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Abstract

Motivation

Experiments in which the effect of combined manipulations is compared with the effects of

their pure constituents have received a great deal of attention. Examples include the study

of combination therapies and the comparison of double and single knockout model organ-

isms. Often the effect of the combined manipulation is not a mere addition of the effects of

its constituents, with quite different forms of interplay between the constituents being possi-

ble. Yet, a well-formalized taxonomy of possible forms of interplay is lacking, let alone a sta-

tistical methodology to test for their presence in empirical data.

Results

Starting from a taxonomy of a broad range of forms of interplay between constituents of a

combined manipulation, we propose a sound statistical hypothesis testing framework to test

for the presence of each particular form of interplay. We illustrate the framework with analy-

ses of public gene expression data on the combined treatment of dendritic cells with curdlan

and GM-CSF and show that these lead to valuable insights into the mode of action of the

constituent treatments and their combination.

Availability and Implementation

R code implementing the statistical testing procedure for microarray gene expression data

is available as supplementary material. The data are available from the Gene Expression

Omnibus with accession number GSE32986.
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Introduction
An important theme in research on treatments, interventions, and other forms of manipula-
tions, is the study of combined manipulations. Examples include the study of multidrug
therapies and the study of double knockout model organisms. In such studies one typically in-
vestigates the effect of the combined manipulation and of its constituents on one or several out-
comes of interest (e.g., outcomes at the phenotypic level like clinical effectiveness, or outcomes
at the molecular level like mRNA transcription rates). In this paper, we focus on studies of
combined manipulations with two constituents that are systematically included vs. excluded
according to a 2x2 experimental design with outcomes at a molecular level. Examples of such
studies include investigations into the combination of the adjuvants CpG and MF59 for en-
hanced vaccine efficacy [1], into the combination of the multi-kinase inhibitor sorafenib and
the non-steroidal anti-inflammatory drug diclofenac in the treatment of melanoma [2], into
the effect of the co-deletion of phosphatase and tensin homologue (PTEN) and suppressor of
cytokine signalling 3 (SOCS3) on axon regeneration [3], and into the combined effects of a
model air pollutant and oxidized 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine
on genome-wide gene expression [4].

A major research question in such combination studies pertains to the type of interplay be-
tween the constituents when they are combined. In this regard, different types of interplay
have been distinguished in the literature [5,6,7]. One form of interplay that can be singled out
at this point is synergism, which is used to describe situations in which the effect of the com-
bined treatment exceeds the sum of the effects of its constituents. The possibility of synergistic
effects is a major motivation for the use of drug combinations in the treatment of diseases that
are difficult to treat otherwise, such as various forms of cancer, which are often characterized
by multiple abnormalities that each may be targeted by a different treatment component [8,9].
Another form of interplay is of an emergent (sometimes also called coalistic) type [6]: No effect
is seen for each of the constituents, unlike for the combined manipulation. This form of inter-
play could, for example, occur when the expression of a target gene requires that two transcrip-
tion factors each need to bind, with each constituent intervention activating one transcription
factor only [10].

So far, common approaches that have been used to analyze data of studies with a 2x2 design
of combined interventions are based on pairwise comparisons between some of the four condi-
tions of the design. For example, in transcriptomics, a typical approach is to compare each of
the three treatment conditions with the control condition, and to subsequently look for overlap
and differences in the three resulting lists of differentially expressed genes [1,11]. Yet, such
analyses are not suitable to test for the presence of a particular form of interplay for the follow-
ing reasons: (a) The forms of interplay correspond to patterns in the data that are based on a
conjunctive combination of several comparisons between conditions. For example, synergy oc-
curs if and only if it simultaneously holds that each of the two single constituent conditions dif-
fers from the control condition and that the effect of the combined manipulation is more than
the addition of the effects of its constituents; hence, synergy involves a combination of three
comparisons. (b) All patterns involve a comparison with aggregated effects of conditions. The
synergistic pattern, for example, involves that the effect of the combined manipulation is com-
pared with the sum of the effects of the two constituents.

The present paper aims at closing the methodological gap implied by the shortcomings of
common approaches to the study of combined interventions mentioned above. For this pur-
pose, we will first outline a taxonomy of a broad range of forms of interplay between the two
constituents of a combined manipulation. Subsequently, we will propose a sound and tailor-
made statistical methodology to test for the presence of each particular form of interplay in this
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taxonomy. As an illustration of the methodology, we will apply it to genomewide expression
data obtained from the public domain.

Methods
Different forms of interplay between two constituents have been described in the literature on
combination therapies, including the research on dose-effect relations for multidrug combina-
tions as investigated in pharmacodynamics; see, for example, the review papers [5,6,8,12].
However, so far a broad and well-formalized taxonomy of possible forms of interplay as these
may be captured in experimental studies with fully factorial designs is lacking. This is even
more the case for a taxonomy linked to a tailor-made statistical methodology to tell apart these
forms on the basis of empirical data. Here, we offer such a well-formalized taxonomy within
the setting of a 2x2 experimental design, along with a methodology with a firm statistical basis
to test for the presence of each of the reported forms of interplay. In addition, we will also pres-
ent an implementation of this methodology that is suitable for outcomes on a molecular level,
namely gene expression microarray data.

Taxonomy
A 2x2 experimental design is supposed to underlie the data with as factors two manipulations
that are either present or absent. A tabular representation of this design is given in Table 1; A
and B denote the conditions with only one manipulation, AB the condition with the combined
manipulation, and C the control condition.

When conducting an experiment, interest is in the effect of the manipulations, that is, with-
in the present context, in the difference in the target outcome between the conditions A, B, and
AB on the one hand and the control condition C on the other hand. For the time being, we
limit ourselves to the case that all effects are nonnegative (μA� μC, μB � μC, and μAB � μC with
μX denoting the expected outcome in condition X) and for which the combined manipulation
is effective: μAB> μC. A critical and primary comparison in the construction of our taxonomy
is the one between the effect of the combined manipulation and the sum of effects of the con-
stituents: (μAB-μC) compared to (μA-μC)+ (μB-μC). In particular, the effect of the combined ma-
nipulation can be either larger, (approximately) equal, or smaller than the sum of effects of the
constituents. Secondary comparisons pertain to the effectiveness of each of the constituents:
They can be both effective, only one of them can be effective, or none of the two. This gives rise
to 12 combinations, two of which are logically impossible (due to the assumption μAB>μC),
thus yielding a taxonomy with 10 different forms of interplay. These are summarized in
Table 2.

The additive, synergistic, antagonistic, and potentiation forms of interplay are best known
(see, for example [5]). In the review by [6] the reductive and redundant forms of interplay have
also been discussed. The form of interplay that we call emergent is mentioned with the label
coalistic in the papers [6] and [12]; note that ‘emergent’ is a label borrowed from systems theo-
ry and the study of categories and concepts in philosophy and cognitive science [13].

Table 1. The 2x2 experimental design for combining twomanipulations.

Manipulation 1

Absent Present

Manipulation 2 Present B AB

Absent C A

doi:10.1371/journal.pone.0125334.t001
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Let us now consider more in detail the biological relevance of the different forms of inter-
play as distinguished in Table 2. Firstly, we focus on the forms with all single and combined
manipulations being effective, that is, the additive, synergistic, and antagonistic forms of inter-
play (the first row in Table 2). An additive effect will be observed when the two constituents
contribute, biologically speaking, in an independent way to the overall effect; this may be the
case, for example, when the constituents act on the same target without reaching saturation, or
when each constituent affects one out of two independent pathways. The synergistic or ‘more-
than-additive’ effect is often of great interest because of its potential practical relevance; for ex-
ample, it may allow to reduce the doses of the two constituents resulting in less toxicity or side
effects. From its part, an antagonistic effect may be observed in case of saturation or of non-
specific binding site conformations where one of the constituents locks the target for binding
by products resulting from the operation of the other.

Secondly, forms of interplay where one or both of the constituents are ineffective, are poten-
tiation, redundance, and the reductive and emergent forms of interplay (the second and third
row of Table 2). Potentiation means that, whereas one of the manipulations does not yield an
effect in itself, when combined with the other manipulation the effect of the latter is enhanced.
As an example, [8] and [12] discuss the well-known case of amoxicilin and clavulanate to treat
bacterial infections. Clavulanate in its own has no antibacterial properties; yet, as it inhibits the
enzyme that leads to destruction of amoxicillin, the antibacterial effect of amoxicillin is strongly
enhanced when administered together with clavulanate. The reductive (or, inhibitory) form of
interplay from its part may also be of practical interest if this form of interplay would show up
in a pathway that influences toxicity (while not affecting the pathways that influence the thera-
peutic effect); for example, cisplatin and procainamide may be combined in the treatment of
cancer, with procainamide being used to reduce the hepatotoxicity of cisplatin. The emergent
form of interplay is not often reported in multidrug studies, as these typically focus on active
compounds. In knock-out experiments, however, cases have been reported where no effect is
seen in the single knock-out models unlike in its double knock-out counterpart (see for exam-
ple [14]). Finally, the redundant form of interplay may simply show up when one of the con-
stituents is irrelevant for pathways targeted by the other.

So far, we limited ourselves to situations in which all effects were positive (or at least non-
negative). In the case of gene expression data this corresponds to up-regulation. Yet, for this
kind of data it also makes sense to consider negative effects (down-regulation). An analogous
taxonomy as described above could be used in this case. For example, a synergistic down-
regulating effect means that μA<μC, and μB< μC, and (μAB- μC)<(μA- μC)+(μB—μC). (Note
that μAB< μC then logically follows, so the effect is down-regulating, indeed.)

Statistical methodology to test for presence of form of interplay
Each of the forms of interplay as defined in the taxonomy summarized in Table 2, is defined by
a set of inequality and (approximate) equality relations that have to hold simultaneously true.

Table 2. Taxonomy of ten possible forms of interplay between a combinedmanipulation AB and its single constituents A and B.

(μAB-μC) < (μA-μC) + (μB-μC) (μAB-μC) � (μA-μC) + (μB-μC) (μAB-μC) > (μA-μC) + (μB-μC)

μA > μC and μB > μC ANTAGONISM ADDITIVE SYNERGISM

μB > μC and μA � μC REDUCTIVE by A REDUNDANCE of A POTENTIATION by A

μA > μC and μB � μC REDUCTIVE by B REDUNDANCE of B POTENTIATION by B

μA � μC and μB � μC (not possible) (not possible) EMERGENT

Focus is on the effects of the manipulations, that is, the difference with control condition C.

doi:10.1371/journal.pone.0125334.t002
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To cast the problem of identifying a particular form of interplay into a statistical framework,
we translate it into a hypothesis testing problem in which each of the inequality and (approxi-
mate) equality relations is formalized as an alternative partial hypothesis H1i and the comple-
ment as a partial null hypothesis H0i. These partial hypotheses then are combined in the
following way: The compound null hypothesis H0 is the union of H0i (across all i) and the
compound alternative hypothesis H1 the intersection of H1i (across all i). In this way a test
problem is obtained where the compound null hypothesis H0 that at least one of the relations
is not true can be rejected against the compound alternative H1 that all inequalities and equiva-
lences are true. It is important to note that this problem is different from a multiple testing
setup in which an H0 that is an intersection of H0i is to be tested against a union of H1i (imply-
ing that H1 is ‘accepted’ when at least one of the partial null hypotheses is rejected).

To test each of the partial hypotheses we use either contrasts or equivalence testing depend-
ing on whether the partial hypothesis pertains to an inequality or an (approximate) equality re-
lation. In particular, the presence of an inequality relation, for example, μA> μC, can be tested
by testing H0i: μA = μC against H1i: μA> μC. One may note that this is equivalent to testing
H0i: μA- μC = 0 against H1i: μA- μC>0, which comes down to a one-sided test of the contrast ψ
= μA-μC. Regarding approximate or near-equality relations, for example A�C, we can rely on a
so-called “Two One Sided Tests” procedure (TOST; see for example [15,16]). This procedure
starts from the working hypothesis that the difference in population means lies within some
pre-defined tolerance interval [εlower, εupper], and implies a test of H0: μA- μC�εlower or μA-
μC�εupper against H1: μA- μC>εlower and μA- μC< εupper (or, H1: εlower< μA- μC<εupper) with
εlower<0 and εupper>0. Note that this is again a situation of testing a union of H0i against an in-
tersection of H1i. To test, for example, H0i: μA- μC�εupper the following test statistic can be
used,

U ¼ εupper � ð�yA � �yCÞ
SEð�yA � �yCÞ

ð1Þ

with εupper >0 a pre-set tolerance limit and SE(Y) denoting the standard error of Y. H1i: μA-
μC<εupper is accepted when U exceeds the critical value tdf,1-α with α a chosen significance level
and df the degrees of freedom. Here, we will use symmetric equivalence intervals [-ε, ε] (this is,
εlower = -ε and εupper = ε).

Finally, to test the compound hypothesis that all partial H0i are simultaneously rejected in
favor of their alternatives, we rely on an intersection-union test [17,18]. As shown by [17], such
an intersection-union test procedure implies that, when each partial hypothesis is tested at sig-
nificance level α, this results in a significance level of at least α for the compound hypothesis.

Implementation of the statistical methodology for gene expression data
To analyze the data while taking the 2x2 design of the study into account, the empirical Bayes
procedure implemented in the R/Bioconductor package limma, version 3.18.13 [19,20] can be
used. A property of this package, which is useful for our proposed methodology, is that it also
allows to estimate contrasts and to assess their statistical significance. To test for near-equality,
we implement the TOST procedure with statistic (1.1), making use of the moderated standard
errors and degrees of freedom that are calculated by the empirical Bayes method. R code with
an implementation of the procedure is included in the Supporting Information (S1 R code and
S2 R code).
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Results

Data structure and pre-processing
We illustrate our framework to identify particular forms of interplay between the constituents
of a compound intervention with public microarray gene expression data accessible via the
Gene Expression Omnibus with accession number GSE32986 [21]. These data were collected
in a mouse study on the combined effect of the inflammatory growth factor GM-CSF and the
dectin-1 agonist curdlan on dendritic cell maturation. Curdlan was produced as a water-insolu-
ble polysaccharide by the soil bacterium, Alcaligenes faecalis. A tabular representation of the
experimental design is given in Table 3: Bone marrow derived dendritic cells were either unsti-
mulated or stimulated for 4 hours with 100μg/ml curdlan and/or with 5ng/ml GM-CSF. (The
authors also included conditions with 1μg curdlan; they are used further in the manuscript.)
For each condition, three independent samples were prepared and the extracted RNA was hy-
bridized to the Affymetrix GeneChip Mouse Genome 430 2.0 arrays. The R (version 3.0.2) /
Bioconductor (version 2.13) package affy (version 1.40.0; [22]) was used to obtain Robust Mul-
tichip Average (RMA) expression data; note that these are by default log2 transformed.

Forms of interplay for combining curdlan with GM-CSF in dendritic cells
Number of probesets displaying a particular form of interplay. We applied our method

with the significance level set to. 05 and a tolerance interval for (approximate) equality equal to
[-0.15, 0.15]. Note that this is a smaller interval than used in other applications of equivalence
testing with genomewide expression data (see, e.g., [16]) but larger intervals would imply that
some probesets would be classified in more than one form of interplay (which is possible if the
standard error of the probeset is relatively small compared to the equivalence interval). The re-
sults are summarized in Table 4. In total, 1997 probesets display one of the forms of interplay

Table 3. Experimental design: Crossing of the treatments with curdlan (present/absent) and with GM-CSF (present/absent).

GM-CSF

Absent Present

curdlan Present CURDLAN COMBINATION

Absent UNSTIMULATED GM-CSF

doi:10.1371/journal.pone.0125334.t003

Table 4. Number of probe sets out of 45 101 found with a particular form of interplay between treat-
ment with Curdlan (dose = 100μg or dose = 1μg), GM-CSF and their combination.

Curdlan 100μg Curdlan 1μg

UP DOWN UP DOWN

Synergistic 49 49 38 1

Additive 22 130 13 23

Antagonistic 578 427 139 241

Potentiation (by GM-CSF) 34 58 9 1

Redundance of GM-CSF 63 105 17 13

Reductive (by GM-CSF) 10 1 1 0

Potentiation (by Curdlan) 7 23 32 50

Redundance (of Curdlan) 172 136 535 527

Reductive (by Curdlan) 64 21 16 24

Emergent 9 39 6 7

The significance level was set to. 05 and the tolerance limit for (approximate) equality to. 15.

doi:10.1371/journal.pone.0125334.t004
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listed in Table 3. The list of probesets together with the form of interplay they display is made
available in the Supporting Information (S1 Table).

Many probesets are found with a down-regulated pattern (compared to the unstimulated
condition) although in the literature down-regulation is often neglected (e.g., [21] only dis-
cusses up-regulated genes). If curdlan and GM-CSF would, biologically speaking, operate in an
independent way, only probesets in the redundant and additive category would be expected.
However, our results show that many probesets display a form of interplay in which the con-
stituents interact (with synergistic, emergent, potentiation, reductive, and antagonistic pat-
terns). The predominant effect is antagonistic (1005 probesets out of 1997). This is not
surprising as it may be explained by negative feedback loops in the pathways which generate a
damped behavior, needed for homeostasis [23].

Pathway analysis. We used IPA (Ingenuity Systems, www.ingenuity.com) to find biologi-
cal functions with a significant overrepresentation in the collections of probesets with the same
form of interplay using a Benjamini—Hochberg corrected Fisher’s exact test with significance
level. 05. For each form of interplay, one list of probesets was fed to IPA consisting of both the
up- and down-regulated probesets. Significantly enriched terms were found for the following
patterns: antagonistic, synergistic, potentiation by GM-CSF, reductive by GM-CSF, and redun-
dance of curdlan. The enrichment results for potentiation and reductive suggest the presence
of more biological functions in dendritic cells for which GM-CSF moderates the effect of cur-
dlan rather than the other way around.

The results for potentiation by GM-CSF (see Table 5) suggest that GM-CSF does not acti-
vate quite a few pathways in itself but does so in presence of curdlan. Somewhat surprisingly,
these also include the PI3K and MAPK/ERK signaling pathways, which are principal targets of
GM-CSF. However, their activation by GM-CSF is known to depend both on the type of den-
dritic cell and on the condition of the cell (steady-state vs. an inflammatory condition), with in
our case inflammation probably being triggered by curdlan [24]. Interestingly, [21] identified
MAPK/ERK as one possible integration site of the signals produced by curdlan and GM-CSF;
the present results shed more light on the nature of the integration.

The antagonistic, or less-than-additive associated pathways also include the PI3K and
MAPK/ERK signaling module (see Table 6). The general PI3/AKT pathway integrates signals
from multiple upstream elements and has multiple possible downstream effects such as regula-
tion of pluripotency, energy storage, cell cycle progression, protein synthesis, and vasodilation;
an antagonistic effect might take care to dampen certain parts of this broad PI3K/AKT path-
way. In contrast, for potentiation by GM-CSF, the PI3K pathway contains a subset of elements
from the PI3/AKT pathway, which is active for signaling in B lymphocytes. Thus, parts of the
PI3/AKT pathway are damped whereas specific parts are potentiated.

To an important extent, dendritic cell maturation appears to be stimulated by curdlan and
GM-CSF in an antagonistic manner. However, the dendritic cell maturation pathway was also
significantly enriched in the collection of synergistic probesets, indicating that the combined
use of GM-CSF and curdlan also boosts the maturation effect. In the antagonistic collection,
the dendritic cell maturation affects CD40, CD80, and CD83, whereas the synergistic effect is
observed for several interleukins. Interestingly, enrichment for IL-6 and IL17 signaling is seen,
which may explain the specific effect on dendritic cell maturation. Indeed, IL-6 was described
to regulate dendritic cell differentiation in vivo [25] and IL-17 promotes differentiation of den-
dritic cell progenitors [26]. Furthermore, in the synergistic list of canonical pathways found
with Ingenuity (see Table 6), yet another important signaling module activated by GM-CSF
shows up, namely NF-κ which is activated through the IκB kinase complex [24]. This pathway
is also known to be activated by curdlan through the Syk and Raf-1 signaling pathways, where
RAF1 occurs downstream of the MAPK pathway. Hence, a possible explanation for the
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observed synergy in nuclear translocation of different NF-kB subunits reported by [21], is the
enhanced RAF activation by on the one hand curdlan in its own and on the other hand the
MAPK signaling that results from a stimulation by both GM-CSF and curdlan. Note also the
presence of the p38 MAPK signaling pathway in the synergistic group.

Validation of the results using an additional experiment
The gene expression data made publicly available by [21] also include two conditions with 1μg
curdlan, one using curdlan only and one using curdlan in conjunction with GM-CSF (5ng/ml)

Table 5. Canonical pathways with Benjamini-Hochberg p-value <. 05 for probesets showing potentia-
tion or reduction by GM-CSF in the 2×2 experimental setup with 100μg Curdlan.

Ingenuity Canonical Pathways B-H p-
value

Potence by GMCSF RAR Activation 0.001

CD28 Signaling in T Helper Cells 0.001

iCOS-iCOSL Signaling in T Helper Cells 0.004

Glucocorticoid Receptor Signaling 0.004

B Cell Receptor Signaling 0.013

FcγRIIB Signaling in B Lymphocytes 0.015

fMLP Signaling in Neutrophils 0.019

PI3K Signaling in B Lymphocytes 0.025

Insulin Receptor Signaling 0.025

Aryl Hydrocarbon Receptor Signaling 0.027

PXR/RXR Activation 0.027

Gαq Signaling 0.030

Prolactin Signaling 0.032

G-Protein Coupled Receptor Signaling 0.033

Regulation of IL-2 Expression in Activated and Anergic T
Lymphocytes

0.034

Protein Kinase A Signaling 0.034

Dopamine-DARPP32 Feedback in cAMP Signaling 0.034

Xenobiotic Metabolism Signaling 0.035

Role of NFAT in Regulation of the Immune Response 0.035

G Beta Gamma Signaling 0.037

HMGB1 Signaling 0.039

IL-1 Signaling 0.039

SAPK/JNK Signaling 0.040

ERK/MAPK Signaling 0.040

T Cell Receptor Signaling 0.040

Telomerase Signaling 0.042

Leukocyte Extravasation Signaling 0.042

Fc Epsilon RI Signaling 0.046

Androgen Signaling 0.049

April Mediated Signaling 0.049

Reductive by GMCSF Caveolar-mediated Endocytosis Signaling 0.038

Redundance of
Curdlan

Protein Ubiquitination Pathway 0.000

Aldosterone Signaling in Epithelial Cells 0.007

EIF2 Signaling 0.012

*The canonical pathways in bold+ italic typeface are discussed in the manuscript.

doi:10.1371/journal.pone.0125334.t005
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Table 6. Canonical pathways with Benjamini-Hochberg p-value <. 05 for probesets showing antago-
nism or synergy in the 2×2 experimental setup with 100μg Curdlan.

Ingenuity Canonical Pathways B-H p-
value

Antagonistic G-Protein Coupled Receptor Signaling 0.000

TREM1 Signaling 0.001

PI3K/AKT Signaling 0.004

PTEN Signaling 0.006

Regulation of IL-2 Expression in Activated and Anergic T Lymphocytes 0.007

MIF-mediated Glucocorticoid Regulation 0.007

Granulocyte Adhesion and Diapedesis 0.008

IL-17A Signaling in Fibroblasts 0.008

Altered T Cell and B Cell Signaling in Rheumatoid Arthritis 0.008

Gαi Signaling 0.014

Role of RIG1-like Receptors in Antiviral Innate Immunity 0.019

cAMP-mediated signaling 0.021

LPS-stimulated MAPK Signaling 0.021

Type I Diabetes Mellitus Signaling 0.029

CD40 Signaling 0.029

Dendritic Cell Maturation 0.032

Role of PKR in Interferon Induction and Antiviral Response 0.042

Role of IL-17A in Arthritis 0.043

IL-6 Signaling 0.043

MIF Regulation of Innate Immunity 0.043

Acute Phase Response Signaling 0.045

ERK/MAPK Signaling 0.045

Synergistic Altered T Cell and B Cell Signaling in Rheumatoid Arthritis 0.000

Graft-versus-Host Disease Signaling 0.001

Differential Regulation of Cytokine Production in Macrophages and T Helper
Cells by IL-17A and IL-17F

0.001

Role of Cytokines in Mediating Communication between Immune Cells 0.001

Differential Regulation of Cytokine Production in Intestinal Epithelial Cells by
IL-17A and IL-17F

0.002

Role of JAK family kinases in IL-6-type Cytokine Signaling 0.002

IL-10 Signaling 0.002

Hepatic Cholestasis 0.002

Hepatic Fibrosis / Hepatic Stellate Cell Activation 0.002

Communication between Innate and Adaptive Immune Cells 0.004

Acute Phase Response Signaling 0.004

PPAR Signaling 0.004

Granulocyte Adhesion and Diapedesis 0.005

Dendritic Cell Maturation 0.005

Agranulocyte Adhesion and Diapedesis 0.005

Role of IL-17F in Allergic Inflammatory Airway Diseases 0.005

Sphingosine-1-phosphate Signaling 0.006

IL-6 Signaling 0.007

p38 MAPK Signaling 0.007

LXR/RXR Activation 0.007

RhoA Signaling 0.008

TREM1 Signaling 0.015

(Continued)
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for stimulation. Together with the GM-CSF stimulated and the unstimulated cells, these yield a
second 2×2 experimental setup that we will use for validation of the results obtained in the ex-
periment with 100μg/ml curdlan. Note that the data of the two experimental setups are partial-
ly dependent as both contain the data from the GM-CSF stimulated and unstimulated cells.
Yet, because of the dose variation in the curdlan constituent, the data have a clear structure of
which we can take advantage to put forward several expectations (e.g., we can expect fewer pat-
terns that build on an effect of curdlan in the low-dose setup).

In total, 1693 probesets display one of the forms of interplay; the numbers of probesets for
each particular type of interplay are shown in the two rightmost columns of Table 4 (the list of
probesets with affymetrix and gene identifiers is available from the Supporting Information, S2
Table). We will now compare these numbers with the corresponding numbers in the 2×2 ex-
perimental setup with the high-dose curdlan conditions (i.e., the second and third column of
Table 4). As could be expected, the numbers of patterns which imply that curdlan on its own is
effective (synergistic, additive, antagonistic, potentiation by GM-CSF, redundance of GM-CSF,
and reductive by GM-CSF) are lower in the low-dose setup. One may further expect higher
numbers of probesets for the patterns in which curdlan is ineffective, both on its own and in
combination with GM-CSF (redundance of curdlan); for this type of interplay the numbers of
probesets are considerably higher, indeed. For the patterns that are characterized by an absence
of an effect of curdlan on its own but presence of an effect of curdlan when combined with
GM-CSF (potentiation by curdlan, reductive by curdlan, and emergent) both an increase and a
decrease of the numbers of probesets could be plausible. Here, we observe an increase of the
number of probesets for potentiation and, a decrease for the emergent and reductive pattern.

For each collection of probesets with the same form of interplay that resulted from the low-
dose curdlan setup, too, we ran ingenuity pathway analyses to find biological functions with a
significant overrepresentation, using a Benjamini—Hochberg corrected Fisher’s exact test with
significance level. 05. Significantly enriched terms were found for the synergistic, redundance
of curdlan, and potentiation by curdlan patterns; see Table 7. For the former two categories, en-
riched terms were also found with the high dose of curdlan and these are mainly the same
terms. For example, even in the low-dose curdlan setup, enrichment of the NF-kB, dendritic
cell maturation, and p38 MAPK signaling pathways are confirmed for the synergistic probesets,
which suggests conservation in the low-dose setup of the functional synergistic effects earlier
found in the high-dose setup. To check that the similarity in annotation can be attributed to
the overlap in genes between the two collections of probesets (one for the low-dose and one for

Table 6. (Continued)

Ingenuity Canonical Pathways B-H p-
value

NF-κB Signaling 0.021

FXR/RXR Activation 0.022

IL-1 Signaling 0.026

Role of Pattern Recognition Receptors in Recognition of Bacteria and Viruses 0.026

Oncostatin M Signaling 0.034

cAMP-mediated signaling 0.039

Gα12/13 Signaling 0.042

Gαi Signaling 0.045

Phospholipase C Signaling 0.045

The canonical pathways in bold+ italic typeface are discussed in the manuscript.

doi:10.1371/journal.pone.0125334.t006
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Table 7. Additional experiment with curdlan 1μg/ml: Canonical pathways with Benjamini-Hochberg p-
value <. 05.

Ingenuity Canonical Pathways B-H p-
value

Synergistic Altered T Cell and B Cell Signaling in Rheumatoid Arthritis 0,00

NF-κB Signaling 0,00

Communication between Innate and Adaptive Immune Cells 0,00

Hepatic Fibrosis / Hepatic Stellate Cell Activation 0,00

Role of Pattern Recognition Receptors in Recognition of Bacteria and
Viruses

0,00

Graft-versus-Host Disease Signaling 0,00

Acute Phase Response Signaling 0,00

Granulocyte Adhesion and Diapedesis 0,00

Dendritic Cell Maturation 0,00

Agranulocyte Adhesion and Diapedesis 0,00

Toll-like Receptor Signaling 0,00

TREM1 Signaling 0,00

Crosstalk between Dendritic Cells and Natural Killer Cells 0,00

Differential Regulation of Cytokine Production in Intestinal Epithelial
Cells by IL-17A and IL-17F

0,00

HMGB1 Signaling 0,00

B Cell Development 0,01

Hepatic Cholestasis 0,01

Autoimmune Thyroid Disease Signaling 0,01

Role of Cytokines in Mediating Communication between Immune Cells 0,01

CD40 Signaling 0,01

IL-10 Signaling 0,01

T Helper Cell Differentiation 0,01

Regulation of IL-2 Expression in Activated and Anergic T Lymphocytes 0,02

Allograft Rejection Signaling 0,02

PPAR Signaling 0,02

iCOS-iCOSL Signaling in T Helper Cells 0,03

Type I Diabetes Mellitus Signaling 0,03

Airway Pathology in Chronic Obstructive Pulmonary Disease 0,03

IL-6 Signaling 0,03

p38 MAPK Signaling 0,03

CD28 Signaling in T Helper Cells 0,03

PKCθ Signaling in T Lymphocytes 0,03

LXR/RXR Activation 0,03

FXR/RXR Activation 0,03

PI3K Signaling in B Lymphocytes 0,03

Aryl Hydrocarbon Receptor Signaling 0,03

Role of IL-17A in Psoriasis 0,03

Differential Regulation of Cytokine Production in Macrophages and T
Helper Cells by IL-17A and IL-17F

0,04

NRF2-mediated Oxidative Stress Response 0,05

Redundance of
Curdlan

Protein Ubiquitination Pathway 0,00

Regulation of eIF4 and p70S6K Signaling 0,00

Androgen Signaling 0,02

(Continued)
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the high-dose setup), we also performed a pathway analysis on the set of genes that are syner-
gistic in both 2x2 experiments. The resulting functional annotation indeed recovers the shared
terms (see S3 Table).

Discussion and Conclusion
The study of combined manipulations is of great interest, for example, for pharmaceutical ap-
plications, given the observed successes with multi-drug treatments (see, for example, [12]).
Very often interactions take place between the constituents of combined interventions and fo-
cusing on such interactions may be of primary importance to understand the mode of action of
the constituents and their combination. Here, we offered a well-defined taxonomy of different
forms the interplay between two constituents can take, along with a tailor-made statistical
methodology to test for their presence. Importantly, the conceptual framework and the associ-
ated statistical methodology have a sound theoretical basis. To further show how they can be
used in practice, we (1) provided an implementation of this methodology for gene expression
microarray data, and (2) illustrated the methodology with an analysis of publicly available gene
expression data on the combined treatment of dendritic cells with curdlan and GM-CSF. The
study of the pathways obtained from enrichment analyses of lists of genes that display particu-
lar forms of interplay may lead to valuable insights into the mode of action of curdlan and
GM-CSF and their combination. A proper validation of the biological results should be based
on further experiments and the collection of new data, which is beyond the scope of the present
methodological paper. Yet, we already found some encouraging support in the results of a 2×2
experimental setup that included two new low-dose curdlan conditions.

The approach proposed in the present paper could be significantly extended in several re-
spects. First, we focused in this paper on studies with a 2×2 experimental design. However, vari-
ous ways could be considered to extend the proposed taxonomy and associated statistical
methodology to K×K’ designs (with K and/or K’>2); this would, for example, be most relevant
for scenarios in which the two constituent interventions could be delivered with more than two
doses (with absence of a constituent intervention corresponding to a zero dose condition).
Possible ways of extension at this point may include regression-type approaches to the K×K’
dataset as a whole (with the two dose variables and their product acting as predictors in the
regression model), with an intersection-union test-based methodology focused on the three re-
gression weights. Still another way of extension could be to apply the framework and methodol-
ogy proposed in the present paper to several 2×2 parts of the K×K’ data set (which would
allow the researcher to investigate whether the form of interplay between the two constituent

Table 7. (Continued)

Ingenuity Canonical Pathways B-H p-
value

Estrogen Receptor Signaling 0,02

EIF2 Signaling 0,02

Hypoxia Signaling in the Cardiovascular System 0,02

Potence by Curdlan RANK Signaling in Osteoclasts 0,03

April Mediated Signaling 0,03

B Cell Activating Factor Signaling 0,03

TNFR1 Signaling 0,04

doi:10.1371/journal.pone.0125334.t007
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interventions is constant across the entire dose range). Second, in our taxonomy we limited our-
selves to forms of interplay where the effects of the constituents and the combined manipulation
were all either nonnegative or nonpositive, and where the effect of the combined manipulation
was nonzero. This implies that cases in which a gene is up-regulated by one constituent and
down-regulated by the other were not considered; moreover the same holds for cases in which
at least one of the constituents is effective whereas the combined intervention is not. In some sit-
uations, however, such patterns could also be of interest. Examples may include the case in
which the two constituent interventions imply some toxicity effect, whereas the combined inter-
vention does not. Fortunately, the methodology proposed in the present paper can be easily ex-
tended to detect such forms of interplay.

In conclusion, the taxonomy and methodology proposed in the present paper constitute a
sound and powerful tool to study the form of the interplay between the constituents of com-
bined interventions. Moreover, the conceptual framework and associated methodology are ver-
satile, in that they are applicable to a broad range of intervention types and types of outcome,
and that they can be readily extended in several directions.

Supporting Information
S1 R code. R code used to find the forms of interplay: Experimental setup with a dose of
100μg/ml for curdlan.
(R)

S2 R code. R code used to find the forms of interplay: Experimental setup with a dose of
1μg/ml for curdlan.
(R)

S1 Table. Probeset identifiers, official gene symbols, statistics, and type of pattern for pro-
besets displaying a particular form of interplay: Experimental setup with a dose of 100μg/
ml for curdlan.
(XLS)

S2 Table. Probeset identifiers, official gene symbols, statistics, and type of pattern for pro-
besets displaying a particular form of interplay Experimental setup with a dose of 1μg/ml
for curdlan.
(XLS)

S3 Table. Ingenuity canonical pathways obtained for the list of genes displaying a synergis-
tic pattern both in the 2x2 setup with 1μg and 100μg of curdlan.
(XLS)

S1 Targets file. Text file that matches the CEL file names with their experimental condition.
(TXT)
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