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Abstract
How rare are magic squares? So far, the exact number of magic squares of order n is only

known for n� 5. For larger squares, we need statistical approaches for estimating the num-

ber. For this purpose, we formulated the problem as a combinatorial optimization problem

and applied the Multicanonical Monte Carlo method (MMC), which has been developed in

the field of computational statistical physics. Among all the possible arrangements of the

numbers 1; 2, . . ., n2 in an n × n square, the probability of finding a magic square decreases

faster than the exponential of n. We estimated the number of magic squares for n� 30. The

number of magic squares for n = 30 was estimated to be 6.56(29) × 102056 and the corre-

sponding probability is as small as 10−212. Thus the MMC is effective for counting very

rare configurations.

Introduction
Making magic squares is a popular form of mathematical recreation. It is also used in class-
rooms as an elementary mathematical exercise. The classic (or ordinary) magic square of order
n is defined as follows: Placing the numbers 1, 2, � � �n2 in a square array using each number
once, if all the sums of the numbers in each row, column and diagonal give the same value,
Mn ¼ 1

2
nðn2 þ 1Þ, the array makes a magic square.Mn is called the magic number. Besides the

classic magic squares, there are many variations, and some rigorous results have been found
for them. But not much is known about classic magic squares [1]. In this paper, we focus on
classic magic squares.

There are some algorithms for making magic squares of any size. They, however, provide some
special classes of magic squares, which gives rise to the question: Among all the possible arrange-
ments of numbers in a square of a given size, howmany of them formmagic squares? Putting the
question in another form: Is there any chance of making a magic square by putting numbers ran-
domly in a square? It may be surprising to know that the exact number of possible magic squares is
so far only known up to order 5. There is currently no hope of exact enumeration for a larger
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system. In this paper, we apply a Monte Carlo method to this problem, and estimate the number of
the magic squares of each size up to order 30.

To state the problem explicitly, we consider classic magic squares order n. Let Nn denote the
total number of magic squares. Since possible configurations increase as n2!, counting the
magic squares rapidly becomes more difficult. Currently, only the following three values of Nn

are known exactly: N3 = 1, N4 = 880, and N5 = 275,305,224 [1], where the eight equivalent
magic squares that can be transformed into each other by rotation and reflection are counted
as one.

For larger squares, we need to employ statistical approaches for estimating the number of
magic squares. There have been two studies in this direction. Pinn and Wieczerkowski applied
the exchange Monte Carlo method (EMC) [2] to this problem [3] and estimated N6 and N7.
Their results are N6 = 1.7745(16) × 1019 and N7 = 3.760(52) × 1034, where the digits in paren-
theses indicate the statistical error of the lowest digits. Trump proposed a more efficient meth-
od, called Monte Carlo Backtracking, and estimated Nn for n� 20. [4].

EMC belongs to a family of extended ensemble Monte Carlo methods [5]. Extended ensem-
ble Monte Carlo methods were initially developed in the field of statistical physics, and have
found a wide field of applications beyond their original scope. They are especially suitable for
estimating the probability of occurrence of very rare events. The work by Pinn and Wieczer-
kowski is one of the earliest applications of the extended ensemble Monte Carlo methods out-
side the field of physics. In this paper, we use the Multicanonical Monte Carlo method (MMC)
[6], which also belongs to a family of extended ensemble methods. There have also been some
studies that used EMC for counting solutions for mathematical puzzles such as the N-Queen
problem [7][8]. But the MMC has not been used for problems of this type. Compared to the
EMC, which requires a trick for counting the number of configurations that satisfy some spe-
cific conditions, the MMC provides the estimates of the number straightforwardly. We thus
consider the MMC to be more suitable for problems of this sort than the EMC.

Methods
Let us consider magic squares of order n. In order to apply the MMC, we define the energy E
(C) of a configuration of numbers C as follows:

EðCÞ ¼
X

columns i

jMn � Sij þ
X
rows j

jMn � Sjj þ
X

diagonals k

jMn � Skj; ð1Þ

where Si, Sj, and Sk are the sums of the numbers for the ith column, that for the jth row, and
that for the kth diagonal. E(C) is zero if and only if C is a magic square, and it takes a positive
value otherwise. Thus, the lowest energy (E = 0) configurations provide magic squares. In other
words, finding problem of magic squares are formulated as a combinatorial optimization prob-
lem. The number of optimal configurations are very large in this case, and we estimate the
number using the MMC.

The MMC was proposed by Berg and Neuhaus in the field of statistical physics to overcome
slow convergence of Metropolis-type Markov chain Monte Carlo methods when applied to the
sampling of low temperature states of complex systems [6]. In contrast to the Metropolis meth-
od which provides the canonical ensemble, namely the ensemble of configurations at the ther-
mal equilibrium of a given temperature T as the steady-state distribution of the Markov
process, the MMC aims to give a flat energy distribution over the entire energy range. This flat-
ness enables us to estimate the number of configurations of any energy. For that purpose, a pre-
determined weight functionW(E) is used in the MMC instead of the canonical weight e−E/T

used in the Metropolis method.W(E) is prepared so that the energy histogram H(E) obtained
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by Monte Carlo sampling is sufficiently flat. Since H(E) is proportional to the product ofW(E)
and the number of states g(E) having energy E, we can then estimate relative values of g(E)
fromW(E) and H(E) as

gðEÞ / HðEÞ
WðEÞ : ð2Þ

The appearance probability of energy E = ε in randomly arranged configurations of num-
bers from 1 to n2 is estimated by

PðE ¼ εÞ ¼ gðεÞP
EgðEÞ

; ð3Þ

where the summation in the denominator is taken over all the possible energies. Thus the ap-
pearance probability of magic square Pn is given by Pn = P(E = 0). Since the total number of
configurations is n2!, we can also estimate the total number of magic squares Nn by Pn × n2!/8.
It should be noted that, in principle, MMC gives statistically unbiased estimates for the number
of magic squares.

To determineW(E), we carried out preliminary runs using the Wang–Landau method [9],
in whichW(E) is updated at each Monte Carlo trial until it finally gives a sufficiently flat histo-
gram H(E). We then fixedW(E) and carried out long measurement runs using the entropic
sampling method [10], which is equivalent to MMC in the present study because we assigned a
single value of energy to each bin of the histogram. We made independent measurement runs
many times for each n, and took averages of Nn and N2

n over them. The statistical error of Nn

was then estimated as three times the standard error:

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hN2

ni � hNni2
t � 1

r
; ð4Þ

where h�i is the mean value of � and t is the number of the measurement runs.
Only the sequential transposition of adjacent numbers, 1 with 2, then 2 with 3, � � �, n2−1

with n2 were used as an elementary process of the Monte Carlo trial, following Ref. [3]. By this
method, we can avoid a large energy difference between successive configurations in Markov
chains, which causes inefficiencies in Monte Carlo methods. We employed Mersenne-Twister
as the pseudo-random-number generator [11].

The number of measurement runs and the length of each run are different for each n. For
the largest system with n = 30, for example, we made 40 independent measurement runs of
1.1 × 1012 Monte Carlo trials each. Flatness of the histogram was confirmed by a long indepen-
dent run that was four times longer than the measurement run. The number of configurations
in each bin of the histogram falls within the range from 0.93 to 1.01 of the mean value, which
we decided as sufficiently flat.

Results
Fig 1 shows a semi-log plot of the n dependence of Pn. Our estimates of Pn and Nn up to n = 30
are listed in Table 1. Exact values for of Nn for n = 3,4 and 5 and the previous estimates of Nn

by Trump for 6� n� 20 are also shown for comparison. We obtained N30 = 6.56(29) × 102056.
In contrast to this extremely large value, its appearance probability, P30, is smaller than 10−212.
Thus the magic squares are numerous but rare.

The largest size of n = 30 is much larger than that which has been calculated previously. The
estimates of N3, N4, and N5 agree with the exact values within the statistical error, and the esti-
mates up to n = 17 are consistent with Trump’s values within the statistical error. However,
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there are appreciable discrepancies between the present results and those of Trump for n = 18
and 19; our values are larger for these sizes. In fact, Trump himself pointed out that the true
values for N18 and N19 might be smaller than his estimates based on his own extrapolation for-
mula. We thus think that our estimates are reliable. He also gave estimates of Nn for n> 20 ob-
tained by the abovementioned extrapolation formula. Compared to the present estimates, his
extrapolation results have two-digits accuracy up to n = 30.

As seen in Fig 1, the appearance probability of magic squares Pn decreases rapidly with n. In
other words, magic squares become rarer rapidly as n increases. This raises the question: how
fast does their appearance probability decrease? It clearly decreases faster than the exponential
function exp(−an) with constant a. On the other hand, since the number of possible configura-
tions is n2!, Pn should decrease slower than exp(−n2logn). Considering these facts, we first tried
to fit logPn for n� 10 by the second-order polynomial. But the reduced χ2 was larger than
6000 and thus the fitting function was inappropriate. Next we tried functions including logn.
The fitting function (An + B)logn + Cn + D with the constants A, B, C and D gave A = −4.99 ±
0.07 with the reduced χ2 = 2.55 and the fitting function (En + F)log(n + G) +H with the con-
stants E, F, G and H gave E = −4.880 ± 0.008 with the reduced χ2 = 2.42. Fitted curves using
these two functions are shown in Fig 1. The two curves are virtually indistinguishable on this
scale except for very small values of n. Other functions we tried gave larger values of reduced

Fig 1. Semi-log plot of the appearance probability Pn of magic squares (•). Pn decreases faster than exponentially with the size n. Two fitted functions
are also shown: exp((An + B)ln(n) + Cn + D) (solid line) and exp((En + F)ln(n +G) + H) (dotted line) with A = −4.99 and E = −4.88. We used Pn of n� 10 for the
fitting. Enlarged plot for n < 6 is shown in the inset, in which difference of two functions are visible.

doi:10.1371/journal.pone.0125062.g001
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χ2. The reduced χ2 for both functions, however, are still large, and the fittings are not fully satis-
factory. We consider the reason is that n = 10 is not yet at the asymptotic region. In fact, when
we tried to fit the same functions to data only for larger sizes, n� 20, we obtained the reduced
χ2 = 1.30 and 1.37, respectively. Although the errors of the parameters are large, A = −4.6 ± 0.5
and E = −4.88 ± 0.06, reduced χ2 for both functions are rather satisfactory.

Fig 2 shows the ratio Pn/exp{(An + B)logn + Cn + D} and Pn/exp{(En + F)log(n + G) +H}.
Both functions seem to express Pn equally well. In any case, since the slope of logPn varies slow-
ly, it is difficult to determine the appropriate functional form from the present results. We need
Pn for much larger systems to provide a solid conclusion. Even so, we may conjecture that the
logPn decreases asymptotically as an log n with a’ 5.

In this paper, we applied the Multicanonical Monte Carlo method to a combinatorial opti-
mization problem by defining appropriate an energy function E(C). The MMC directly gives
the number of the optimal configurations from the histogram of the lowest energy

Table 1. Estimated number and qppearance probability of magic squares.

n Pn Nn Trump’s estimates (* exact)

3 2.204(35) × 10−5 0.999(16) 1 *

4 3.3645(15) × 10−10 8.7995(39) × 102 880 *

5 1.42011(88) × 10−16 2.7534(17) × 108 275305224 *

6 3.8182(15) × 10−22 1.77543(73) × 1019 1.775399(42) × 1019

7 4.9955(92) × 10−28 3.7983(70) × 1034 3.79809(50) × 1034

8 3.2931(91) × 10−34 5.223(14) × 1054 5.2225(18) × 1054

9 1.0831(30) × 10−40 7.848(22) × 1079 7.8448(38) × 1079

10 2.069(14) × 10−47 2.414(17) × 10110 2.4149(12) × 10110

11 2.312(12) × 10−54 2.339(12) × 10146 2.3358(14) × 10146

12 1.645(10) × 10−61 1.1417(72) × 10188 1.1424(10) × 10188

13 7.564(61) × 10−69 4.036(32) × 10235 4.0333(54) × 10235

14 2.376(27) × 10−76 1.509(17) × 10289 1.5057(24) × 10289

15 5.082(66) × 10−84 8.00(10) × 10348 8.052(22) × 10348

16 7.933(98) × 10−92 8.50(11) × 10414 8.509(27) × 10414

17 8.898(61) × 10−100 2.313(16) × 10487 2.314(9) × 10487

18 7.500(66) × 10−108 2.146(19) × 10566 2.047(8) × 10566

19 4.657(86) × 10−116 8.37(15) × 10651 8.110(35) × 10651

20 2.216(50) × 10−124 1.773(40) × 10744 1.810(8) × 10744

21 8.34(24) × 10−133 2.589(73) × 10843

22 2.503(73) × 10−141 3.189(93) × 10949

23 5.88(21) × 10−150 3.92(14) × 101062

24 1.099(38) × 10−158 5.85(20) × 101182

25 1.640(44) × 10−167 1.258(34) × 101310

26 2.098(43) × 10−176 4.94(10) × 101444

27 2.150(62) × 10−185 3.86(11) × 101586

28 1.804(74) × 10−194 7.18(29) × 101735

29 1.276(61) × 10−203 3.77(18) × 101892

30 7.78(35) × 10−213 6.56(29) × 102056

Numbers in the parentheses indicate the statistical errors (3 times the standard error) in the last digits.

doi:10.1371/journal.pone.0125062.t001
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configurations. The present work demonstrates that the MMC is a powerful tool for counting
rare configurations of combinatorial problems. We can estimate the appearance probabilities
of the optimal configurations as small as 10−212.
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