42,54,55].
The majority of studies have shown a zinc protective effect in short-term T1DM animal mod-
els, restoring calcium content, ALP activity, and DNA content after 14 days of T1DM onset
[29,42]. Furthermore, zinc prevented diabetes-induced osteoclastogenesis and decreased osteo-
blastogenesis two weeks after diabetes onset, as evaluated by histomorphometric, biochemical,
and molecular parameters [23].

Our results demonstrate significant bone loss associated with long-term T1DM and, because
zinc supplementation was initiated following diabetes onset, suggest an important protective
effect of zinc against excessive bone loss in chronic T1DM.

The protective effect of zinc was supported through histomorphometric parameters, which
showed decreased TbSp and increased TbWi and BAr in T1DMS rats relative to T1DM rats.
These results emphasize the importance of supplementation as an anabolic and protective
agent against reduction in bone architecture. Similarly, in a T1DM-induced bone loss model
over 14 days, Iitsuka et al. [23] showed recovery of BAr, TbWi, and the number of osteoclasts
and osteoblasts in the supplemented group, suggesting that zinc restored diabetes-induced
osteopenia by acting on both bone formation and resorption through regulation of osteoclast
and osteoblast numbers. Furthermore, in normal rats, Ovesen et al. [24] found that alimentary
zinc deficiency in growing rats reduced distal femoral metaphysis and femoral diaphysis during
four weeks of study.

The protective effect of zinc supplementation was highlighted by altered trabecular struc-
tures (increased TbSp and diminished TbWi and BAr) in the T1DM group, evidencing nega-
tive effects of hyperglycemia on bone structure and leading to significant bone loss. These
results corroborate a previous 120-day study in our laboratory [34] in which we observed a sig-
nificant increase in TbSp, a decrease in TbWi, and a progressive ~77% reduction in BAr ac-
companied by a proportional expansion of the marrow space. Other investigators observed
alterations in TbWi and TbSp two and eight weeks after the onset of experimental diabetes, re-
spectively [39,56]. Moreover, our results are consistent with μ-CT analyses by Thrailkill et al.
[3] and Martin and McCabe [57], even though these studies employed a short-term
diabetes model.

In addition to histomorphometric analyses, the biomechanical integrity of bone is an impor-
tant factor affecting the risk of fracture. Diabetes-induced structural abnormalities that predis-
pose bone to fractures may occur spontaneously or with minimal trauma in patients [58].

In the present study, zinc supplementation prevented diabetes-induced alterations: the
T1DMS group showed increased mineralization content (stiffness parameter) and bone
strength (ultimate stress parameter), which may reflect the bone resistance to fracture, com-
pared to the T1DM group, and values were similar between the T1DMS and control groups
[59]. Furthermore, maintenance of the inorganic matrix may preserve the bone flexibility ob-
served through increased ultimate strain and Young’s modulus in T1DMS rats compared to
T1DM rats. Young’s modulus is a basic material property that is independent of geometry,
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represents the ability of bone to resist deformation, and is associated with ultimate strain in re-
flecting important parameters related to bone flexural conditions [59].

Only few studies have investigated the effect of zinc on bone biomechanical parameters,
however in a non-diabetic rodent model [24,25]. To the best of our knowledge, the present
study is the first to evaluate the effect of zinc supplementation on chronic T1DM-induced bone
loss through bone biomechanical parameters.

The zinc protective effect was supported through reduced values for biomechanical parame-
ters (stiffness, ultimate stress, ultimate strain, and Young’s modulus) in the T1DM group.
These results suggest that the bone integrity changes observed under conditions of high glucose
exposure may be attributed to interrelated factors such as macroscopic structure (size and
shape), architecture (cortical and tissue), and bone substance (organic and inorganic compo-
nents), all of which may influence mechanical strength.

Additionally, the reduction in biomechanical parameters in T1DM rats agrees with studies
using similar tests at seven [11] and eight weeks after diabetes confirmation [10,12].

Interestingly, the increase in biomechanical parameters was associated with increased colla-
gen content in the zinc supplementation group, further suggesting an important role for zinc
in maintenance of the organic matrix during this long-term (90 days) study. However, for the
T1DM group, the reduction in type I collagen content supports the low biomechanical proper-
ties found after 90 days of study.

Finally, we analyzed mRNA expression levels of key genes associated with bone metabolism.
To the best of our knowledge, this is the first study to evaluate the effects of zinc supplementa-
tion in a chronic model of diabetes-induced bone loss (90 days) through the analysis of
RANKL, OPG, OC, COL1A,MMP-2, andMMP-9mRNA expression.

MMP-9 was downregulated in the T1DMS group relative to the T1DM group, indicating
maintenance of bone type I collagen and correlating with the greater flexural strength observed
in zinc-supplemented rats. On the other hand, the upregulation ofMMP-9 and the low bio-
mechanical and histomorphometric properties of the T1DM group suggest bone loss under the
hyperglycemic condition. This hypothesis is supported by the association between MMP-9 and
degradation of bone collagens in the subosteoclastic microenvironment and its potential role in
normal bone remodeling and pathologic bone resorption [60].

MMP-9, a proteolytic member of the metalloproteinase family also named 92-kD type IV
collagenase (gelatinase B), can degrade the components of the bone organic matrix and pro-
cess both helical and denatured forms of type I collagen [13,60]. It is expressed at high levels
in rabbit and human osteoclasts and in multinucleated cells of giant-cell tumors of bone [14].
Okada et al. [61] reported that MMP-9 has relatively broad substrate specificity, hydrolyzing
collagen types I, III, IV, and V, and gelatins, and 50–80% of its full activity is retained at acid-
ic pH. Grigoriadis et al. [62] showed that the expression of this enzyme is altered by bone-
resorption activity.

Studies in non-diabetic osteoporotic bone demonstrated that osteoclasts can synthesize
MMP-9 and exocytose it to degrade bone matrix components, especially type I collagen. Inter-
estingly, some cells lining the surface of the bone matrix also express MMP-9, which is indirectly
involved in bone resorption by removing the osteoid layer in this context, thereby exposing min-
eralized bone matrix and facilitating the adhesion of osteoclasts [63]. Although the hyperexpres-
sion of MMP-9 may contribute to collagen degradation, an important role for MMP-9 in
healthy bone was reported by Nyman et al. [13] using MMP-9−/−mice, which showed changes
in the trabecular architecture and cortical structure compared with wild-type mice, suggesting
that bone quality is influenced by the MMPs expressed by osteoblasts and osteoclasts.

Thus, the reduced expression of MMP-9 associated with maintenance of histomorpho-
metric and biomechanical parameters in the zinc-supplemented group suggests that zinc
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prevents bone resorption. In comparison, the high-level of MMP-9 expression in bone tissues
of T1DM rats and reduced collagen content reinforce the association of MMPs with collagen in
osteoporotic bone.

Furthermore, the increases in collagen density, trabecular spaces, Young’s modulus, and ul-
timate strain parameters and the reducedMMP-9 gene expression in the T1DMS group com-
pared to the T1DM group and the similarity of these values to the control group suggest that
zinc supplementation protects against organic matrix degradation and bone loss.

The expression of COL1A in bone tissues of T1DMS rats was lower than that in T1DM rats,
suggesting a positive effect on zinc on maintenance of bone metabolism through bone architec-
ture (histomorphometric parameters) and bone strength and flexibility (biomechanical param-
eters) similar to the control group. Several studies have previously observed similar results
regarding the protective effect of zinc supplementation against collagen degradation in in vitro
studies [28,64], clinical studies in patients [55,65], and animal models [23,51].

COL1A expression in bone tissues of T1DM rats was upregulated, possibly indicating an in-
crease in bone loss associated with a chronic diabetic condition. These results indicate high
bone turnover as an alternative mechanism to maintenance of bone homeostasis that was not
necessary for the T1DMS group, providing further support for the protective effect of zinc on
the bone metabolism. Similar to our T1DM results, the COL1A response was also observed in
in vitro studies, suggesting that hyperglycemia can affect bone tissue by inducing excessive pro-
duction of osteoid matrix [17]. This observation may also be explained by the increase in
MMP-9mRNA that possibly leads to degradation of the organic matrix in hyperglycemic con-
ditions. Moreover, McCabe et al. [66] reported that the chronic exposure of osteoblasts to hy-
perglycemic cell culture media increased collagen production and altered the cellular
phenotype toward that of osteocytes [67].

The discovery of RANK, RANKL, and OPG, factors involved in the control of osteoclast dif-
ferentiation and osteoporosis, has advanced bone research into a new era. The RANK/
RANKL/OPG system is an important signal transduction pathway that regulates bone resorp-
tion, modeling, and remodeling. The binding of OPG to RANKL inhibits binding between
RANKL and RANK, thereby preventing osteoclast precursor differentiation and fusion to form
mature osteoclasts. Thus, the relative concentrations of RANKL and OPG in bone are a major
determinant of bone mass and strength.

OPG expression was downregulated in the T1DMS group, suggesting that bone homeostasis
is maintained by zinc supplementation even in chronic hyperglycemic conditions. Moreover,
the zinc effect on OPGmRNA expression is controversial. Iitsuka et al. [23] showed unaltered
OPGmRNA expression during zinc supplementation for 14 days in a T1DM-induced bone
loss animal model, and Fong et al. [68] reported similar OPGmRNA expression between post-
natal and control groups. However, a review by Yamaguchi [22] showed that zinc plays an im-
portant role in bone growth by stimulating the expression of OPGmRNA in osteoblastic cells.

We observed upregulation of OPG in a chronic hyperglycemic condition, suggesting an at-
tempted protective response against excessive bone loss induced by diabetic conditions. When
OPG expression is increased relative to RANKL expression, the latter is expected to become un-
available to bind RANK in pre-osteoclasts, resulting in reduced bone resorption [17]. OPG
upregulation in T1DM was also reported in T1DM patients in a previous study in our laborato-
ry, indicating that diabetes during pubertal growth, which is associated with proinflammatory
processes, may cause deficient bone-mass gain [8]. Moreover, an in vitro study has demonstrat-
ed excessive OPG synthesis at different glucose concentrations [17]. Thus, the upregulation of
OPG expression in T1DM rats suggests that this increase protects the bone against resorption
by inhibiting osteoclast differentiation mediated by RANK-RANKL binding. Although the
present results show that the upregulation of OPG in T1DM rats did not result in detectable
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protection against trabecular structures, the loss of bone mass may have been more pro-
nounced without this increased expression.

These results suggest an important role for zinc on bone protection in chronic T1DM and
are supported by maintenance of bone architecture (histomorphometric and collagen content)
and biomechanical proprieties and downregulation of genes involved in organic matrix degra-
dation (MMP-9 and COL1A).

Zinc supplementation also showed an anabolic effect, as evidenced by OCmRNA upregula-
tion and increased serum ALP activity after the 90-day experimental period. OCmRNA is pri-
marily expressed by post-proliferating and terminally mature osteoblasts [69–72] and regulates
mineralization of the extracellular matrix [73–75]. ALP is an important serum marker associat-
ed with osteoblast activity and bone formation and is necessary for bone mineralization and de-
velopment of collagenous structures [76]. Thus, the upregulation of OC and increased serum
ALP activity are consistent with the hypothesis that zinc regulates osteoblastogenesis, suggest-
ing a possible induction of bone formation and mineralization [22]. Furthermore, these results
are consistent with Young’s modulus values showing a high resistance to fracture, supporting
the suggestion that zinc supplementation may protect the bone architecture in both mineral
and non-mineral content, leading to greater biomechanical strength.

In conclusion, zinc supplementation prevented bone loss in chronic T1DM rats as demon-
strated by the maintenance of bone homeostasis and bone architecture, strength, and flexibility.
In addition, zinc-induced OC upregulation and RANKL, OPG, COL1A, andMMP-9 downregu-
lation, even in chronic hyperglycemia, support a protective role for zinc in long-term diabetic
conditions through stimulating expression of the mineralizing phenotype in osteoblasts and re-
ducing expression of the resorptive phenotype in osteoclasts. Moreover, the protective zinc ef-
fect is supported after chronic hyperglycemia in T1DM leads to bone loss, as evidenced by
alterations in bone structures associated with poor bone quality.

Thus, these results suggest the therapeutic potential of zinc supplementation as a comple-
mentary therapy to prevent bone loss in patients with diabetes or other related chronic dis-
eases, resulting in better bone protection during growth as well as in adult and advanced ages.
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