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Abstract

Background

Circulating bacterial DNA fragment is related to systemic inflammatory state in peritoneal di-

alysis (PD) patients. We hypothesize that plasma bacterial DNA level predicts cardiovascu-

lar events in new PD patients.

Methods

Wemeasured plasma bacterial DNA level in 191 new PD patients, who were then followed

for at least a year for the development of cardiovascular event, hospitalization, and

patient survival.

Results

The average age was 59.3 ± 11.8 years; plasma bacterial DNA level 34.9 ± 1.5 cycles; aver-

age follow up 23.2 ± 9.7 months. At 24 months, the event-free survival was 86.1%, 69.8%,

55.4% and 30.8% for plasma bacterial DNA level quartiles I, II, III and IV, respectively (p <

0.0001). After adjusting for confounders, plasma bacterial DNA level, baseline residual

renal function and malnutrition-inflammation score were independent predictors of compos-

ite cardiovascular end-point; each doubling in plasma bacterial DNA level confers a 26.9%

(95% confidence interval, 13.0 – 42.5%) excess in risk. Plasma bacterial DNA also correlat-

ed with the number of hospital admission (r = -0.379, p < 0.0001) and duration of hospitaliza-

tion for cardiovascular reasons (r = -0.386, p < 0.0001). Plasma bacterial DNA level did not

correlate with baseline arterial pulse wave velocity (PWV), but with the change in carotid-ra-

dial PWV in one year (r = -0.238, p = 0.005).
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Conclusions

Circulating bacterial DNA fragment level is a strong predictor of cardiovascular event, need

of hospitalization, as well as the progressive change in arterial stiffness in new PD patients.

Introduction
Patients with chronic kidney disease (CKD) or on long-term dialysis are at high risk of devel-
oping cardiovascular disease (CVD) [1–3]. Longitudinal studies have established that CVD
events occur more frequently than renal events in CKD, and CVDmortality rates are in fact
higher than the rates of reaching end-stage renal disease (ESRD) [4,5]. Although CVD shares
many similar risk factors with CKD, such as diabetes and hypertension [6], CKD remains an
independent risk factor for CVD after accounting for traditional risk factors [7].

It is now recognized that systemic inflammation plays a key role in atherosclerosis [8] and is
an important contributor to CVDmorbidity and mortality in CKD patients [9]. Nearly 50% of
CKD or dialysis patients have evidence of systemic inflammation [10–12]. Previous studies
showed that circulating lipopolysaccharide (LPS) constitutes a strong risk factor of early ath-
erogenesis in patients with chronic bacterial infections [13]. Epidemiological studies show that
even a low level endotoxemia constitutes a strong risk factor for the development of atheroscle-
rosis [14]. There is now evidence that elevated circulating LPS level is common in CKD pa-
tients. The intestinal mucosa barrier is impaired and bacterial translocation occurs in
experimental uremia [15]. Translocation of bowel flora is a cause of gram negative peritonitis
in peritoneal dialysis (PD) patients [16]. A number of previous studies showed that LPS is de-
tectable in the serum of many dialysis patients, and serum LPS level correlates with the severity
of systemic inflammation and features of atherosclerosis [17–19].

In addition to LPS, which is a bacterial cell wall component, other bacterial fragments could
also be detected in human circulation, and bacterial-derived DNA fragment is the most easily
and consistently detectable component. Because most bacteria contain the highly conserved
16S rRNA gene in the genome, the sequence could be easily detected and discerned from
human DNA. A previous study showed that circulating bacterial-derived DNA fragments were
present in around 20% of hemodialysis patients, and circulating bacterial-derived DNA frag-
ments are associated with higher levels of C-reactive protein and IL-6 in these patients [20].
Our previous study showed that circulating bacterial DNA level correlated with the degree of
systemic inflammatory state in PD patients [21]. In the present study, we determine the rela-
tion between circulating bacterial-derived DNA fragment and cardiovascular disease in
PD patients.

Patients and Methods

Patient selection
The study is approved by Joint Chinese University of Hong Kong—New Territories East Clus-
ter Clinical Research Ethics Committee (approval number CRE-2010.375). All patients provid-
ed signed written informed consent before participation in this study. We recruited 191
consecutive new PD patients, with age 18 to 80 years, from July 2010 to December 2012. Pa-
tients who were unlikely to survive for 6 months, who were planned to have elective living
donor transplant or transfer to other renal center within 6 months were excluded. After written
informed consent, a panel of comorbid conditions was recorded. The modified Charlson’s
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comorbidity index, which was validated in PD patients [17], was used to calculate a comorbidi-
ty score. In addition to the routine blood tests for electrolyte, fasting glucose and lipid levels,
serum levels of bacterial DNA fragment, LPS, C-reactive protein (CRP), and procalcitonin as
markers of systemic inflammation were measured when the patient was stable without clinical
evidence of peritonitis or systemic infection. Baseline clinical data were recorded by chart re-
view. These included age, sex, underlying renal disease, and PD regimen. Serum C-reactive
protein (CRP) was measured by the Tina-quant CRP (Latex) ultra-sensitive assay (Roche Diag-
nostics GmbH, Mannheim, Germany). Serum procalcitonin level was determined by the
Elecsys BRAHMS PCT assay (Roche Diagnostics, Indianapolis, IN, USA) according to the
manufacturer’s instruction. Nutritional assessment, 24-hour dialysate and urine collection for
assessment of dialysis adequacy and residual renal function, arterial pulse wave velocity study,
and bioimpedance spectroscopy were performed at recruitment and then 12 months later. In
addition, baseline standard peritoneal equilibration test (PET) was also performed.

Plasma bacterial DNA fragment
The method of bacterial DNA amplification has been described previously [19,20]. Briefly,
DNA from 200 μl aliquot of EDTA-treated whole blood was extracted using the EZ1 DNA tis-
sue kit and BioRobot EZ1 with the EZ1 bacteria card (Qiagen), according to the manufacturer’s
instructions. Purified DNA was eluted in 50 μl of elution buffer before amplification. Universal
primers used for polymerase chain reaction (PCR) amplification of the bacterial 16S rRNA
gene were p16SrRNA+ and p16SrRNA-, which are able to amplify DNA from either Gram pos-
itive or Gram negative bacteria. Aliquots of 20-μl DNA samples were used for amplification in
a 50-μl PCR reaction mixture. All samples were run in triplicates. Since plasma was directly
used as the template and there is no intrinsic housekeeping gene for comparison, the number
of PCR cycles at which bacterial DNA could be detected is reported.

Plasma LPS level
The method of plasma LPS quantification has been described previously [17]. Briefly, plasma
samples were diluted to 20% with endotoxin-free water and then heated to 70°C for 10 min to
inactivate plasma proteins. We then quantified plasma LPS with a commercially available Lim-
ulus Amebocyte Lysate assay (Cambrex, Verviers, Belgium) according to the manufacturer's
protocol. The detection limit of this assay was 0.01 EU/ml. Samples with LPS level below the
detection limit were taken as 0 EU/ml. All samples were run in duplicate and background
subtracted.

Study of peritoneal transport
Standard peritoneal permeability test (PET) was performed by the method of Twardowski and
has been described previously [22]. Briefly, a 4-hour dwell study was carried out with 2 liters of
dextrose 2.5% dialysis fluid (Dianeal, Baxter-Travenol, Deerfield, IL). Dialysate creatinine and
glucose levels at 0, 2 and 4 hours, plasma creatinine and glucose levels at 2 hour are measured.
Drainage and ultrafiltration volumes (UF) at 4 hour are documented. Dialysate-to-plasma ra-
tios of creatinine (D/P) at 0, 2, and 4 hours are calculated after correction of glucose interfer-
ence. Mass transfer area coefficients of creatinine (MTAC) normalized for body surface area
(BSA) is calculated by the formula described by Krediet [23]. Body surface area (BSA) is deter-
mined from body weight and height by nomogram [24].

Bacterial DNA in PD

PLOSONE | DOI:10.1371/journal.pone.0125162 May 26, 2015 3 / 15



Dialysis adequacy and nutritional indices
The method of dialysis adequacy assessment has been described previously [25]. Briefly,
24-hour urine and dialysate collection was performed to calculate total Kt/V. Nutritional status
was represented by serum albumin level, subjective global assessment (SGA) comprehensive
malnutrition-inflammation score (MIS), normalized protein nitrogen appearance (NPNA),
and fat-free edema-free body mass (FEBM). For SGA, the 4-item 7-point scoring system,
which was validated in PD patients [26], was used. The calculation of MIS was described previ-
ously [27]. Briefly, MIS consists of 4 main parts and 10 components, all scored from 0 (normal)
to 3 (very severe). The total score ranged from 0 to 30. NPNA was calculated by the modified
Bergstrom’s formula [28]. FEBM was determined by creatinine kinetics according to the for-
mula of Forbes and Bruining, a method that is recommended by the standard dialysis practice
guideline [29].

Pulse wave velocity study
Pulse wave velocity (PWV), an index of arterial stiffness, is measured using an automatic com-
puterized recorder and the results are analyzed using the Complior1 SP program (Artech
Medical, France). The method of PWVmeasurement has been described previously [30]. Brief-
ly, pressure-sensitive transducers are placed over the neck (carotid artery), wrist (radial artery)
and groin (femoral artery) with the patient in the supine position. PWV of the carotid-femoral
and carotid-radial territory is calculated by dividing the distance between the sensors by the
time corresponding to the period separating the start of the rising phase of the carotid pulse
wave and that of the femoral and also the radial pulse waves.

Clinical follow up and outcome measures
After recruitment, patients will be followed every 8 weeks, or more frequently if clinically indi-
cated, for at least one year. The clinical management will not be affected by the study. The pre-
defined primary end point of this study is a composite one that consists of cardiovascular
death, non-fatal myocardial infarction or stroke, hospital admission for unstable angina, coro-
nary intervention, congestive heart failure, transient ischemic attack, cerebrovascular accident,
or peripheral vascular disease that require surgical reconstruction or amputation. Event-free
survival is then reported, with the pre-defined primary end point as event and non-cardiovas-
cular deaths, transfer to hemodialysis, and transplantation as censoring observations. After the
study has completed, we further defined a composite cardiovascular end point that encom-
passes all of the above but excludes congestive heart failure. Secondary end points include
number of hospital admission and duration of hospitalization during the study period, cardio-
vascular mortality, all-cause mortality, technique survival, and peritonitis-free survival. Tech-
nique failure is defined as transfer to long-term hemodialysis. Survival data were censored on
31 December 2013.

Statistical analysis
Statistical analysis was performed by SPSS for Windows software version 15.0 (SPSS Inc., Chi-
cago, IL). Data are expressed as means ± SD unless otherwise specified. Data were compared
by Student’s t test, Chi square test or Pearson’s correlation coefficient as appropriate. The rela-
tionship between plasma bacterial DNA and LPS levels and the primary composite end point
or survival was analyzed by stratifying patients into quartiles according to the bacterial DNA
or LPS level. Survival rates were analyzed using Kaplan—Meier survival curves. The Cox pro-
portional hazards model was used to adjust for potential confounders and identify independent
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predictors of the composite cardiovascular end-point, patient survival, and technique survival.
In addition to baseline plasma bacterial DNA level, the Cox models were constructed by age,
Charlson’s comorbidity score, carotid-femoral PWV, serum CRP, serum albumin, total Kt/V,
NPNA and residual GFR. These parameters were selected for the construction of the Cox
model because of their importance in determining the survival of PD patients. The assumption
of proportional hazard was tested and confirmed by graphical methods. All variables were
added independently into the Cox model. Backward stepwise elimination was applied to re-
move insignificant variables. Interaction between variables was excluded as correlation matrix
shows only modest internal correlations and additional direct testing in the final model.

The number of hospital admission and duration of hospitalization are compared between
plasma bacterial DNA level quartiles after adjusted for the duration of follow up because the
data were significantly skewed. Since plasma bacterial DNA level is a continuous variable, the
log-linear model was then used to analyze hospitalization [31,32]. The clinical variables used
for analysis were similar to those for survival analysis. A value of p< 0.05 was considered sta-
tistically significant. All probabilities were two-tailed.

Results
We studied 191 consecutive new PD patients. The demographic, baseline clinical and biochem-
ical information are summarized in Tables 1 and 2, respectively. The average level of plasma
bacterial DNA was 34.9 ± 1.5 cycles; plasma LPS level was 0.72 ± 0.34 EU/ml.

Relation with systemic inflammatory markers
There was a modest but statistically significant correlation between plasma bacterial DNA level
and plasma LPS level (r = -0.410, p< 0.0001). Both plasma bacterial DNA and plasma LPS lev-
els significantly correlated with serum CRP level (r = -0.299 and r = 0.313 respectively,
p< 0.0001 for both). On the other hand, neither plasma bacterial DNA nor LPS levels correlat-
ed with serum procalcitonin level (details not shown). Plasma bacterial DNA level had modest
but significant correlations with the malnutrition-inflammation score (r = -0.179, p = 0.016) as
well as SGA score (r = 0.165, p = 0.026). Neither plasma bacterial DNA or plasma LPS level
correlated with the Charlson’s comorbidity score, peritoneal transport status, or dialysis ade-
quacy indices (details not shown).

Relation with composite cardiovascular end point
The average follow up was 23.2 ± 9.7 months. During this period, 80 patients (41.9%) devel-
oped cardiovascular events as defined by the primary composite end point. These include hos-
pital admission for heart failure (48 cases), non-fatal stroke (14 cases), non-fatal myocardial
infarction or acute coronary syndrome (11 cases), elective admission for coronary interven-
tions (4 cases), and limb amputation for peripheral vascular disease (3 cases). At 24 months,
the event-free survival was 86.1%, 69.8%, 55.4% and 30.8% for plasma bacterial DNA level
quartiles I, II, III and IV, respectively (log rank test, p< 0.0001) (Fig 1A). After excluding ad-
mission for congestive heart failure, 62 patients (32.5%) developed the composite cardiovascu-
lar end point. The 24-month cardiovascular disease-free survival was 97.9%, 83.1%, 73.5% and
46.4% for plasma bacterial DNA level quartiles I, II, III and IV, respectively (log rank test,
p< 0.0001) (Fig 1B). On the other hand, the event free survival at 24 months was 71.2%,
58.3%, 54.4% and 58.6% for plasma LPS level quartiles I, II, III and IV, respectively (p = 0.051).
By multivariable analysis with the Cox proportional hazard model to adjust for confounders,
plasma bacterial DNA level, baseline residual GFR and malnutrition-inflammation score were
the independent predictors of the composite cardiovascular end-point (Table 3). In this model,
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each doubling in plasma bacterial DNA level confers a 26.9% (95% confidence interval, 13.0–
42.5%) excess in risk of developing the composite cardiovascular end point.

Relation with survival and peritonitis
During the study period, 31 patients (16.2%) died. The causes of death were cardiac arrest (6
cases), coronary artery disease (3 cases), stroke (7 cases), peritonitis (4 cases), non-peritonitis
infection (8 cases), cancer (2 cases), and liver failure (1 case). During this period, another 11
patients had kidney transplant, 7 were changed to long term hemodialysis, 1 transferred to
other centers, and 1 had recovery of renal function. At 24 months, the overall patient survival
was 90.9%, 76.2%, 84.7% and 87.6% for plasma bacterial DNA level quartiles I, II, III and IV,
respectively (p = 0.2), while technique survival was 76.7%, 74.2%, 70.7% and 81.9%, respective
(p = 0.3). There was no relation between plasma bacterial DNA level and peritonitis rate or
peritonitis-free survival (details not shown). There was also no significant relation between
plasma LPS level and patient or technique survival (details not shown).

Relation with hospitalization
During the study period, there were altogether 600 hospital admissions, of which 185 admis-
sions were for cardiovascular reasons; 51 patients (26.7%) did not require any hospital admis-
sion. The total duration of hospitalization was 4201 days, with 1327 days for cardiovascular

Table 1. Baseline demographic and clinical data.

Plasma bacterial DNA quartile I II III IV P value

No. of patients 48 48 48 47

Sex (M:F) 23:25 26:22 28:20 34:13 p = 0.13

Age (years) 60.9 ± 10.1 60.0 ± 10.8 57.9 ± 13.8 58.3 ± 12.3 p = 0.6

Body height (cm) 160.6 ± 8.8 162.3 ± 9.0 161.9 ± 8.9 161.2 ± 8.5 p = 0.9

Body weight (kg) 66.9 ± 16.7 63.7 ± 15.1 63.6 ± 13.6 68.1 ± 15.7 p = 0.4

Blood pressure (mmHg)

Systolic 142.0 ± 18.7 144.8 ± 24.6 134.8 ± 20.6 142.1 ± 17.8 p = 0.12

Diastolic 76.7 ± 11.0 76.7 ± 13.7 73.6 ± 11.9 75.1 ± 10.8 p = 0.5

Renal diagnosis, no. of cases (%) p = 0.07

Glomerulonephritis 10 (20.8%) 11 (22.9%) 15 (31.3%) 10 (21.3%)

Diabetic nephropathy 25 (52.1%) 22 (45.8%) 17 (35.4%) 27 (57.4%)

Polycystic kidney 4 (8.3%) 0 1 (2.1%) 5 (10.6%)

Hypertensive nephrosclerosis 3 (6.3%) 7 (14.6%) 6 (12.5%) 2 (4.3%)

Obstructive uropathy 4 (8.3%) 2 (4.2%) 1 (2.1%) 1 (2.1%)

Others / unknown 2 (4.2%) 6 (12.5%) 8 (16.7%) 2 (4.3%)

Pre-existing vascular disease, no. of cases (%)

Diabetes 28 (58.3%) 24 (50.0%) 26 (54.2%) 30 (63.8%) p = 0.5

Coronary heart disease 11 (22.9%) 3 (6.3%) 10 (20.8%) 8 (17.0%) p = 0.9

Cerebrovascular disease 11 (22.9%) 10 (20.8%) 8 (16.7%) 9 (19.1%) p = 0.5

Peripheral vascular disease 3 (6.3%) 1 (2.1%) 2 (4.2%) 1 (2.1%) p = 0.4

Charlson’s comorbidity index 5.63 ± 2.19 5.06 ± 1.91 4.73 ± 2.16 5.44 ± 2.30 p = 0.4

Plasma bacterial DNA level (PCR cycles) 36.3 ± 0.4 35.6 ± 0.2 34.8 ± 0.3 32.8 ± 1.6 p < 0.0001

PD, peritoneal dialysis; PCR, polymerase chain reaction. Patients were divided to quartiles of plasma bacterial DNA. Quartile I had the lowest while

quartile IV the highest plasma bacterial DNA level. Note that a higher PCR cycle number indicates a lower level of bacterial DNA. Data are compared by

Chi square test or one way analysis of variance (ANOVA) as appropriate.

doi:10.1371/journal.pone.0125162.t001
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reasons. The number of hospital admission and duration of hospitalization for cardiovascular
reasons are compared between plasma bacterial DNA level quartiles and summarized in Fig 2.
In short, plasma bacterial DNA significantly correlated with the number of hospital admission
for cardiovascular reasons (r = -0.379, p< 0.0001) and duration of hospitalization for cardio-
vascular reasons (r = -0.386, p< 0.0001). The correlations between plasma bacterial DNA level
and total number of hospital admission (r = -0.316, p< 0.0001) as well as total duration of hos-
pitalization (r = -0.339, p< 0.0001) were also significant but less strong. Plasma LPS level also
correlated with the number of hospital admission for cardiovascular reasons (r = 0.182,
p = 0.012) and duration of hospitalization for cardiovascular reasons (r = -0.179, p = 0.013),
but the degree of correlation was substantially lower than those of bacterial DNA level. By mul-
tivariable analysis with the log-linear regression model to adjust for confounders, plasma bacte-
rial DNA level and malnutrition inflammation score were the only two independent predictors
of hospitalization for cardiovascular reasons (Table 4).

Table 2. Baseline biochemical data and dialysis prescription.

Plasma bacterial DNA quartile I II III IV P value

No. of patients 48 48 48 47

Malnutrition inflammation score 6.4 ± 4.5 6.1 ± 3.2 7.3 ± 3.8 6.4 ± 3.9 p = 0.7

Subjective Global Assessment 5.3 ± 0.9 5.6 ± 0.7 5.3 ± 0.9 5.4 ± 1.0 p = 0.5

Hemoglobin (g/dL) 9.7 ± 2.0 9.2 ± 1.0 9.4 ± 1.7 9.3 ± 1.4 p = 0.6

Serum albumin (g/L) 34.4 ± 5.3 34.3 ± 3.7 33.9 ± 4.4 35.0 ± 5.5 p = 0.8

Lipid profile

Total cholesterol (mmol/l) 4.77 ± 1.21 4.88 ± 1.37 4.97 ± 1.19 4.69 ± 1.66 p = 0.8

Triglyceride (mmol/l) 1.56 ± 0.87 1.63 ± 0.97 1.78 ± 0.95 1.74 ± 1.14 p = 0.7

LDL cholesterol (mmol/l) 2.68 ± 1.04 2.89 ± 1.11 3.00 ± 1.07 2.71 ± 1.24 p = 0.5

HDL cholesterol (mmol/l) 1.35 ± 0.44 1.28 ± 0.36 1.24 ± 0.38 1.21 ± 0.38 p = 0.4

Peritoneal transport

Ultrafiltration volume (L) 0.35 ± 0.19 0.33 ± 0.23 0.37 ± 0.22 0.29 ± 0.18 p = 0.3

D/P creatinine at 4 hour 0.66 ± 0.13 0.69 ± 0.16 0.66 ± 0.13 0.63 ± 0.16 p = 0.2

MTAC creatinine (ml/min/1.73m2) 9.9 ± 4.6 11.8 ± 6.8 10.3 ± 5.0 9.4 ± 5.4 p = 0.2

Dialysis adequacy

Weekly total Kt/V 2.12 ± 0.47 2.03 ± 0.57 2.15 ± 0.63 2.26 ± 0.63 p = 0.3

Residual GFR (ml/min/1.73m2) 3.82 ± 2.45 3.17 ± 2.65 3.50 ± 3.01 4.64 ± 2.59 p = 0.07

NPNA (g/kg/day) 1.20 ± 0.25 1.09 ± 0.22 1.13 ± 0.22 1.14 ± 0.26 p = 0.14

FEBM (%) 39.5 ± 10.9 44.2 ± 14.3 43.8 ± 15.0 39.0 ± 11.1 p = 0.11

Machine-assisted PD, no. of cases (%) 9 (18.8%) 6 (12.5%) 5 (10.4%) 8 (17.0%) p = 0.6

Use icodextrin, no. of case (%) 12 (25.0%) 15 (31.3%) 15 (31.3%) 15 (31.9%) p = 0.8

Daily exchange volume (L/day)

0 month 6.2 ± 0.6 6.1 ± 0.5 6.2 ± 0.6 6.3 ± 0.7 p = 0.7

12 month 6.4 ± 0.9 6.4 ± 0.8 6.5 ± 1.3 6.5 ± 1.1 p = 0.9

Glucose load (g/day)

0 month 97.7 ± 29.9 95.8 ± 26.6 99.7 ± 34.0 98.1 ± 33.7 p = 0.9

12 month 108.0 ± 33.6 112.2 ± 42.8 115.2 ± 44.4 114.4 ± 46.0 p = 0.9

HDL, high density lipoprotein; LDL, low density lipoprotein; D/P, dialysate-to-plasma concentration ratio of creatinine; MTAC, mass transfer area

coefficient; GFR, glomerular filtration rate; NPNA, normalized protein nitrogen appearance; FEBM, fat-free edema-free body mass by creatinine kinetics.

Patients were divided to quartiles of plasma bacterial DNA. Quartile I had the lowest while quartile IV the highest plasma bacterial DNA level. Data are

compared by one way analysis of variance (ANOVA).

doi:10.1371/journal.pone.0125162.t002
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Fig 1. Kaplan-Meier plot of (A) event-free survival; and (B) cardiovascular disease-free survival
(excluding congestive heart failure). Patients were divided to quartiles of plasma bacterial DNA. Quartile I
had the lowest while quartile IV the highest plasma bacterial DNA level. Data are compared by the log
rank test.

doi:10.1371/journal.pone.0125162.g001
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Relation with arterial pulse wave velocity
For the entire cohort, carotid-radial PWV decreased during the first 12 months of PD from
10.9 ± 1.6 to 9.7 ± 3.0 m/sec (p< 0.0001), while carotid-femoral PWV decreased from
11.9 ± 2.5 to 11.3 ± 4.1 m/sec (p = 0.049). The change in arterial pulse wave velocity over 12
months are compared between plasma bacterial DNA level quartiles and summarized in Fig 3.
In short, baseline plasma bacterial DNA level did not correlate with baseline PWV. However,
plasma bacterial DNA level significantly correlated with the change in carotid-radial (r =
-0.238, p = 0.005), but not carotid-femoral (r = -0.107, p = 0.2) PWV, during the first 12
months of PD, and it had a modest but significant inverse correlation with carotid-radial (r =
-0.207, p = 0.014) and carotid-femoral (r = -0.238, p = 0.005) at PWV at 12 months. There is
no significant difference in baseline carotid-radial or carotid-femoral PWV between patients
who could and could not complete 12 months of follow up (details not shown). Similarly, plas-
ma LPS level also correlated with the change in carotid-radial (r = 0.194, p = 0.022), but not ca-
rotid-femoral (r = 0.113, p = 0.2) PWV, during the first 12 months of PD.

Discussion
In the present study, we found that circulating bacterial DNA fragment level has a modest cor-
relation with markers of systemic inflammation. More importantly, circulating bacterial DNA
fragment level is a strong predictor of cardiovascular event, need of hospitalization, as well as
the progressive change in arterial stiffness (as reflected by arterial pulse wave velocity) in new
PD patients.

The result of our present study is in line with previous reports. For example, Bossola et al
[20] showed that circulating bacterial DNA fragments is a marker of systemic inflammation in
chronic hemodialysis patients. In our previous study, we found that plasma bacterial DNA
level correlated with the degree of systemic inflammatory state in PD patients, but there was no
association between plasma bacterial DNA level and patient survival or peritonitis-free survival
after adjusting for confounding factors [21]. The magnitude of correlation between plasma bac-
terial DNA level and plasma LPS or CRP level is similar between the two studies. In this study,
we chose CRP as the marker of systemic inflammation because its relation with cardiovascular
disease in dialysis patient is well reported [33]. Unfortunately, we did not measure the plasma
level of other cytokines (e.g. interleukin-6), which has been shown to add significantly greater
predictive power for all-cause and cardiovascular death in dialysis patients [34]. Contrary to
the correlation with CRP level, we did not find any significant correlation between plasma bac-
terial DNA and procalcitonin levels. Current evidence suggests that serum procalcitonin is a
specific marker of active bacterial infection, while CRP level denotes systemic inflammatory
state [35]. Our results further support the notion that the presence of circulating bacterial frag-
ment in PD patient is not the result of occult bacterial infection. Similar to the previous study
[21], our present one did not found any correlation between plasma bacterial DNA level and

Table 3. Cox proportional hazardsmodel of composite cardiovascular end-point.

variable AHR 95% CI P value

plasma bacterial DNA 1.269 1.130–1.425 p < 0.0001

residual GFR 0.887 0.788–0.999 p = 0.047

MIS 1.097 1.001–1.204 p = 0.049

AHR, adjusted hazard ratio; CI, confidence interval; MIS, malnutrition inflammation score; GFR, glomerular

filtration rate.

doi:10.1371/journal.pone.0125162.t003
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Fig 2. Comparison of (A) number of hospital admission; and (B) duration of hospitalization between quartiles of plasma bacterial DNA level.
Quartile I had the lowest while quartile IV the highest plasma bacterial DNA level. (p < 0.0001 by Kruskal Wallis test for all comparisons between quartiles)
(White box, hospitalization for all cause; hatched box, hospitalization for cardiovascular reasons.)

doi:10.1371/journal.pone.0125162.g002
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patient or technique survival. Nonetheless, the present study supports the hypothesis that cir-
culating bacterial DNA fragment contributes to the pathogenesis of cardiovascular disease in
PD patients, which is an area not explored in the previous study [21].

Several previous studies showed that plasma LPS (i.e. bacterial cell wall fragment) level is re-
lated to systemic inflammation, erythropoietin resistance, and cardiovascular disease in chron-
ic kidney disease [17,18,36]. In patients receiving hemodialysis, systemic circulatory stress
induced by the dialysis procedure, as well as recurrent regional ischemia, may lead to endotoxin
translocation from the gut, resulting in a systemic inflammatory state, progressive malnutri-
tion, cardiac injury, and reduced survival [18]. However, the prognostic value of plasma LPS
level in PD patients is less certain. We have previously observed a better technique survival and
an insignificant trend of fewer cardiovascular events in new PD patients with a higher baseline
plasma LPS level [37]. In our present study, we also observed a modest but significant relation
between plasma LPS level and systemic inflammation as well as subsequent hospitalization, but
the magnitude of correlation was substantially less than that with plasma bacterial DNA level.

The mechanism of bacterial fragment induced inflammatory state and atherosclerosis is in-
completely understood. Current evidence suggests that metabolic alterations of uremia favor
pathogen overgrowth in the gut and alteration in bowel permeability, resulting in an increased
translocation of bacterial components [38]. This process then activates innate immunity and
systemic inflammation. Our study does not show that bacterial DNA fragment is the only
source of microbial inflammatory trigger. We believe all types of circulating bacterial fragments
contribute to the pathogenesis of cardiovascular disease in PD patients, and, as compare to LPS
level, plasma bacterial DNA level seems to be a superior marker of circulating load of bacterial
fragment. Theoretically, plasma bacterial DNA level may represent a more accurate measure-
ment of the load of circulating bacterial fragment than LPS level because LPS is by and large
the cell wall component of Gram negative bacteria, while the bacterial DNA assay we used de-
tects both Gram positive and Gram negative species.

Based on our result, it is tempting to hypothesize therapeutic measures that lower circulat-
ing bacterial DNA (as well as other microbial fragments) levels may be an effective means for
cardiovascular protection. Interventions that manipulate the gut microbiota, such as pre- or
probiotics, have been proposed to correct the immune dysregulation in renal failure and to pre-
vent complications related to uremia [38,39]. Alternatively, interventions that aim to neutralize
bacterial endotoxins or adsorb gut-derived uremic toxins have been considered [39]. Recently,
John et al [19] reported that in elderly patients, improvement of their cardiovascular status
with optimized antihypertensive therapy is associated with a significant reduction in the

Table 4. Independent predictors of hospitalization for cardiovascular reasons by log-linear model.

variable eCOEF 95%CI P value

number of hospital admission

plasma bacterial DNA level (2-fold) 1.222 1.133–1.318 p < 0.0001

MIS (1 point) 1.036 1.005–1.068 p = 0.022

duration of hospitalization

plasma bacterial DNA level (2-fold) 1.323 1.157–1.512 p < 0.0001

MIS (1 point) 1.083 1.006–1.065 p = 0.033

CI, confidence interval; MIS, malnutrition inflammation score.

NB. eCOEF was the exponential coefficient indicating the relative number of hospital admission (per year) or

duration of hospitalization (days per year of follow up) compared to the 2-fold lower of plasma bacterial

DNA level (i.e. one extra threshold cycle of polymerase chain reaction), and 1 point less for MIS.

doi:10.1371/journal.pone.0125162.t004
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circulating LPS level. We have previously showed that using ultrapure dialysate for hemodialy-
sis effectively reduces circulating LPS but not bacterial DNA level in hemodialysis patients
[40]. However, none of these measures has been proved to improve hard clinical end points
(for example, reducing cardiovascular event or hospitalization). Further clinical trials in this
area are much needed.

Fig 3. Comparison of (A) carotid-radial; and (B) carotid-femoral pulse wave velocity (PWV) between quartiles of plasma bacterial DNA level.
Quartile I had the lowest while quartile IV the highest plasma bacterial DNA level. P values depicted are computed by paired Student’s t test.

doi:10.1371/journal.pone.0125162.g003
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There are a number of inadequacies of our present study. First, the sample size estimation
was based on the primary composite end point and is therefore inadequate to determine the ef-
fect of bacterial DNA level on patient survival, and the negative result of survival analysis in
our study may represent type 2 statistical error. The sample size is too small to test the effect of
each individual factor. Nonetheless, a post hoc pooled analysis that also include patients in our
previous study [21], with a total of 491 patients, does not reveal any trend of survival difference
between patients with different plasma bacterial DNA level quartiles (S1 Fig). As a single center
study, one also needs to be cautious about the generalizability of our result. Further large cohort
studies are needed to validate the result, especially in patients from other ethnic groups.

In the present study, we did not determine the serial change of plasma bacterial DNA level
with time, although our previous study showed that plasma bacteria DNA levels remains static
over 12 months in PD patients [21]. In addition, we do not have detailed information on the fluid
status of our patients. Since systemic fluid overload could either be the cause or effect of bacterial
fragment translocation from the gut, it would be interesting to explore the relation between plasma
bacterial DNA level and body fluid status (for example, by bioimpedance spectroscopy). Although
a substantial proportion of the events that were counted as the primary composite end point were
hospitalization for heart failure, the result remains similar after excluding fluid overload as the out-
come measure. Unfortunately, it is often difficult to differentiate cardiac disease from systemic
fluid overload as the primary reason of hospitalization. Based on our result, it seems possible that
circulating bacterial DNA fragment contribute to the development of systemic fluid overload as
well as atherosclerotic diseases. Nonetheless, correlations demonstrated in our observational study
does not prove causation, which needs to be tested by further intervention trials.

In theory, it is also possible that pre-existing cardiovascular disease predisposes to higher
levels of plasma bacterial DNA as well as future cardiovascular events. Nonetheless, we ob-
served no association between pre-existing cardiovascular disease and plasma bacterial DNA
levels. Unfortunately, we do not have baseline measurement of left ventricular function to de-
termine its association with plasma bacterial DNA levels.

In summary, we found that circulating bacterial DNA fragment level is a strong predictor of
cardiovascular event, need of hospitalization, as well as the progressive change in arterial stiff-
ness in new PD patients. Further studies are needed to determine whether therapeutic inter-
ventions that lower circulating bacterial fragments levels could prevent cardiovascular disease
in PD patients.

Supporting Information
S1 Fig. Kaplan-Meier plot of patient survival. Patients were divided to quartiles of plasma
bacterial DNA. Quartile I had the lowest while quartile IV the highest plasma bacterial DNA
level. Data are compared by the log rank test.
(TIF)
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